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Abstract. We develop the mechanism of variant parametric types, in-
spired by structural virtual types by Thorup and Torgersen, as a means
to enhance synergy between parametric and inclusive polymorphism in
object-oriented languages. Variant parametric types are used to con-
trol both subtyping between different instantiations of one generic class
and the visibility of their fields and methods. On one hand, one para-
metric class can be used as either covariant, contravariant, or bivari-
ant by attaching a variance annotation—which can be either +, -, or
*, respectively—to a type argument. On the other hand, the type sys-
tem prohibits certain method/field accesses through variant parametric
types, when those accesses can otherwise make the program unsafe. By
exploiting variant parametric types, a programmer can write generic code
abstractions working on a wide range of parametric types in a safe way.
For instance, a method that only reads the elements of a container of
strings can be easily modified so that it can accept containers of any
subtype of string.
The theoretical issues are studied by extending Featherweight GJ—an
existing core calculus for Java with generics—with variant paramet-
ric types. By exploiting the intuitive connection to bounded existential
types, we develop a sound type system for the extended calculus.

1 Introduction

The recent development of high-level constructs for object-oriented languages
is witnessing renewed interest in the design, implementation, and applications
of parametric polymorphism. For instance, Java’s designers initially decided to
avoid generic features, and to provide programmers only with the inclusive poly-
morphism supported by inheritance. However, as Java was used to build large-
scale applications, it became clear that the introduction of parametric polymor-
phism would have significantly enhanced programmers’ productivity, as well as
the readability, maintainability, and safety of programs. In response to Sun’s
call for proposals for adding generics to the Java programming language [29]
many extensions have been proposed ([5,13,36,25,1] to cite some); finally, Bracha,
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Stoutamire, Odersky, and Wadler’s GJ [5] has been chosen as the reference im-
plementation technique for the first upcoming release of Java with generics.
More recently, an extension of Microsoft’s .NET Common Language Runtime
[26] (CLR) with generics has been studied [30]. Such an extension not only pro-
vides C# with generic classes and methods but also has a potential impact to
promote genericity as a key paradigm in the whole CLR framework, because,
in principle, all the languages supported by CLR can be extended with generic
features. In this scenario, it is clear that studying language constructs related to
genericity is likely to play a key role in increasing the expressiveness of modern
high-level languages such as Java and C#.

Following this research direction, we explore a technique to enhance the syn-
ergy between inclusive and parametric polymorphism, with the goal of increasing
expressiveness and reuse in object-oriented languages supporting generics.

In most current object-oriented languages—such as Java, C++, and C#—
inclusive polymorphism is supported only through inheritance. Their extensions
with generics allow a generic class to extend from another generic class [20],
and introduce pointwise subtyping: for instance, provided that class Stack<X>

is a subclass of Vector<X> (where X is a type parameter) a parametric type
Stack<String> is a subtype of Vector<String>.

Historically, most of well-known attempts to introduce another subtyping
scheme for generics were based on the notion of variance, which is used to define
a subtype relation between different instantiations of the same generic class.
Basically, a generic class C<X> is said to be covariant with respect to X if S <: T

implies C<S> <: C<T> (where <: denotes the subtyping relation), and conversely,
C<X> is said to be contravariant with respect to X, if S <: T implies C<T> <: C<S>.
Also, C<X> is said to be invariant when C<S> <: C<T> is derived only if S = T.
For the resulting type system to be sound, covariance and contravariance can be
permitted under some constraints on the occurrences of type variable X within
C<X>’s signature. For example, consider a generic collection class whose element
type is abstracted as a type parameter. Typically, it can be covariant only if it
is read-only, while it can be contravariant only if write-only. Thus, to make use
of variance, one has to be more careful about the design of classes.

Recently, Thorup and Torgensen [33] briefly sketched how some flavors of
programming with structural virtual types, which support safe covariance, can
be simulated by an extension of parametric classes. The idea is to specify the
variance of each type parameter when the type is used, rather than when the
class is declared. For any type argument T, a parametric class C<X> induces two
types: C<T>, which is invariant, and C<+T>, which is covariant; in exchange for
covariance, certain (potentially unsafe) member accesses through C<+T> are for-
bidden. Thus, it is expected that class designers are released from the burden
of taking variance into account, and moreover class reuse is promoted. Unfortu-
nately, it has not been rigorously discussed how this idea works in a full-blown
language design.

Our contribution is to generalize this approach, and develop it into the mech-
anism of variant parametric types for possible application to widely disseminated
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languages such as Java and C#. In particular, we study their basic design and
usefulness. Moreover, in order to discuss their fundamental concepts and sub-
tleties rigorously, we introduce a core language based on Featherweight GJ, a
generic version of Featherweight Java [20], with a formalization of its syntax,
type system, and operational semantics, along with a proof of type soundness.

Variant parametric types are a new form of parametric types, in which any
type parameter can come with one of the following variance annotation symbols:
+ for covariance, - for contravariance, and * for bivariance—C<*T> is a subtype
of C<*R> whatever T and R are. The type argument without an annotation is
considered invariant1. While types that are invariant in every type argument are
used for run-time types of objects, variant parametric types are used for field
types, method (argument and return) types, and local variable types.

Roughly speaking, a variant parametric type can be viewed as a set of
run-time types: for instance, type Vector<+Number> is the type of all those
vectors whose elements can be given type Number, including Vector<Number>,
Vector<Float>, Vector<Integer>, and so on. Thus, both subtype relations
Vector<Number> <: Vector<+Number> and Vector<Float> <: Vector<+Number>

hold (note that Vector<Float> is not a subtype of Vector<Number>). On the
other hand, since no hypothesis can be made on what kinds of elements can
be stored in a vector of type Vector<+Number>, the invocation of methods in-
serting elements in the vector is statically forbidden. With this language con-
struct, for example, the applicability of those methods accepting an argument
of type Vector<Number> and only reading its elements can be safely widened
by extending the argument type to Vector<+Number>, enabling the method to
accept generic vectors instantiated with any subtype of Number. As a result,
while standard variance is (typically) constrained to read-only and write-only
generic collection classes, variant parametric types are available for every class;
they provide uniform views of different instantiations of a generic class and can
be exploited by those code abstractions that access a collection only by reading
or by writing its elements.

We also show how some technical subtleties come in, especially when vari-
ant parametric types are arbitrarily nested. It seems that in previous work on
variance such as [14], such cases are not systematically addressed even though
they often arise in practice, making the whole safety argument not very con-
vincing. The key intuition to tackle the subtleties is similarity between vari-
ant parametric types and bounded existential types [12]. In the above exam-
ple of Vector<+Number>, the element type is only known to be some sub-
type of Number. In this sense, Vector<+Number> would correspond to type
∃X<:Number.Vector<X>. In fact, this intuitive connection is exploited in the
whole design of a sound type system for variant parametric types.

1 In [14], the term “bivariant” was used to mean what here we refer to as “invariant.”
We decide to adopt the term invariant since we believe it is standard and more
appropriate to denote the cases where type arguments cannot be different for an
instantiation to be a subtype of another.
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The remainder of the paper is organized as follows. In Section 2, the classical
approach to variance of parametric types is briefly outlined. Section 3 informally
presents the language construct of variant parametric types, and addresses its
design issues. Section 4 discusses the applicability and usefulness of these types,
comparing their expressiveness to that of parametric methods in conjunction
with bounded polymorphism. Section 5 elaborates the interpretation of variant
parametric types as a form of bounded existential types, discussing the subtleties
of our language extension. Section 6 presents the core calculus for variant para-
metric types and provides a sound type system for it. Section 7 discusses related
work and section 8 presents concluding remarks and perspectives on future work.
For brevity, a detailed proof of type soundness is omitted in this paper; inter-
ested readers are referred to a full version of this paper, which will be available
at http://www.sato.kuis.kyoto-u.ac.jp/˜igarashi/papers.html.

