
Yannis Smaragdakis

1 of 41

Extensible Languages

Reflection and Meta-Programming

Yannis Smaragdakis

2 of 41

Motivation

Why care about extensible languages?

We can express many domain-specific
languages (or policies) as language extensions

Many benefits

• Technical
-no need to re-implement language constructs
 (if, while, functions, records, etc.)
-extensions only need to be transformed to
 existing constructs
-decreased development costs

• Economic
-environment, tools (editor, debugger,
 documentation tools) can be reused
-decreased transition (project adaptation) and
 education costs

Yannis Smaragdakis

3 of 41

Motivation: Domain-Specific Languages
(DSLs)

DSLs result in significant productivity increase

• domain knowledge captured in language

• reusable, general, efficient form

Boundaries of languages-libraries not exact

• practically, every reusable library that is more
than a collection of functions can be viewed as
a new domain-specific embedded language
(e.g., STL, MFC)

• is an OO framework a language or a library?

• no strict separation => no strict comparison

Yannis Smaragdakis

4 of 41

Many technical advantages of a well-designed
DSL over a library of functions

• Simpler, intuitive syntax

• Higher level primitives

• Possibility for higher-level optimizations
-e.g., query optimization in database languages

• Advanced error-checking
-error checking of functions is only type
 checking of operands

A tremendous number of libraries for special
purposes

• >1900 special-purpose APIs from Microsoft

Yannis Smaragdakis

5 of 41

Extensible Languages Classification

Language extensions can be

• Syntactic: new syntax is added to the language
(e.g., macros)

• Semantic: no new syntax is added but the
semantics is changed (e.g., meta-object
protocols)

Two main approaches to language extensibility
(not strictly divided):

• Transformational: the meaning (“semantics”)
of an extension determined by syntactic
transformations to more basic language
primitives

• Compositional: the meaning of an extension is
determined by directly manipulating
(appropriately externalized) internal structures
of the compiler

Yannis Smaragdakis

6 of 41

Usually (but not always) we associate the terms

• meta-programming and transformation system
with transformational extensibility

• reflection with compositional extensibility

More specifically

Meta-programming: the act of writing programs
that (re-)write other programs (e.g., macros)

Reflection (in the context of languages): the act
of a language allowing access to its internal
functionality

Also,

• the “meta” prefix commonly used for most
reflective activities (e.g., meta-object protocol)

Yannis Smaragdakis

7 of 41

Semantic extensibility is really ill-defined

• when is something a semantic extension and
when a regular program?

• when is a language construct “reflective”?

• grey areas (e.g., first class continuations, OO
messages, etc.) but usually we can draw a line
intuitively

We will review several language extensibility
mechanisms (there are many more but these
should illustrate the ideas)

• CLOS, SOM, Java Reflection, Intentional
Programming, Open C++, JTS, Lisp and
Scheme macros

Yannis Smaragdakis

8 of 41

Semantic Extensibility

• No new syntax. Semantics (policy) changed

• Best known examples: meta-object protocols

Meta-object protocols (MOPs):

• associate semantic changes to a class with a
class meta-object (run-time MOPs)

The meta-object’s class (meta-class) has
methods defining extensions for various
semantic actions

• the choice is arbitrary (why not a set of meta-
functions?) but shows good object-oriented
design structure

Yannis Smaragdakis

9 of 41

Example: CLOS MOP

• CLOS is an object system for Lisp

• Provides semantic extensibility (both
transformational and compositional) through a
very powerful MOP

• Transformational character provided by the
Lisp meta-programming facilities

-code expressions as lists, quote,
 backquote, and comma

CLOS MOP compositional capabilities:

• can define before-, after-, and around-methods

• can change (multiple) inheritance policies
-how to inherit, what to inherit, how to mix
members, inheritance precedence, how to
combine methods (e.g., superclass method
runs first like in Beta), etc.

Yannis Smaragdakis

10 of 41

Simple example:

(defclass counted-class
(standard-class)

 ((counter : initform 0)))

counted-class is a meta-class (its superclass
is the standard meta-class standard-class).

Every object of counted-class (in essence,
every class created with counted-class as its
meta-class) will have a counter field

(defclass foo () ()
 (:metaclass counted-class))

Class foo is associated with a class meta-object
whose class is counted-class . This is
equivalent to saying “foo’s meta-class is
counted-class”

Yannis Smaragdakis

11 of 41

[example continued]

(defmethod make-instance :after
((class counted-class) &key)

(incf (slot-value class ‘counter)))

make-instance is the method of a class that
creates a new object

Here we create an after-method for instances of
counted-class

Recall that class foo is (or more correctly “is
associated with”) such an instance

Hence, every time a new foo object is created,
foo’s counter is increased by 1

Yannis Smaragdakis

12 of 41

CLOS MOP transformational capabilities:

• strictly speaking, CLOS does not deal with
code transformation

• but its reflective capabilities work nicely with
Lisp program manipulation

Example:

(defun generate-defclass (class)
‘(defclass ,(class-name class)

,(mapcar #’class-name
(class-direct-superclasses

class))))

Gets the names of all superclasses of a class and
generates a class definition (in source code
form) for a class with these superclasses

Yannis Smaragdakis

13 of 41

Example: SOM (IBM’s System Object
Model)

• SOM is a binary object system and offers a
meta-object protocol for industrial languages
(C, C++, ...)

