Aspect-Oriented
Programming and AspectJ

- Aspect-oriented programming is a common
buzzword lately

- Papers from ECOOP 1997 (early overview—
the manifesto), ECOOP 2001 (overview of
Aspect])

. Kiczales (the team leader) was behind the
CLOSMOP

lof18
nis Smaragdakis

Simple Working Example (bad, IMO)

- Image processing application with filters
- filters need to be kept separate
- filters need to be fused together for
optimization (e.g., loop fusion)

(defun or! (a b)
(let ((result (newinmage)))
(loop for i from1 to width do
(loop for j from1 to height do
(set-pixel result i j
(or (get-pixel ai j

i)
(get-pixel bi j)))))
result))

- If another filter has the same looping structure,

the two should be fused together (for locality,
max memory consumption, etc.)

- Better example: in distributed apps,
synchronization/serialization of data/failure
handling are orthogonal to other functionality

3of18
Yannis Smaragdakis

What is Aspect-Oriented Programming?
Many possible answers:

. afad

- away-too-general collection of cross-cutting
programming techniques

- anew name for old ideas (generators, domain-
specific languages, MOPs)

. the solution to all our problems

My opinion: AOP isjust a new name for old
ideas, but these ideas are good
- dominant AOP implementations (e.g.,
AspectJ) are MOP-like, but they don’t
need to be

An aspect is a piece of functionality that cross-
cuts functional units of a system

nis Smaragdakis

20f18

Aspect-Oriented Principles

- A component is a part of the implementation
that islocalized in traditional languages (Java/
C/C++, etc)

- An aspect is a part of the implementation that
isnot well-localized with traditional languages
(code ends up being scattered everywhere)

- AOP triesto offer language support for
expressing aspects concisely and separately
from components

- Join points: the points where components
interact and aspects can influence them

- Elements of an AOP-based implementation:

- a component language part

- an aspect language part

- an aspect weaver applying the aspectsto
components (really, a generator)

nis Smaragdakis

40f18

I mage Processing Example Revisited

Essentially, a domain-specific language is
designed for image processing

- Component language: implicit loop structure

(define-filter or! (a b)
(pixelwise (ab) (aa bb) (or aa bb)))

(aa, bb areiterators—standard Lisp/Scheme
iterator binding semantics)

- Aspect language: operations on nodes in the
dataflow graph. E.g., if two loops have the
same structure and inputs, fuse them together

- Weaver: represent the component programas a
flow graph, run aspect code on it, generate
code from higher-level abstractions

Yannis Smaragdakis

50f18

Example aspect program:

renote Repository {

voi d register (Book);

voi d unregi ster (Book: copy isbn);
/1 Book class has “isbn” field

Book: copy isbn | ookup(String);
/'l method: “Iookup”, return type: Book

}

Yannis Smaragdakis

7of18

Other Example

- How datais serialized (and, in particular, how

much datais copied) in a distributed systemis
an issue independent of the system’s main
functionality

- A communication aspect language can allow

the programmer to describe how much of an
object will be copied
- again, just a domain-specific language/
generator. You can call it AOP, but the
valueisin the domain
- there is a general system called Doorastha
that does similar thingsin Java

- E.g., adigital library may have Book and

Reposi t ory classes. We can tell the system
to only copy parts of a Book object when
registering and unregistering it in a remote
repository

Yannis Smaragdakis

6of18

AspectJ

- A very nice MOP/general compositional

semantic extensibility facility for Java
- used entirely for interposing code, not
changing how the object system works
- AspectJ is atransparent extension of Java,
comes with IDE support (for easier editing,
inspection of aspect code)

- To demonstrate, consider an example

application: afigure editor

FigureEle
incr Xy
Point Line
get X get X
CoksetX | T setX [
: i ncr XY i ncr XY move :

Yannis Smaragdakis

8of18

Join points

- Many possible join pointsin AspectJ. At:
- method call (inside calling object)
- method call reception by an object (any
method)
- method execution (specific method)
- field access (get/set)
- constructor call (inside object doing new)
- constructor call reception (any constructor)
- exception handler execution
- classinitialization (static initializers run)

Pointcuts

- Pointcut = set of join points + values from the
context (e.g., thet hi s object, method
parameters, etc.)

call (void Point.setX(int))
- all join points where the method called is
voi d Poi nt. set X(int)

Yannis Smaragdakis

9of18

Pointcut Example

poi ntcut noves():
call (void FigureEl enent.incrXY(int,int))
|| call(void Line.setP1l(Point))
|| call(void Line.setP2(Point))
|| call(void Point.setX(int))
|| call(void Point.setY(int));

- describes the join points where methods that
cause “movement” of afigure are called
- Note that a “ user-defined” pointcut
(operator poi nt cut) isusedto give a
name (noves) to the pointcut

Advice

- Advice: specification of aspect code to be
interposed at pointcuts
- before, after, or instead of (ar ound) the
code at ajoin point
- two special casesof “ after” : after returning/after
throwing (for normal/exception exits)

Yannis Smaragdakis

11of18

Kinds of Pointcuts

- Pointcuts can be thought of as runtime
predicates: when they aretrue, we are at ajoin
point described by the pointcut.