2 Classical Approach to Variance for Parametric Classes

Historically, one main approach to flexible inclusive polymorphism for generics
was through the mechanism called variance, which is briefly reviewed in this
section. The limitation of the approach is also discussed along with a proposed
solution, which inspired us to develop our variant parametric types.

A generic class C<X> is said to be covariant in the type parameter X when
the subtype relation C<R> <: C<S> holds if R <: S. Conversely, C<X> is said to
be contravariant in X when C<R> <: C<S> holds if S <: R. Less general notions
of bivariance and invariance can be defined as well. C<X> is said to be bivariant
in X when C<R> <: C<S> for any R and S. C<X> is said to be invariant in X

when C<R> <: C<S> holds only when R = S. Since variance is a property of each
type parameter of a generic class, all these definitions can be easily extended to
generic classes with more than one type parameter.

However, not every class can be safely given a variance property, as the array
types in Java show us. Java arrays can be considered a generic class from which
the element type is abstracted out as a type parameter; moreover, the array types
are covariant in that type—e.g., String[] is a subtype of Object[]. However,
since arrays provide the operation to update their content, this can lead to a
run-time error, as the following Java code shows:

Object[] o=new String[]{"1","2","3"};

o[0]=new Integer(1); // Exception thrown

The former statement is permitted because of covariance. The latter is also
statically accepted, because Integer is a subtype of Object. However, when the
code is executed an exception java.lang.ArrayStoreException is thrown: at
run time, the bytecode interpreter tries to insert an Integer instance to where
a String instance is actually expected.

To recover safety, previous work [14,2,3] proposed to pose restriction on how
a type variable can appear in a class definition, according to its variance. In
the case of a class covariant in the type parameter X, for instance, X should not
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appear as type of a public (and writable) field or as an argument type of any
public method. Conversely, in the contravariant case, X should not appear as
type of a public (and readable) field or as return type of any public method. For
example, the following class (written in a GJ-like language [5])

class Pair<X extends Object, Y extends Object> extends Object{

private X fst;

private Y snd;

Pair(X fst,Y snd){ this.fst=fst; this.snd=snd; }

void setFst(X fst){ this.fst=fst; }

Y getSnd(){ return snd; }

}

can be safely considered covariant in type variable Y and contravariant in type
variable X, since X appears as the argument type in setFst and Y appears as the
return type in getSnd. It is easy to see that any type Pair<R,S> can be safely
considered a subtype of Pair<String,Number> when R is a supertype of String
and S is a subtype of Number, as the following code reveals.

Number getAndSet(Pair<String,Number> c, String s){

c.setFst(s);

return c.getSnd();

}

...

Number n=getAndSet(

new Pair<Object,Integer>(null, new Integer(1)),"1");

In fact, the invocation of getAndSet causes the string "1" to be safely passed to
setFst, which expected an Object, and an Integer object to be returned by
getSnd, whose return type is Number.

However, as claimed e.g. in [15], the applicability of this mechanism is con-
sidered not very wide, since type variables typically occur in such positions that
forbid both covariance and contravariance. In fact, consider the usual application
of generics as collection classes, and their typical signature schema with methods
for getting and setting elements, as is shown in the following class Vector<X>:

class Vector<X>{

private X[] ar;

Vector(int size){ ar=new X[size];}

int size(){ return ar.length; }

X getElementAt(int i){ return ar[i];}

// Reading elements disallows contravariance

void setElementAt(X t,int i){ ar[i]=t;}

// Writing elements disallows covariance

}

Typically, the type variable occurs as a method return type when the method is
used to extract some element of the collection, while the type variable occurs as
a method argument type when the method is used to insert new elements into
the collection. As a result, a generic collection class can be considered covariant
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only if it represents read-only collections, and contravariant only if it represents
write-only collections. Bivariance is even more useless since it would be safely
applied only to collections whose content is neither readable nor writable. As a
result, class designers have to be responsible for the tradeoff between variance
and available functionality of a class.

More recently, Thorup and Torgersen [33] have briefly sketched a possible
solution to the applicability limitations of this classical approach. The idea is
to let a programmer specify within parametric types whether he/she wants the
type argument to be invariant or covariant: for the latter case, the + symbol
is inserted before the (actual) type argument, e.g. writing Vector< +Object>,
which behaves similarly to the structural virtual type Vector[X<:Object] and
prohibits write access to the vector of that type. With this syntax, the choice of
the variance property can be deferred from when a class is defined to when a class
is used to derive a type. It seems that two advantages arise from this approach:
the applicability of the mechanisms is widened—e.g., from read-only containers
to read-write ones—and the designers of libraries are generally released from the
burden of making decisions about the tradeoff mentioned above. Unfortunately,
aside from the fact that they dealt with only covariance, the informal idea has
been not fully explored so far. So, we generalize this idea to include contravari-
ance and bivariance, and investigate how it works in a full-fledged language
design.

3 Variant Parametric Types

Now, based on the idea sketched in [33], we introduce the notion of variant
parametric types and their basic aspects.

Variant parametric types are a generalization of standard parametric (or
generic) types where each type parameter may be associated with a variance
annotation, either +, -, or *, respectively referred to as the covariance, con-
travariance, or bivariance annotation symbol. Syntactically, a variance annota-
tion symbol precedes the type parameter it refers to and introduces the cor-
responding variance to the argument position: for example, Vector<+String>
is a subtype of Vector<+Object>. Similarly to the case of generic types, the
type parameter of a variant parametric type can be either a variant parametric
type or a type variable, as in Vector<+String>, Pair<+String,-Integer>, and
Vector<Vector<*X>>. A parametric type where no (outermost) type argument
has a variance annotation is called a fully invariant type (or just an invariant
type). Vector<String> and Pair<Vector<+String>,Integer> are examples of
invariant types. Since the type argument following * does not really matter, due
to bivariance, it is often omitted by simply writing e.g. Vector<*>, which is also
the syntax we propose for an actual language extension.

Unlike the standard mechanism of variance, described in the previous sec-
tion, programmers derive covariant, contravariant, and bivariant types from one
generic class. Safety is achieved by restricting accesses to fields and methods, in-
stead of constraining their declarations. For example, even when setElementAt
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Vector<Object>

Vector<-Object>

Vector<+Object>

Vector<*Object>

Vector<Number>

Vector<-Number>

Vector<+Number>

Vector<*Number>

Vector<Integer>

Vector<-Integer>

Vector<+Integer>

Vector<*Integer>

Fig. 1. Subtyping graph of variant parametric types

is declared in Vector, Vector<+Number> can be used in a program; the type
system just forbids accessing the method setElementAt through the covariant
type Vector<+Number>.

A simple interpretation of variant parametric types is given as a set of in-
variant types. A type C<+T> can be interpreted as the set of all invariant types
of the form C<S> where S is a subtype of T; a type C<-T> can be interpreted
as the set of all invariant types of the form C<S> where S is a supertype of T;
and, a type C<*T> can be interpreted as the set of all invariant types of the
form C<S>. Hence, Vector<+Integer> <: Vector<+Number> directly follows as
an inclusion of the set they denote. Moreover, it is easy to derive subtyping
between types that differ only in variance annotations: since an invariant type
would correspond to a singleton, Vector<Integer> <: Vector<+Integer> and
Vector<Integer> <: Vector<-Integer> hold. Similarly, Vector<+Integer> <:

Vector<*Integer> and Vector<-Integer> <: Vector<*Integer> hold as well.
In summary, Figure 1 shows the subtyping relation for the class Vector and type
arguments Object, Number, and Integer (under the usual subtyping relation:
Integer <: Number <: Object.)

More generally, subtyping for variant parametric types is defined as follows.
Suppose C is a generic class that takes n type arguments, and S, and T (possibly
with subscripts) are types.