- something like COM
- this ensures binary compatibility under

object evolution— even for MOP issues

• Semantic compositional approach

• Model similar to CLOS (classes are instances
of meta-classes)

• Classes specified in SOM IDL (interface
definition language— CORBA compliant)

-C, C++ header files produced and
 executed programs use the SOM runtime
-dynamic class construction
-extra level of indirection allows binary
 compatibility

Yannis Smaragdakis

14 of 41

• SOM has nothing to do with the C++ object
system

• SOM meta-classes are mapped to C++ classes
when C++ is the host language

• SOM classes are dynamic entities (objects)

interface Counted : SOMMCooperative {
readonly attribute long counter;
implementation {

somMethodProc** doNew;
somInit: override;

 };
};

This is the interface definition of the meta-class
and its (SOM-specific) implementation

Regular class definitions are simple IDL
definitions with a metaclass field assignment
in the implementation section (see above)

Yannis Smaragdakis

15 of 41

Interesting issues specific to SOM (example):
Metaclass Incompatibility

• A class X has a metaclass XMeta, depends on
a method of its metaclass (methods of a class
can call methods of their metaclass)

• A class Y inherits from X, but specifies a meta-
class explicitly (YMeta): problem

• Solution: SOM automatically builds a
metaclass DerivedMeta for Y, which
multiply inherits from XMeta and YMeta

- what if methods conflict in XMeta/YMeta?
Usual multiple inheritance caveats apply. A
“solution” in OOPSLA’94 paper (“Reflections
on Metaclass Programming in SOM”)

• This technique is the cornerstone of binary
compatibility: the user does not need to worry
about metaclasses when the library changes
(e.g., the metaclass of a library class changes)

Yannis Smaragdakis

16 of 41

Example: Java Reflection Classes

• No extensibility— merely introspection

• class meta-objects like in CLOS, SOM
(instances of Java.lang.Class)

• allows dynamic inspection of the class of an
object and its inheritance hierarchy

• allows dynamic loading and linking of classes

• mainly geared towards object inspectors,
debuggers, class browsers, interpreters, etc.

• could become quite interesting with a few
extensions:

-allow manipulation of the inheritance
 hierarchy?
-give access to method bodies, even in
 opaque form?

Yannis Smaragdakis

17 of 41

Syntactic Extensibility

• Syntactically extensible languages allow the
specification of new syntax

• Pure compositional extensibility is limited in
certain well-defined aspects of a language

- the implementors of the language must
 anticipate all extensions

• This is why most syntactic extensibility
mechanisms have a transformational part

• Transformational extensibility works by
transforming extensions to basic language
primitives

-Obviously, macro expansion is a special
 case

• In theory, transformational extensibility is
very powerful

Yannis Smaragdakis

18 of 41

• In practice, some extensions are very hard to
express as transformations alone

-some “semantic” information needed
 (types, blocks, etc.)

• Often the two kinds (transformational and
compositional) of extensibility are combined
for more power

• More on this later...

Yannis Smaragdakis

19 of 41

Example: Open C++

• A transformational (compile-time) MOP !

• Limited syntactic extensibility, more powerful
semantic extensibility

• Only new syntax that can be added:
- type modifiers (like “static”)
- access specifiers (like “private”)
- “while” and “for”-like statements
- “function” like blocks of code

• Code representation like in Lisp: parse trees
represented as nested linked lists

• Can create new trees, pattern match on trees,
etc. (standard set of operations)

• Simple introspection protocol on trees
representing classes (can examine members,
fields, superclasses, metaclasses, etc.)

Yannis Smaragdakis

20 of 41

• Semantic extensions can be specified for
translating classes, members, methods, method
calls, and many more

• Simple example:

metaclass Person : MyMetaClass;
class Person {

int age;
public:

Person(int age);
int Age() {return age;}

};

Specify that MyMetaClass is the meta-class for
class Person

Yannis Smaragdakis

21 of 41

class MyMetaClass : public Class
{
public:

Ptree* TranslateMemberCall(Environment* env,
Ptree* obj, Ptree* op, Ptree* member,
Ptree* arglist)

{
return Ptree::Make(“(puts(\”%p\”), member,

Class::TranslateMemberCall(env, obj,
op, member, arglist));

}
};

Every member call (trapped by the special meta-
class method TranslateMemberCall) will
be transformed

For instance,

Person jeff;
return jeff.Age();

will transform into:

Person jeff;
return (puts(“Age”), jeff.Age());

Yannis Smaragdakis

22 of 41

Example: JTS (Jakarta Tool Suite)

• Syntactic transformational extensibility
mechanism

• Main element: syntactic extensions specified
as new productions in context free grammar

• Extended grammar defined as the union of
original productions and extension productions

• Extensions are layered — new languages
formed by selecting extensions organizing
them in a type equation

• Meta-programming model: abstract syntax
trees, code templates, pattern matching,
hygienic constructs (more on that later)

Yannis Smaragdakis

23 of 41

Example: Lisp and Scheme Macros

• Syntactic transformational approach

• Languages of the Lisp family have simple
syntax

• Easy to manipulate source code
programmatically, extend syntax

• The term “macros” does not necessarily refer
to pattern-based macros (as in C)

• Lisp has programmatic macros (general meta-
programming)

• Scheme has two (proposed) macro
mechanisms:

-high level (hygienic, pattern-based)
-low level (programmatic, compatible with
 high level, many proposed)

Yannis Smaragdakis

24 of 41

Programmatic macros example (Lisp)

(defmacro send-passwd (string)
‘(send-to-host

(decrypt ,(encrypt string))))

Usage:

(send-passwd “gandalf13”)

Converted after macro-expansion into:

(send-to-host (decrypt
“09871230123481234”))

-That is, the password never appears decrypted
 in the object file.
-Gets encrypted at compile time (rather,
macro-expansion time), decrypted at run-time!

-Can’t do this in C

• Note: Lisp makes no distinction between code
and code as data when it comes to constants
-‘1 = 1