- Several kinds of pointcuts. E.g.:
- call (signature)
- execution(signature)
- get/set(signature)
- value can be matched with ar gs
- args(Type)
- handl er (Thr owabl eCl ass)
- this/target(Type)
- within(Type)
- withi ncode(si gnature)
- cfl ow pointcut)
- initialization(ConstrSig)
- staticinitialization(Type)

- Also: boolean pointcut operators (&%, | | , €tc.)
and pointcut constants (user-defined pointcuts)

Yannis Smaragdakis

100f18

Aspects

- Aspects have class-like syntax (and, to some
extent, semantics—e.g., for scoping). They can
contain pointcuts, advice, and regular class
declarations (member vars/methods)

aspect MoveTracking {
static boolean flag = fal se;
static bool ean test Andd ear () {
bool ean result = fl ag;
flag = fal se;
return result;

}

poi nt cut noves():
call (void FigureEl enent.incrXY(int,int))
|| call(void Line.setPl(Point))
|| call(void Line.setP2(Point))
|| call(void Point.setX(int))
|| call(void Point.setY(int));
after(): moves() { /] advice
flag = true;
}
}

Yannis Smaragdakis

120f18

Aspects
- Aspects can have multiple instances

. There are complex rules about how aspect
execution (advice application) is ordered
- the rules take into account Aspect
relationships (e.g., if aspect A extends B,
then it's considered more specific)
- thereisadonmi nat es keyword for aspects
that know about each other

Example (uses MoveTr acki ng from last slide)

aspect Mbility dom nates MyveTracking {
static bool ean enabl eMbves = true;

around() returns void:
MoveTr acki ng. noves()
{ if (enabl eMoves) proceed(); }

defines an “around” (instead-of) method
preventing moves if the flag is not set

Yannis Smaragdakis

130f18

- regular pointcut definition:
poi ntcut foo()
i nst anceof (Poi nt);

- pointcut with parameter:
poi nt cut foo(Point p)
i nstanceof (p);

. p isthe object of class Poi nt with which the
join point is associated!

Example: Around Advice and Proceed

- Wesaw proceed earlier, but it can also be
called with parameters

. To ensure that a method is only called with
non-negative int arguments:
around(int nv) returns void:
call (void Point.setX(nv))
{ proceed(Math. max(0, nv)); }

Yannis Smaragdakis

150f18

Pointcut Parameters

- Advice and pointcut definitions can have
parameters (see empty parentheses in previous
examples)

- The parameters can be used in pointcut
predicates instead of type variables and take
the value of the instance matching the
predicate

- thisis overloading the existing syntax for an
entirely different purpose

before(Point p, int nval):
call (void p.setX(nval)) {
Systemout.println(“x value of” + p +
“will be set to” + nval + “.");

}

To print a message every time the value of x for
a point changes

Example: Getting the current object

140f18

Yannis Smaragdakis

Abstract and Generic Aspects

A “virtual type’-like mechanism allows aspect
genericity

abstract aspect SinpleTracing {
abstract pointcut tracePoints();
//yet undefined

before(): tracePoints() {
print Message(“Entering”, thisJoinPoint);

after(): tracePoints() {
print Message(“Exiting”, thisJointPoint);
}

voi d printMessage(String s, JoinPoint tjp)
...}
}

aspect XYTracing extends SinpleTracing {
poi ntcut tracePoints():
cal I (
voi d FigureEl enent.incrXY(int,int));

- (note the t hi sJoi nt Poi nt variable and the
Joi nPoi nt type: they reflectively export
details of the AspectJ implementation)

160f 18

Yannis Smaragdakis

Wildcards
E.g.,
call (* Point.*(..))
call (Point.new..))
Control-Flow Based Pointcuts

The cf | ow operator is true on points under the
dynamic extent of other join points (e.g., while
the methods corresponding to these join points

are still active on the execution stack)

poi nt cut noves(Fi gureEl ement fe):
<see before>;

poi ntcut topLevel Moves(Fi gureEl ement fe):
moves(fe) && !cfl ow noves(FigureEl enent));

I mplementation

The AspectJ compiler inserts code to check and
call theright aspects at join points: efficient

Yannis Smaragdakis

170f18

Introductions/ Inter-type Declar ations

Can declare members and supertypes for
existing classes!

A static transformation language. These
“introductions” are not advice and are not
associated with pointcuts

Add an “enabl ed” field to all

Fi gur eEl enment s:
- bool ean Fi gur eEl ement . enabl ed=f al se;

Add a setter method:
- public
Fi gur eEl enent . set Enabl ed(bool ean b) {
this.enabled = b;

}

Add superclasses to FigureElement:

- declare parents:
Fi gur eEl enent ext ends Drawabl e

Yannis Smaragdakis

180f18