– The following subtype relations hold that involve variant parametric types
differing just in the variance annotation symbol on one type parameter2:

C< . . . , T, . . . > <: C< . . . ,+T, . . . >
C< . . . , T, . . . > <: C< . . . ,-T, . . . >
C< . . . ,+T, . . . > <: C< . . . ,*T, . . . >
C< . . . ,-T, . . . > <: C< . . . ,*T, . . . >

2 More precisely, e.g. the first relation means that for any types T1, T2, . . . , Tn we have
C<T1, . . . ,Ti−1,T,Ti+1, . . . ,Tn> <: C<T1, . . . ,Ti−1,+T,Ti+1, . . . ,Tn>, and similarly
for the others.
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– The following relations hold that involve variant parametric types differing
in the instantiation of just one type parameter:

C< . . . , S, . . . > <: C< . . . , T, . . . > if S <: T and T <: S

C< . . . ,+S, . . . > <: C< . . . ,+T, . . . > if S <: T

C< . . . ,-S, . . . > <: C< . . . ,-T, . . . > if T <: S

C< . . . ,*S, . . . > <: C< . . . ,*T, . . . > ∀ S, T

(Note that the subtyping relation is not anti-symmetric: Vector<*Object>
and Vector<*Integer> are subtypes of each other but not (syntactically)
equal.)

– Other cases of subtyping between different instantiations of the same generic
class can be obtained by the above ones through transitivity.

Subtyping of variant parametric types which are instantiations of different
generic classes—that is, involving inheritance—is more subtle than it might have
been expected, and is discussed in Section 5.

Objects are created from generic classes through an expression of the form
new C<T1,...,Tn>(...), without specifying any variant annotation in the (out-
ermost) type arguments (variance annotations can appear inside Ti.) Objects
created through this expression are given the corresponding invariant paramet-
ric type C<T1,..,Tn>. While an invariant parametric type denotes a singleton
set and is used for the run-time type of an object, a variant parametric type can
be generally used as a common supertype for many different instantiations of
the same generic class.

A more refined view of variant parametric types is given as a correspon-
dence to bounded existential types [12], originally used for modeling par-
tially abstract types. Actually, this view, exploited throughout the develop-
ment of the type system, explains how access restriction is achieved. Intu-
itively, the covariant type Vector<+Number> would correspond to the existential
type ∃X<:Number.Vector<X>, read “Vector<X> for some X which is a subtype
of Number.” Then, an invocation of setElementAt on an expression of type
Vector<+Number> is forbidden because the first argument type is X, which is
known as some unknown subtype of Number, but the actual argument can-
not be given a subtype of X. Similarly, Vector<-Number> would correspond
to ∃X:>Number.Vector<X>, where only the lower bound of the element type
is known. Thus, invocation of getElementAt is not allowed because its return
type would be an abstract type X, which cannot be promoted to a concrete
type. Finally, Vector<*> would correspond to the unbounded existential type
∃X.Vector<X>, which prevents both getElementAt and setElementAt from be-
ing invoked. Actually, if the type structure over which type variables range has
the “top” type (for example, Object is a supertype of any reference type in
Java), it is possible to allow getElementAt to be invoked on Vector<-T> or
Vector<*>, giving the result the top type. However, we decided to disallow it
so that member access restrictions and method/field typing becomes much the
same as expected for the classical approach, discussed in the previous section.
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The intuitive connection is further explored in Section 5 to deal with more com-
plicated use of type variables, in particular when they appear inside parametric
types, and to deal with inheritance-based subtyping—type variables naturally
appear inside the type specified as the superclass in the extends clause.

In summary, variant parametric types provide uniform views over different
instantiations of the same generic class. Unlike the standard mechanism reviewed
in the previous section, variant parametric types are just a means for static access
control, so there is no additional constraints on how classes are declared.

4 On Applicability and Usefulness

In this section, the usefulness of variant parametric types is studied by focus-
ing on those generic classes representing collections—such as classes Pair<X,Y>

(completed with methods setSnd and getFst), and Vector<X> defined in pre-
vious sections—which actually form one of the basic and significant application
cases for generic classes.

4.1 Covariance

As discussed in the previous section, type Vector<+T> is a supertype of any type
Vector<R> if R as a subtype of T, and can be interpreted as the type of all those
vectors whose extracted elements can be given type T. Hence, the invocation of
method setElementAt is forbidden on an object with type Vector<+T>, while
method getElementAt can be invoked that returns an object of type T. As a
first application, consider the following method fillFrom for class Vector:

class Vector<X extends Object>{

...

void fillFrom(Vector<+X> v, int start){

// Here no methods with X as argument type are invoked on v

for (int i=0;i<v.size() && i+start<size();i++)

setElementAt(v.getElementAt(i),i+start);

} }

...

Vector<Number> vn = new Vector<Number>(20);

Vector<Integer> vi = new Vector<Integer>(10); ...

Vector<Float> vf = new Vector<Float>(10); ...

vn.fillFrom(vi,0); // Permitted for Vector<Integer> <: Vector<+Number>

vn.fillFrom(vf,10);// Permitted for Vector<Float> <: Vector<+Number>

Here the method fillFrom accepts a vector which is meant to be only read, and
whose elements are expected to be given type X. As a result, instead of simply
declaring formal argument v to have type Vector<X>, it is more convenient to
use type Vector<+X>. The corresponding method execution is always safe since
the only method invoked on v is getElementAt, and even more, the applicability
of fillFrom is extended to a wider set of vectors. In the code above a vector of
numbers is filled with elements of vectors of integers and floats. So, in general, the
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covariant parameterization structure can be exploited to widen the applicability
of methods that take a collection and simply read its elements.

Now that we have a mechanism to deal with different instantiations of the
same generic class in a uniform way, one may be willing to rely on nested pa-
rameterizations so as to further exploit the flavors of collections classes, as in
the following method fillFromVector:

class Vector<X extends Object>{

...

void fillFromVector(Vector<+Vector<+X>> vv){

int pos=0;

for (int i=0;i<vv.size();i++){

Vector<+X> v = vv.getElementAt(i);

if (pos+v.size()>=size()) break;

fillFrom(v,pos);

pos += v.size();

} } }

...

Vector<Number> vn = new Vector<Number>(20);

Vector<Integer> vi = new Vector<Integer>(10);

Vector<Float> vf = new Vector<Float>(10);

Vector<Vector<+Number>> vvn = new Vector<Vector<+Number>>(2);

vvn.setElementAt(vi,0);

vvn.setElementAt(vf,1);

vn.fillFromVector(vvn);

The method fillFromVector takes a vector of vectors and puts its inner-level
elements into the vector on which the method is invoked. Since neither the
outer vector nor the inner vectors are updated, the argument can be given type
Vector<+Vector<+X>>. The inner +, which means that the inner vectors are
read-only, allows different inner vectors to be mixed in one vector: as in the code
above, a vector of integers and a vector of floats are put in one vector vvn. The
outer +, which means that the outer vector is also read-only, allows inner vectors
passed to fillFromVector to extend class Vector, as in the following code:

class MyVector<X extends Object> extends Vector<X> { ... }

...

Vector<MyVector<+Number>> mvv = ...;

vn.fillFromVector(mvv);

4.2 Contravariance

Contravariance has a dual kind of use. Type Vector<-T> is a supertype of any
type Vector<R> if T is a subtype of R, and can be interpreted as the type of all
those vectors which is safe to fill with elements of type T. Hence, the invocation
of method getElementAt on an object of type Vector<-T> is forbidden, while
method setElementAt can be invoked passing an object of type T. The following
method fillTo provides an example similar to the one shown for the covariance
case:
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class Vector<X extends Object>{

...

void fillTo(Vector<-X> v,int start){

// Here no methods with X as return type are invoked on v

for (int i=0;i<size() && i+start()<v.size();i++)

v.setElementAt(getElementAt(i),i+start);

} }

...

