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Motivation

Why care about extensible languages?

We can express many domain-specific 
languages (or policies) as language extensions

Many benefits

• Technical
-no need to re-implement language constructs
 (if, while, functions, records, etc.)
-extensions only need to be transformed to
 existing constructs
-decreased development costs

• Economic
-environment, tools (editor, debugger,
 documentation tools) can be reused
-decreased transition (project adaptation) and
 education costs
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Motivation: Domain-Specific Languages 
(DSLs)

DSLs result in significant productivity increase

• domain knowledge captured in language

• reusable, general, efficient form

Boundaries of languages-libraries not exact

• practically, every reusable library that is more 
than a collection of functions can be viewed as 
a new domain-specific embedded language 
(e.g., STL, MFC)

• is an OO framework a language or a library?

• no strict separation => no strict comparison
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Many technical advantages of a well-designed 
DSL over a library of functions

• Simpler, intuitive syntax

• Higher level primitives

• Possibility for higher-level optimizations
-e.g., query optimization in database languages

• Advanced error-checking
-error checking of functions is only type
 checking of operands

A tremendous number of libraries for special 
purposes

• >1900 special-purpose APIs from Microsoft
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Extensible Languages Classification

Language extensions can be

• Syntactic: new syntax is added to the language 
(e.g., macros)

• Semantic: no new syntax is added but the 
semantics is changed (e.g., meta-object 
protocols)

Two main approaches to language extensibility 
(not strictly divided):

• Transformational: the meaning (“semantics”) 
of an extension determined by syntactic 
transformations to more basic language 
primitives

• Compositional: the meaning of an extension is 
determined by directly manipulating 
(appropriately externalized) internal structures 
of the compiler
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Usually (but not always) we associate the terms

• meta-programming and transformation system 
with transformational extensibility

• reflection with compositional extensibility

More specifically

Meta-programming: the act of writing programs 
that (re-)write other programs (e.g., macros)

Reflection (in the context of languages): the act 
of a language allowing access to its internal 
functionality

Also,

• the “meta” prefix commonly used for most 
reflective activities (e.g., meta-object protocol)
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Semantic extensibility is really ill-defined

• when is something a semantic extension and 
when a regular program?

• when is a language construct “reflective”?

• grey areas (e.g., first class continuations, OO 
messages, etc.) but usually we can draw a line 
intuitively

We will review several language extensibility 
mechanisms (there are many more but these 
should illustrate the ideas)

• CLOS, SOM, Java Reflection, Intentional 
Programming, Open C++, JTS, Lisp and 
Scheme macros
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Semantic Extensibility

• No new syntax. Semantics (policy) changed

• Best known examples: meta-object protocols

Meta-object protocols (MOPs):

• associate semantic changes to a class with a 
class meta-object (run-time MOPs)

The meta-object’s class (meta-class) has 
methods defining extensions for various 
semantic actions

• the choice is arbitrary (why not a set of meta-
functions?) but shows good object-oriented 
design structure
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Example: CLOS MOP

• CLOS is an object system for Lisp

• Provides semantic extensibility (both 
transformational and compositional) through a 
very powerful MOP

• Transformational character provided by the 
Lisp meta-programming facilities

-code expressions as lists, quote,
 backquote, and comma

CLOS MOP compositional capabilities:

• can define before-, after-, and around-methods

• can change (multiple) inheritance policies
-how to inherit, what to inherit, how to mix 
members, inheritance precedence, how to 
combine methods (e.g., superclass method 
runs first like in Beta), etc.
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Simple example:

(defclass counted-class 
(standard-class)

  ((counter : initform 0)))

counted-class  is a meta-class (its superclass 
is the standard meta-class standard-class). 

Every object of counted-class  (in essence, 
every class created with counted-class  as its 
meta-class) will have a counter field

(defclass foo () ()
 (:metaclass counted-class))

Class foo is associated with a class meta-object 
whose class is counted-class . This is 
equivalent to saying “foo’s meta-class is 
counted-class”
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[example continued]

(defmethod make-instance :after
((class counted-class) &key)

(incf (slot-value class ‘counter)))

make-instance is the method of a class that 
creates a new object

Here we create an after-method for instances of 
counted-class

Recall that class foo is (or more correctly “is 
associated with”) such an instance 

Hence, every time a new foo object is created, 
foo’s counter is increased by 1
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CLOS MOP transformational capabilities:

• strictly speaking, CLOS does not deal with 
code transformation

• but its reflective capabilities work nicely with 
Lisp program manipulation

Example:

(defun generate-defclass (class)
‘(defclass ,(class-name class)

,(mapcar #’class-name 
(class-direct-superclasses 

class))))

Gets the names of all superclasses of a class and 
generates a class definition (in source code 
form) for a class with these superclasses
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Example: SOM (IBM’s System Object 
Model)

• SOM is a binary object system and offers a 
meta-object protocol for industrial languages 
(C, C++, ...)