Vector<Number> vn = new Vector<Number>(20);

Vector<Integer> vi = new Vector<Integer>(10);

Vector<Float> vf = new Vector<Float>(10);

vi.fillTo(vn,0); // Permitted for Vector<Number> <: Vector<-Integer>

vf.fillTo(vn,10);// Permitted for Vector<Number> <: Vector<-Float>

Mixed variance parameterizations can be useful as well. For instance, consider
a method fillToVector that inserts elements of the receiver vector this into
a structure of the kind Vector<Vector<X>> provided as input—which is a dual
case with respect to the method fillFromVector. In this case, the method’s for-
mal argument vv should be safely given type Vector<+Vector<-X>>. There, the
outer vector is just used to access its elements through method getElementAt—
hence it can be safely declared covariant—while the inner vectors may only be
updated through method setElementAt—so they can be safely declared con-
travariant.

4.3 Bivariance

From a conceptual point of view, the construct of bivariant parametric types
comes for free once covariance and contravariance are defined. In fact, for the
same reason why one may need to denote by Vector<+T> the supertype of each
Vector<R> with R <: T, and conversely for contravariance, then it may also be
the case to explicitly denote the supertype of both Vector<+T> and Vector<-T>,
which is represented here by Vector<*T>—or more concisely, by Vector<*>.

No methods that contain the type variable X in their signature can be invoked
on an expression of Vector<*>, so Vector<*> is meant to represent a sort of
“frozen” vector, which can be neither read nor written. For instance, bivariance
can be exploited to build a method that sums the sizes of a vector of vectors, as
follows:

int countVector(Vector<+Vector<*>> vv){

int sz=0;

for (int i=0;i<vv.size();i++){

sz+=vv.getElementAt(i).size();

return sz;

}

More useful are those cases where a generic class involves more than one type
parameter. Consider the following method:
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class Vector<X>{

void fillFromFirst(Vector<+Pair<+X,*>> vp,int start){

for (int i=0;i<vp.size() && i+start<size();i++)

setElementAt(vp.getElementAt(i).getFst(),i+start);

} }

Since method fillFromFirst does not actually read or write the second element
in each pair, its type can be any type, so annotation symbol * can be used in
place of it. This example suggests an interesting application for bivariance as a
mechanism providing a parametric type’s partial instantiation.

4.4 Comparison with Parametric Methods

One may wonder if parametric methods with bounded polymorphism can be used
for the examples shown above; indeed, some of them can be easily handled with
parametric methods. For instance, the method fillFrom can be implemented as
follows:

class Vector<X extends Object>{

...

<Y extends X> void fillFrom(Vector<Y> v, int start){

for (int i=0;i<v.size() && i+start<size();i++)

setElementAt(v.getElementAt(i), i+start);

} }

...

Vector<Number> vn = new Vector<Number>(20);

Vector<Integer> vi = new Vector<Integer>(10);

Vector<Float> vf = new Vector<Float>(10);

vn.fillFrom<Integer>(vi,0);

vn.fillFrom<Float>(vf,10);

Here, the definition of fillFrom is parameterized by a type variable Y, bounded
by an upper bound X and the actual type arguments are explicitly given (inside
<>) at method invocations. Similarly, fillTo can be expressed by using a lower
bound of a type parameter:

class Vector<X extends Object>{

...

<Y extendedby X> void fillTo(Vector<Y> v,int start){

for (int i=0;i<size() && i+start<v.size();i++)

v.setElementAt(getElementAt(i),i+start);

} }

Here, the keyword extendedby means that the type parameter Y must be a
supertype of X. In general, it seems that a method taking arguments of variant
parametric types can be easily rewritten to a parametric methods.

Although they can be used almost interchangeably for some cases, we think
variant parametric types and parametric methods are complementary mecha-
nisms. On one hand, variant parametric types provides a uniform viewpoint
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over different instantiations of the same generic classes, making it possible to mix
different types in one data structure, as we have seen in Vector<+Vector<+X>>

and Vector<+Vector<-X>>. On the other hand, parametric methods can better
express type dependency among method arguments and results, as in the two
methods below:

// swapping pos-th element in v1 and v2

<X> void swapElementAt(Vector<X> v1,Vector<X> v2,int pos){...}

// a database-like join operation on tables v1 and v2.

<X,Y,Z> Vector<Pair<X,Z>> join(Vector<Pair<X,Y>> v1,

Vector<Pair<Y,Z>> v2){...}

The method swapElementAt requires the arguments to be vectors carrying the
same type of elements, while in method join variables X, Y, and Z are used to
express dependency among the inputs and outputs. In both cases, such depen-
dencies cannot be expressed by variant parametric types.

As shown above, simulating contravariance with parametric methods requires
type parameters with lower bounds. However, their theory has not been well
studied and it is not very clear whether or not basic implementation techniques
such as type-erasure [5] can be extended to parametric methods with lower
bounds. One may argue that the features provided by the methods fillTo and
fillFrom are much the same, so one can easily find the covariant version of
any method that uses contravariance, and then implement it using a parametric
method only with upper bounds. However, in general, this will force programmers
to always write that kind of methods in the container class receiving elements
instead of in the class producing them. We believe that hampering that freedom
would lead to poor programming practice.

Also, we believe that a language with generics should enjoy the combination
of both constructs so as to achieve even more power and expressiveness. For
instance, the following example shows potential benefits of the combination:

<X> Vector<X> unzipleft(Vector<+Pair<+X,*>> vp){

Vector<X> v=new Vector<X>(vp.size());

for (int i=0;i<vp.size();i++)

v.addElementAt(vp.getElementAt(i).getFst(),i);

return v;

}

Method unzipleft creates a Vector<X> element by unzipping the argument
and projecting on the left side. The use of variance widens its applicability, (i)
abstracting from the type of the right side, (ii) allowing the left side to be a
subtype of the expected type X, and (iii) also allowing subclasses of Pair to
be used for zipping. We leave further studies on the combination of parametric
methods and variance for future work.
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5 Variant Parametric Types and Existential Types

In this section, we further investigate the informal connection between variant
parametric types and (bounded) existential types [12], used to describe partially
abstract types. The basic intuition was that, for example, Vector<+Nm> (in what
follows, Number is often abbreviated to Nm for conciseness) would correspond to
the bounded existential type ∃X<:Nm.Vector<X>. Since only the upper bound Nm

of X is known and its identity is unknown, a method that takes X as an argument
cannot be invoked, while the field of type X can be accessed and given type Nm.
Similarly, the type Vector<*T>—abbreviated to Vector<*>—would correspond
to the unbounded existential type ∃X.Vector<X>, and the type Vector<-Nm>

to the bounded existential type ∃X:>Nm.Vector<X>, where the abstract type
X has a lower bound. For a nested parametric type, the existential quantifier
comes inside, too: for example, Vector<+Vector<+Nm>> would correspond to
∃X<:(∃Y<:Nm.Vector<Y>).Vector<X>.

5.1 Existential Types à la Mitchell and Plotkin

We first begin with reviewing the standard formulation of (bounded) existential
types [27]. A value of an existential type ∃X<:S.T is considered an ADT package,
consisting of a pair of a hidden witness (or implementation) type U, which is a
subtype of S, and an ADT implementation v of type [U/X]T. The expression pack

[U,v] as ∃X<:S.T creates such a package; the expression open o as [X,x] in

b unpacks a package o and binds the type variable X and the value variable x

to the witness type and the implementation, where their scope is b. The typing
rules for those expressions are informally written as follows:

� U <: S � v ∈ [U/X]T

� (pack [U,v] as ∃X<:S.T) ∈ ∃X<:S.T

� o ∈ ∃X<:S.T X<:S, x:T � b ∈ U X �∈ FV (U)

open o as [X,x] in b ∈ U

Note that the side condition requires X not to be a free variable of U; otherwise
the hidden type X would escape the abstraction. The following rule describes
subtyping between bounded existential types3:

� S1 <: S2 X<:S1 � T1 <: T2

� ∃X<:S1.T1 <: ∃X<:S2.T2

3 This rule is known as one for the full variant of System F≤, in which subtyping is
undecidable. Subtyping of variant parametric types, though, is easily shown to be
decidable: they correspond to rather restricted forms of bounded existential types.
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5.2 Variant Parametric Types as Existential Types

Variant parametric types can be explained in terms of the formulation above.
For example, covariant and contravariant subtyping directly corresponds to sub-
typing mentioned above. On the other hand, when a variance annotation is
introduced, as in Vector<Nm> <: Vector<+Nm>, it is considered a packing pack

[Nm,v] as ∃X<:Number.Vector<X>.
When an operation (a field access or a method invocation) is performed on

a variant parametric type, it is considered as if open were implicitly inserted.
Consider the following class

class Pair<X extends Object, Y extends Object> {

X fst; Y snd;

Pair(X fst,Y snd){ this.fst=fst; this.snd=snd; }

X getFst(){ return this.fst; }

Y getSnd(){ return this.snd; }

void setFst(X x){ this.fst=x; }

void setSnd(Y y){ this.snd=y; }

void copyFst(Pair<+X,*> p) { setFst(p.getFst()); }

Pair<Y,X> reverse() {

return new Pair<Y,X>(this.getSnd(), this.getFst());

}

Pair<Pair<X,Y>, Pair<X,Y>> dup () {

return new Pair<Pair<X,Y>,Pair<X,Y>>(this, this);

}

}

and assume x is given type Pair<+Nm,-Nm>, which corresponds to
∃X<:Nm,Y:>Nm.Pair<X,Y>. Then, for example, x.setFst(e) corresponds to
open x as [Z,W,y] in y.setFst(e). Inside open, method/field types can be
easily obtained by simply replacing the type parameters of a class with the ac-
tual type arguments of the opened type. For example, the argument type of
setFst is Z, that of setSnd is W, and that of copyFst is Pair<Z,+Object>.
Similarly, the result type of getFst is Z, that of getSnd is W, that of reverse
is Pair<W,Z>, and that of dup is Pair<Pair<Z,W>, Pair<Z,W>>. Now, it turns
out that open x as [Z,W,y] in y.setFst(e) is not well typed for any expres-
sion e: the argument type of setFst is Z, which is constrained by Z<:Nm, but
the type of e cannot be a subtype of Z 4. On the other hand, setSnd can be
invoked with an argument of type Nm (or its subtype) because if T is a subtype
of Nm, it is the case that T <: W. Thus, + and - can be used to protect partic-
ular fields from being written or read. For much the same reason as setFst,
the method call p.copyFst(new Pair<Integer,Float>(...)) is not allowed
because the argument type of copyFst would be Pair<Z,*>, which is not a su-
per type of Pair<Integer,Float>. Actually, it should not be allowed because p

may be bound to new Pair<Float,Object> and executing the expression above

4 One exception could be null, which could be given the bottom type, which is a
subtype of any type (even of unknown abstract type).
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will assign an Integer to the field that holds Float. This example shows that a
method type cannot be obtained by naively substituting for X the type argument
+Nm together with a variance annotation; it would lead to a wrong argument
type Pair<+Nm,+Object>, a supertype of Pair<Integer,Float>. In the next
section, we formalize transformation from variant parametric types to invari-
ant types with constrained abstract types as the operation open: for example,
Pair<+Nm,-Nm> is opened to Pair<Z,W> with Z<:Nm and W:>Nm.

If a type of a body of unpacking includes the abstract type variables, the type
of the whole expression has to be promoted to the least supertype without them,
in order for abstract types not to escape from their scope. When such promotion
is not possible, the expression is not typed. For example, consider p.getFst(),
whose return type is Z with a constraint Z<:Nm. The type of the whole expression
is the least supertype of Z without mentioning Z, i.e., its upper bound Nm. On
the other hand, p.getSnd is not typeable because the return type W cannot be
promoted to a supertype without W. Similarly, the return type of p.reverse() is
Pair<W,Z>, which can be promoted to a supertype Pair<-Nm,+Nm> by exploiting
the fact that Z is a subtype of Nm and W is a supertype of Nm.

It looks as if the type arguments and variances +Nm and -Nm were sub-
stituted for X and Y, respectively, but this naive view is wrong as we will
see in the next example p.dup(). The return type of this method invocation
is Pair<Pair<Z,W>,Pair<Z,W>>. However, the type we obtain by the naive
substitution—that is, Pair<Pair<+Nm,-Nm>,Pair<+Nm,-Nm>>—is not a super-
type of Pair<Pair<Z,W>,Pair<Z,W>>! That’s because the two inner occurrences
of Pair are invariant. So, as long as Pair<Z,W> and Pair<+Nm,-Nm> are differ-
ent, those two types are not in the subtype relation. If it were a supertype,
another pair could be assigned to the outer pair, making the two first elements
of the inner pairs have different types. The correct supertype is a covariant type
Pair<+Pair<+Nm,-Nm>,+Pair<+Nm,-Nm>>; in general, + is attached to every-
where the type argument is changed by promotion. So, naive substitution of an
actual type argument with its variance for a type variable does not work, again.
In the next section, we will formalize this operation for obtaining an abstract-
type-free supertype as the operation called close. A similar operation is found in
a type system for bounded existential types with minimal typing property [17];
it was introduced to omit a type annotation for the open expression.

The notions of opening and closing are also used for deriving inheritance-
based subtyping. Suppose we declare two subclasses of Pair.

class PairX<X extends Object> extends Pair<X,X> { ... }

class PP<X extends Object, Y extends Object>

extends Pair<Pair<X,Y>, Pair<X,Y>> { ... }

As in GJ, inheritance-based subtyping for invariant types is simple. A supertype
is obtained by substituting the type arguments for type variables in the type
after extends: for example,

PairX<Integer> <: Pair<Integer,Integer>

and
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PP<Integer,String> <: Pair<Pair<Integer,String>,Pair<Integer,String>>.

Subtyping for other non-invariant types involves opening and closing, simi-
larly to field and method accesses. For example, PairX<+Nm> is a subtype of
Pair<+Nm,+Nm> because the open operation introduces PairX<Z> where Z<:Nm

and a supertype of PairX<Z> is Pair<Z,Z>, which obtained by substitution of
Z for X and closes to Pair<+Nm,+Nm>. Similarly, PP<+Nm,-Nm> is a subtype of
Pair<+Pair<+Nm,-Nm>,+Pair<+Nm,-Nm>> (note that + before the inner occur-
rences of Pair).

5.3 Comparison with Explicit Use of Existential Types

As a last remark, it would be interesting to see the full power of existential
types. By using unpacking appropriately, more expressions are typeable. For
example, suppose x is given type ∃X.Vector<X> and a programmer wants to get
an element from x and put it to x. Actually, the expression

open x as [Y,y] in y.setElementAt(y.getElementAt(0), 1)

would be well-typed (if y is read-only) since inside open, the elements are all
given an identical type Y. On the other hand, in our language,

x.setElementAt(x.getElementAt(0),1)

is not typeable since this expression would correspond to

open x as [Y,y] in

y.setElementAt(open x as [Z,z] in z.getElementAt(0), 1)

which introduces two opens, and Y and Z are distinguished. Although there is
an advantage when using existential types explicitly, we think that allowing
programmers to directly insert open operations can easily turn programming
into a cumbersome task.