- something like COM
- this ensures binary compatibility under 

object evolution— even for MOP issues

• Semantic compositional approach

• Model similar to CLOS (classes are instances 
of meta-classes)

• Classes specified in SOM IDL (interface 
definition language— CORBA compliant)

-C, C++ header files produced and
 executed programs use the SOM runtime
-dynamic class construction
-extra level of indirection allows binary
 compatibility

Yannis Smaragdakis

14 of 41

• SOM has nothing to do with the C++ object 
system

• SOM meta-classes are mapped to C++ classes 
when C++ is the host language

• SOM classes are dynamic entities (objects)

interface Counted : SOMMCooperative {
readonly attribute long counter;
implementation { 

somMethodProc** doNew;
somInit: override;

 };
};

This is the interface definition of the meta-class 
and its (SOM-specific) implementation

Regular class definitions are simple IDL 
definitions with a metaclass field assignment 
in the implementation  section (see above)
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Interesting issues specific to SOM (example): 
Metaclass Incompatibility

• A class X has a metaclass XMeta, depends on 
a method of its metaclass (methods of a class 
can call methods of their metaclass)

• A class Y inherits from X, but specifies a meta-
class explicitly (YMeta): problem

• Solution: SOM automatically builds a 
metaclass DerivedMeta  for Y, which 
multiply inherits from XMeta and YMeta

- what if methods conflict in XMeta/YMeta? 
Usual multiple inheritance caveats apply. A 
“solution” in OOPSLA’94 paper (“Reflections 
on Metaclass Programming in SOM”)

• This technique is the cornerstone of binary 
compatibility: the user does not need to worry 
about metaclasses when the library changes 
(e.g., the metaclass of a library class changes)
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Example: Java Reflection Classes

• No extensibility— merely introspection

• class meta-objects like in CLOS, SOM 
(instances of Java.lang.Class)

• allows dynamic inspection of the class of an 
object and its inheritance hierarchy

• allows dynamic loading and linking of classes

• mainly geared towards object inspectors, 
debuggers, class browsers, interpreters, etc.

• could become quite interesting with a few 
extensions:

-allow manipulation of the inheritance
 hierarchy?
-give access to method bodies, even in
 opaque form?
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Syntactic Extensibility

• Syntactically extensible languages allow the 
specification of new syntax

• Pure compositional extensibility is limited in 
certain well-defined aspects of a language

- the implementors of the language must
 anticipate all extensions

• This is why most syntactic extensibility 
mechanisms have a transformational part

• Transformational extensibility works by 
transforming extensions to basic language 
primitives

-Obviously, macro expansion is a special
 case

• In theory, transformational extensibility is 
very powerful
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• In practice, some extensions are very hard to 
express as transformations alone

-some “semantic” information needed
 (types, blocks, etc.)

• Often the two kinds (transformational and 
compositional) of extensibility are combined 
for more power

• More on this later...
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Example: Open C++

• A transformational (compile-time) MOP !

• Limited syntactic extensibility, more powerful 
semantic extensibility

• Only new syntax that can be added:
- type modifiers (like “static”)
- access specifiers (like “private”)
- “while” and “for”-like statements
- “function” like blocks of code

• Code representation like in Lisp: parse trees 
represented as nested linked lists

• Can create new trees, pattern match on trees, 
etc. (standard set of operations)

• Simple introspection protocol on trees 
representing classes (can examine members, 
fields, superclasses, metaclasses, etc.)
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• Semantic extensions can be specified for 
translating classes, members, methods, method 
calls, and many more

• Simple example:

metaclass Person : MyMetaClass;
class Person {

int age;
public:

Person(int age);
int Age() {return age;}

};

Specify that MyMetaClass  is the meta-class for 
class Person
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class MyMetaClass : public Class 
{
public:

Ptree* TranslateMemberCall(Environment* env,
Ptree* obj, Ptree* op, Ptree* member,
Ptree* arglist) 

{
return Ptree::Make(“(puts(\”%p\”), member,

Class::TranslateMemberCall(env, obj,
op, member, arglist));

}
};

Every member call (trapped by the special meta-
class method TranslateMemberCall ) will 
be transformed

For instance,

Person jeff;
return jeff.Age();

will transform into:

Person jeff;
return (puts(“Age”), jeff.Age());
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Example: JTS (Jakarta Tool Suite)

• Syntactic transformational extensibility 
mechanism

• Main element: syntactic extensions specified 
as new productions in context free grammar

• Extended grammar defined as the union of 
original productions and extension productions

• Extensions are layered —  new languages 
formed by selecting extensions organizing 
them in a type equation

• Meta-programming model: abstract syntax 
trees, code templates, pattern matching, 
hygienic constructs (more on that later)

Yannis Smaragdakis

23 of 41

Example: Lisp and Scheme Macros

• Syntactic transformational approach

• Languages of the Lisp family have simple 
syntax

• Easy to manipulate source code 
programmatically, extend syntax

• The term “macros” does not necessarily refer 
to pattern-based macros (as in C)

• Lisp has programmatic macros (general meta-
programming)

• Scheme has two (proposed) macro 
mechanisms:

-high level (hygienic, pattern-based)
-low level (programmatic, compatible with
 high level, many proposed)
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Programmatic macros example (Lisp)

(defmacro send-passwd (string)
‘(send-to-host 

(decrypt ,(encrypt string))))

Usage:

(send-passwd “gandalf13”) 

Converted after macro-expansion into:

(send-to-host (decrypt 
“09871230123481234”))

-That is, the password never appears decrypted
 in the object file. 
-Gets encrypted at compile time (rather, 
macro-expansion time), decrypted at run-time!

-Can’t do this in C

• Note: Lisp makes no distinction between code 
and code as data when it comes to constants 
-‘1 = 1