6 Core Calculus for Variant Parametric Types

We introduce a core calculus for class-based object-oriented languages with vari-
ant parametric types. Our calculus is considered a variant of Featherweight GJ
(FGJ for short) by Igarashi, Pierce, and Wadler [20], originally proposed to
formally investigate properties of the type system and compilation scheme of
GJ [5]. Like FGJ, our extended calculus is functional and supports only minimal
features including top-level parametric classes with variant parametric types, ob-
ject instantiation, field access, method invocation, and typecasts. For simplicity,
polymorphic methods, found in FGJ, are omitted so as to focus on the basic
mechanism of variant parametric types.
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N ::= C<vT> variant parametric types

T ::= X | N types

v ::= o | + | - | * variance annotations

L ::= class C<X � N> � D<S> { T f; M } class definitions

M ::= T m(T x){ return e; } method definitions

e ::= x variables
| e.f field access
| e.m(e) method invocation
| new C<T>(e) object instantiation
| (T)e typecasts

Fig. 2. Syntax

6.1 Syntax

The metavariables A, B, C, D, and E range over class names; S, T, U, and V range
over types; X, Y, and Z range type variables; N, P, and Q range over variant types; L
ranges over class declarations; M ranges over method declarations; v and w range
over variance annotations; f and g range over field names; m ranges over method
names; x ranges over variables; and e and d range over expressions. The abstract
syntax of types, class declarations, method declarations, and expressions is given
in Figure 2.

We write f as shorthand for a possibly empty sequence f1,. . . ,fn (and sim-
ilarly for C, x, e, etc.) and write M as shorthand for M1. . . Mn (with no commas).
We write the empty sequence as • and denote concatenation of sequences us-
ing a comma. The length of a sequence x is written |x|. We abbreviate opera-
tions on pairs of sequences in the obvious way, writing “C f” as shorthand for
“C1 f1,. . . ,Cn fn” and “C f;” as shorthand for “C1 f1;. . . Cn fn;”, “<X � N>”
as shorthand for “<X1 � N1, . . . , Xn � Nn>”, and “C<vT>” for “C<v1T1, . . . , vnTn>”.
Sequences of field declarations, parameter names, type variables, and method
declarations are assumed to contain no duplicate names. The empty brackets
<> are often omitted for conciseness. We denote by m �∈ M that a method of the
name m is not included in M. We introduce another variance annotation o to
denote invariant, which would be regarded as default and omitted in the surface
language. Then, a partial order ≤ on variance annotations is defined: formally,
≤ is the least partial order satisfying o ≤ + ≤ * and o ≤ - ≤ *. We write v1∨v2

for the least upper bound of v1 and v2. If every vi is o in a variant type C<vT>,
we call it an invariant type and abbreviates to C<T>.

A class declaration consists of its name (class C), type parameters (X) with
their (upper) bounds (N), fields (T f), and methods (M)5; moreover, every class

5 We assume that each class has a trivial constructor that takes the initial (and also
final) values of each fields of the class and assigns them to the corresponding fields. In
FGJ, such constructors have to be declared explicitly, in order to retain compatibility
with GJ. We omit them because they play no other significant role.
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must explicitly declare its supertype D<S> with � (read extends) even if it is
Object. Note that only an invariant type is allowed as a supertype, just as in
object instantiation. Since our language supports F-bounded polymorphism [11],
the bounds N of type variables X can contain X in them. A body of a method just
returns an expression, which is either a variable, field access, method invocation,
object instantiation, or typecasts. As we have already mentioned, the type used
for an instantiation must be an invariant type, hence C<T>. For the sake of gen-
erality, we allow the target type T of a typecast expression (T)e to be any type,
including a type variable. Thus, we will need an implementation technique where
instantiation of type parameters are kept at run-time, such as the framework of
LM [36]. Should it be implemented with the type-erasure technique as in GJ, T
has to be a non-variable type and a special care will be needed for downcasts
(see [5] for more details). We treat this in method bodies as a variable, rather
than a keyword, and so require no special syntax. As we will see later, the typing
rules prohibit this from appearing as a method parameter name.

A class table CT is a mapping from class names C to class declarations L; a
program is a pair (CT , e) of a class table and an expression. Object is treated
specially in every program: the definition of Object class never appears in the
class table and the auxiliary functions to look up field and method declarations
in the class table are equipped with special cases for Object that return the
empty sequence of fields and the empty set of methods. (As we will see later,
method lookup for Object is just undefined.) To lighten the notation in what
follows, we always assume a fixed class table CT .

The given class table is assumed to satisfy some sanity conditions: (1)
CT (C) = class C... for every C ∈ dom(CT ); (2) Object /∈ dom(CT ); (3)
for every class name C (except Object) appearing anywhere in CT , we have
C ∈ dom(CT ); and (4) there are no cycles in the reflexive and transitive clo-
sure of the relation between class names induced by � clauses in CT . By the
condition (1), we can identify a class table with a sequence of class declarations
in an obvious way; so, in the rules below, we just write class C ... to state
CT (C) = class C ..., for conciseness.

6.2 Type System

For the typing, we need a few auxiliary definitions to look up the field and method
types of an invariant type, which are shown in Figure 3. As we discussed in the
previous section, we never attempt to determine the field or method types of
non-invariant types.

The fields of an invariant type C<T>, written fields(C<T>), are a sequence of
corresponding types and field names, S f. In what follows, we use the notation
[T/X] for a substitution of Ti for Xi. The type of the method invocation m at an
invariant type C<T>, written mtype(m, C<T>), returns a pair U->U0 of argument
types U, and a result type U0.

A type environment ∆ is a finite mapping from type variables to pairs of a
variance except o (that is, either +, -, or *) and a type. We write dom(∆) for the
domain of ∆. When X �∈ dom(∆), we write ∆, X : (v, T) for the type environment
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Field lookup:

fields(Object) = •

class C<X � N> � D<U> {S f; M} fields([T/X]D<U>) = V g

fields(C<T>) = V g, [T/X]S f

Method type lookup:

class C<X � N> � D<S> {... M} U0 m(U x){ return e; } ∈ M

mtype(m, C<T>) = [T/X](U->U0)

class C<X � N> � D<S> {... M} m �∈ M

mtype(m, C<T>) = mtype(m, [T/X]D<S>)

Open:

if (vi, Ti) �= (wi, Ui), then
wi = o Ui = Xi �∈ dom(∆) ∪ {U} \ {Ui} ∆′(Xi) = (vi, Ti)

∆ � C<vT> ⇑∆
′

C<wU>

Close:

∆(X) = (+, T)

X ⇓∆ T

X �∈ dom(∆)

X ⇓∆ X

T ⇓∆ T′ wi =

{

vi if Ti = T′
i

+∨vi otherwise

C<vT> ⇓∆ C<wT′>

Subtyping:

∆ � T <: T
∆ � S <: T ∆ � T <: U

∆ � S <: U

∆(X) = (+, T)

∆ � X <: T

∆(X) = (-, T)

∆ � T <: X

class C<X � N> � D<S> { . . . } ∆ � C<vT> ⇑∆
′

C<U> ([U/X]D<S>) ⇓∆′ T

∆ � C<vT> <: T

v ≤ w if wi ≤ −, then ∆ � Ti <: Si if wi ≤ +, then ∆ � Si <: Ti

∆ � C<vS> <: C<wT>

Type Well-formedness:

∆ � Object ok
X ∈ dom(∆)

∆ � X ok

class C<X � N> � D<S> { . . . }
∆ � T ok ∆ � T <: [T/X]N

∆ � C<vT> ok

Fig. 3. Auxiliary Definitions for Typing
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∆′ such that dom(∆′) = dom(∆) ∪ {X} and ∆′(X) = (v, T) and ∆′(Y) = ∆(Y) if
X �= Y. We often write X<:T for X : (+, T) and X:>T for X : (-, T).

The type system consists of five forms of judgments: ∆ � N ⇑∆
′

P for opening
a variant parametric type to an invariant type; N ⇓∆ P for closing an invariant
type with some free constrained type variables to a variant parametric type
without them; ∆ � S <: T for subtyping; ∆ � T ok for type well-formedness; and
∆; Γ � e ∈ T for typing, where Γ , called an environment , is a finite mapping
from variables to types, written x:T. We abbreviate a sequence of judgments,
writing Γ � S <: T as shorthand for Γ � S1 <: T1, . . . , Γ � Sn <: Tn, Γ � T ok
as shorthand for Γ � T1 ok, . . . , Γ � Tn ok, and ∆; Γ � e ∈ T as shorthand for
∆; Γ � e1 ∈ T1, . . . , ∆; Γ � en ∈ Tn.

Open and Close. As already mentioned, variant parametric types are essen-
tially bounded existential types in disguised forms and so any operations on
variant parametric types have to “open” the existential type first. A judgement
of the open operation ∆ � N ⇑∆

′

P is read “under ∆, N is opened to P and
constraints ∆′.” The open operation introduces fresh type variables to represent
abstract types and replace non-invariant type arguments with the type vari-
ables: for example, List<+Integer> is opened to List<X> with the constraint
X<:Integer, written � List<+Integer> ⇑X<:Integer List<X>.

When the result of an operation involves the abstract types (type variables
under constraints) introduced by open, it needs to be “closed” so that the ab-
stract types do not escape; a judgment of the close operation N ⇓∆ P is read
“N with abstract types in ∆ closes to P.” The close operation computes the
least supertype without mentioning the abstract types. The first rule means
that, if X’s upper bound is known, X can be promoted to its bound. (When
∆(X) = (-, T), on the other hand, it cannot be promoted since an upper bound
is unknown.) The second rule means that a type variable not bound in ∆ re-
mains the same. The third rule is explained as follows. In order to close C<vT>,
the type arguments T have to be closed to T′ first; when Ti is closed to a
proper supertype Ti

′ (i.e. Ti �= Ti
′), the resulting type must be covariant in

that argument, thus the least upper bound of + and vi is attached. For exam-
ple, under X<:Integer, X closes to Integer, List<X> to List<+Integer>, and
List<List<X>> to List<+List<+Integer>> (not to List<List<+Integer>>).

Subtyping. A judgment for subtyping ∆ � S <: T is read “S is a subtype of T
under ∆.” As usual, the subtyping relation includes the reflexive and transitive
closure of the relation induced by � clauses. When an upper or lower bound
of a type variable is recorded in ∆, the type variable is a subtype or supertype
of the bound, respectively (the third and fourth rules). The next rule is for
subtyping based on subclassing. When C<X> is declared to extend another type
D<S>, any (invariant) instantiation C<T> is a subtype of D<[T/X]S>. A supertype
of a non-invariant type is obtained by opening it and closing the supertype of
the opened type. Finally, the last rule deals with variance. The first conditional
premise means that, if a variance annotation vi for Xi is either contravariant or
invariant, the corresponding type arguments Si and Ti must satisfy ∆ � Ti <: Si;
similarly for the second one.
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Type Well-Formedness. A judgment for type well-formedness is of the form
∆ � T ok, read “T is a well-formed type under ∆”. The rules for type well-
formedness are straightforward: (1) Object is always well formed; (2) a type
variable is well formed if it is in the domain of ∆; and (3) a variant parametric
type C<vT> is well-formed if the type arguments T are lower than their bounds,
respectively. Note that variance annotations can be any.

Typing. The typing rules for expressions are syntax directed, with one rule for
each form of expression, shown in Figure 4. In what follows, we use bound∆(T)
defined by: bound∆(X) = S if ∆(X) = (+, S) and bound∆(N) = N. Most rules
are straightforward. When a field or method is accessed, the type on which the
operation is performed is opened and the result type is closed. The typing rules
for constructor/method invocations check that the type of each actual parameter
is a subtype of the corresponding formal.

Typing for methods requires the auxiliary predicate override to check correct
method overriding. override(m, N, T->T0) holds if and only if a method of the
same name m is defined in the supertype N and has the same argument and return
types (it would be safe to extend the rule to handle overriding of the result type
covariantly, as allowed in GJ). The method body should be given a subtype of
the declared result type under the assumption that the formal parameters are
given the declared types and this is given type C<X>. The environment prohibits
this from occurring as a parameter name since name duplication in the domain
of an environment is not allowed. Finally, a class declaration is well typed if all
the methods are well typed.

6.3 Properties

Type soundness (Theorem 3) is shown through subject reduction and progress
properties [37], after defining the reduction relation e −→ e′, read “expres-
sion e reduces to expression e′ in one step.” The definiton of the reduction
relation and proofs of type soundness are found in the full version of the pa-
per6. To state type soundness, we require the notion of values, defined by:
v ::= new C<T>(v1, . . . , vn) (n may be 0).

Theorem 1 (Subject Reduction). If ∆; Γ � e ∈ T and e −→ e′, then ∆; Γ �
e′ ∈ S and ∆ � S <: T for some S.

Theorem 2 (Progress). Suppose e is a well-typed expression.

1. If e includes new C<T>(e).f as a subexpression, then fields(C<T>) = U f

and f = fi.
2. If e includes new C<T>(e).m(d) as a subexpression, then mbody(m, C<T>) =

x.e0 and |x| = |d|.
6 Strictly speaking, for run-time expressions, we would need another typing rule for

stupid casts [20]—that is, casts that turn out to fail in the course of execution; we
have omitted it just for brevity.
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Expression Typing:

∆; Γ � x ∈ Γ (x)

∆; Γ � e0 ∈ T0 ∆ � bound∆(T0) ⇑∆
′

C<T> fields(C<T>) = S f Si ⇓∆′ T

∆; Γ � e0.fi ∈ T

∆; Γ � e0 ∈ T0 ∆ � bound∆(T0) ⇑∆
′

C<T> mtype(m, C<T>) = U->U0

∆; Γ � e ∈ S ∆ � S <: U U0 ⇓∆′ T

∆; Γ � e0.m(e) ∈ T

∆ � C<T> ok fields(C<T>) = U f ∆; Γ � e ∈ S ∆ � S <: U

∆; Γ � new C<T>(e) ∈ C<T>

∆; Γ � e0 ∈ T0

∆ � bound∆(T0) <: bound∆(T) or ∆ � bound∆(T) <: bound∆(T0)

∆; Γ � (T)e0 ∈ T

Method Typing:

mtype(m, N) = U->U0 implies U,U0 = T,T0

override(m, N, T->T0)

∆ = X<:N ∆ � T, T0 ok ∆; x : T, this : C<X> � e0 ∈ S0 ∆ � S0 <: T0

class C<X � N> � D<S> {...} override(m, D<S>, T->T0)

T0 m(T x){return e0;} OK IN C<X � N>

Class Typing:

X<:N � N, D<S>, T ok M OK IN C<X � N>

class C<X � N> � D<S> {T f; M} OK

Fig. 4. Typing

Theorem 3 (Type Soundness). If ∅; ∅ � e ∈ T and e −→∗ e′ being a normal
form, then e′ is either a value v such that ∆; Γ � v ∈ S and ∅ � S <: T for some
S or an expression that includes (T)new C<T>(e) where ∅ � C<T> �<: T.

7 Related Work

Parametric Classes and Variance. There have been several languages, such as
POOL [2] and Strongtalk [4,3], that support variance for parametric classes;
more recently, Cartwright and Steele [13] have discussed the possibility of the
introduction of variance to NextGen—a proposal for extending Java with gener-
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ics. The approach there is different from ours in that variance is a property of
classes, rather than types. In these languages, the variance annotation is attached
to the declaration of a type parameter so that a designer of a class can express
his/her intent about all the parametric types derived from the class. Then, the
system can statically check whether the variance declaration is correct: for ex-
ample, if X is declared to be covariant in a parametric class C<X> but used in a
method argument type or (writable) field type, the compiler will reject the class.
Thus, in order to enhance reusability with variance, library designers must take
great care to structure the API, casting a heavy burden on them. Day et al. [15]
even argued that this restriction was too severe and, after all, they have decided
to drop variance from the their language Theta. On the contrary, in our system,
users of a parametric class can choose a variance: a class C<X>, for example, can
have arbitrary occurrences of X and induces four different types C<T>, C<+T>,
C<-T>, and C<*T> with one concrete type argument T. We believe that moving
annotations to the use site provides much more flexibility.

In an early design of Eiffel, every parametric type was unsoundly assumed to
be covariant. To remedy the problem, Cook [14] proposed to infer, rather than
declare, variance of type parameters of a given class without annotations. For
example, if X in the class C<X> appears only in a method return type, the type
C<T> is automatically regarded as covariant, and similarly for contravariant. This
proposal is not adopted in the current design, in which every parametric class is
regarded as invariant [16].

Virtual Types. As we have already mentioned, the idea of variant parametric
types has emerged from structural virtual types proposed by Thorup and Torg-
ersen [33]. In a language with virtual types [24,32], a type can be declared as
a member of a class, just as well as fields and methods, and the virtual type
member can be overridden in subclasses. For example, a generic bag class Bag

has a virtual type member ElmTy, which is bound to Object; specific bags can
be obtained by declaring a subclass of Bag, overriding ElmTy by their concrete
element types.

Since the original proposals of virtual types were unsafe and required run-
time checks, Torgersen [34] developed a safe type system for virtual types by
exploiting two kinds of type binding: open and final. An open type member is
overridable but the identity of the type member is made abstract, prohibiting
unsafe accesses such as putting elements into a bag whose element type is un-
known; a final type member cannot be overridden in subclasses but the identity
of the type member is manifest, making concrete bags. In a pseudo Java-like
language, a generic bag class and concrete bag classes can be written as follows.

class Bag {

type ElmTy <: Object; // open binding

ElmTy get() { ... }

void put(ElmTy e) { ... }

// No element can be put into a Bag.

}
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class StringBag extends Bag {

type ElmTy == String; // final binding

// Strings can be put into a String Bag.

}

class IntegerBag extends Bag { type ElmTy == Integer; }

One criticism on this approach was that it was often the case that concrete
bags were obtained only by overriding the type member, making lots of small
subclasses of a bag. Structural virtual types are proposed to remedy this problem:
type bindings can be described in a type expression and a number of concrete
types are derived from one class. For example, a programmer can instantiate
Bag[ElmTy==Integer] to make an integer bag, where the [] clause describes a
type binding. In addition, Bag[ElmTy==Integer] <: Bag[ElmTy<:Object] and
Bag[ElmTy==String] <: Bag[ElmTy<:Object] hold as is expected.

In their paper [33], it is briefly (and informally) discussed how structural
virtual types can be imported to parametric classes, the idea on which our de-
velopment is based. The above programming is achieved by making ElmTy a type
parameter to the class Bag, rather than a member of a class.

class Bag<ElmTy extends Object> extends Object {

ElmTy get() { ... }

void put(ElmTy e) { ... }

}

Then, an integer bag is obtained by new Bag<Integer>() and Bag<Integer> <:

Bag<+Object> holds. In other words, the type Bag<Integer> corresponds to
Bag[ElmTy==Integer] and Bag<+Object> to Bag[ElmTy<:Object]. This simi-
larity is not just superficial: as in [19], programming with virtual types is shown
to be simulated (to some degree) by exploiting bounded and manifest existential
types [18,22], on which our formal type system is also partly based.

Thus, our variant parametric types can be considered a generalization of the
idea above with contravariance and bivariance. Other differences are as follows.
On one hand, virtual types seem more suitable for programming with extensible
mutually recursive classes/interfaces [7,33,10]. On the other hand, our system
allows a (partially) instantiated parametric class to be extended: as we have
already discussed, a programmer can declare a subclass PP<X,Y> that inherits
from Pair<Pair<X,Y>,Pair<X,Y>>. It is not very clear (at least, from their
paper [33]) how to encode such programming in structural virtual types. More
rigorous comparisons are interesting but left for future work.

Existential types in object-oriented languages. The idea of existential types can
actually be seen in several mechanisms for object-oriented languages, often in
disguised (and limited) forms.

In the language LOOM [8], subtyping is dropped in favor of matching [6,9],
thus losing subsumption. To recover the flexibility of subsumption to some de-
gree, they introduced the notion of the “hash” type #T, which stands for the set of
types that match T. As is pointed out in [8], #T is considered a “match-bounded”
existential type ∃X<#T.X, where X<#T stands for “X matches T.”
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The notion of exact types [7] is introduced in a proposal of a Java-like lan-
guage with both parametric classes and virtual types. In that language, a class
of the name C induces two types C and @C; the type C denotes a set of objects
created only from the class C, while @C does a set of objects created from C or
its subclasses. In this sense, @C can be considered the existential type ∃X<:C,X,
where <: denotes subclassing7.

Raw types [5] of GJ are also close to bounded existential types [21]. In GJ, the
class Vector<X>, for example, induces the raw type Vector as well as parametric
types including Vector<Integer> and Vector<String>. The raw type Vector is
typically used by legacy classes written in monomorphic Java, making it smooth
to importing old Java code into GJ. Vector is considered a supertype of every
parametric type Vector<T> and behaves somehow like ∃X<:Object.Vector<X>.
One significant difference is that certain unsafe operations putting elements into
a raw vector are permitted with a compiler warning.

8 Conclusions and Future Work

In this paper, we have presented a language construct based on variant para-
metric types as an extension to common object-oriented languages with support
for generic classes. Variant parametric types are used to exploit inclusive poly-
morphism for generic types, namely, providing a uniform view over different
instantiations of a generic class.

Variant parametric types generally make it possible to widen the applicabil-
ity of methods accessing a subset of a generic instance’s members—e.g., when
a method only reads the elements of a generic collection passed as argument.
Furthermore, variant parametric types seem to increase the expressiveness in
declaring more complex parameterizations, featuring nesting variant parametric
types and partial instantiations through the bivariance symbol *. For a rigorous
argument of type soundness, we have developed a core calculus of variant para-
metric types, based on Featherweight GJ [20]. A key idea in the development
of the type system is to exploit similarity between variant parametric types and
bounded existential types.

Implementation issues are not addressed in this paper which are likely to be
a subject of future work. It is worth noting, however, that existing implemen-
tation techniques seem to allow for straightforward extensions providing variant
parametric types. For instance, the type-erasure technique—which is one of the
basic implementation approaches for generics, in both Java (GJ [5]) and the
.NET CLR ([30])—can be directly exploited for dealing with variant parametric
types, for they can be simply erased in the translated code just as standard para-
metric types. (The language would be constrained due to the lack of run-time

7 A similar idea can be found in an old version of the type system of Sather [23],
where the symbol $ replaces @ and is used to enable efficient method dispatching. In
the current design of Sather [31], $ is used for names of abstract classes, from which
subclasses can be derived, while names without the leading $ are used for concrete
classes, from which objects can be instantiated but subclasses cannot be derived.
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type arguments, though: for example, the target of typecasts cannot be a type
variable.) Other advanced translation techniques where exact generic types are
maintained at run time, such as LM translator [36,35], can be extended as well.
In this case, variant parametric types can be supported by simply implementing
a subtyping strategy in which variance-based subtyping is taken into account.
Since the current design allows run-time type arguments to be variant parametric
types, it will be important to estimate extra overhead to manage information on
variance annotations. In general, one of the basic implementation issues would
be to find an optimized algorithm for subtyping variant parametric types. For
example, the approach presented in [28] may be worth investigating.

Other future work includes the further evaluation of the variant parametric
type’s expressiveness through large-scale applications and more rigorous com-
parisons with related constructs such as virtual types [33].
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