
Yannis Smaragdakis

1 of 18

Aspect-Oriented
Programming and AspectJ

• Aspect-oriented programming is a common
buzzword lately

• Papers from ECOOP 1997 (early overview—
the manifesto), ECOOP 2001 (overview of
AspectJ)

• Kiczales (the team leader) was behind the
CLOS MOP

Yannis Smaragdakis

2 of 18

What is Aspect-Oriented Programming?

Many possible answers:

• a fad

• a way-too-general collection of cross-cutting
programming techniques

• a new name for old ideas (generators, domain-
specific languages, MOPs)

• the solution to all our problems

My opinion: AOP is just a new name for old
ideas, but these ideas are good

- dominant AOP implementations (e.g.,
AspectJ) are MOP-like, but they don’t
need to be

An aspect is a piece of functionality that cross-
cuts functional units of a system

Yannis Smaragdakis

3 of 18

Simple Working Example (bad, IMO)

• Image processing application with filters
- filters need to be kept separate
- filters need to be fused together for

optimization (e.g., loop fusion)

(defun or! (a b)
(let ((result (new-image)))

(loop for i from 1 to width do
(loop for j from 1 to height do

(set-pixel result i j
(or (get-pixel a i j)

(get-pixel b i j)))))
result))

• If another filter has the same looping structure,
the two should be fused together (for locality,
max memory consumption, etc.)

• Better example: in distributed apps,
synchronization/serialization of data/failure
handling are orthogonal to other functionality

Yannis Smaragdakis

4 of 18

Aspect-Oriented Principles

• A component is a part of the implementation
that is localized in traditional languages (Java/
C/C++, etc.)

• An aspect is a part of the implementation that
is not well-localized with traditional languages
(code ends up being scattered everywhere)

• AOP tries to offer language support for
expressing aspects concisely and separately
from components

• Join points: the points where components
interact and aspects can influence them

• Elements of an AOP-based implementation:
- a component language part
- an aspect language part
- an aspect weaver applying the aspects to

components (really, a generator)

Yannis Smaragdakis

5 of 18

Image Processing Example Revisited

Essentially, a domain-specific language is
designed for image processing

• Component language: implicit loop structure

(define-filter or! (a b)
(pixelwise (a b) (aa bb) (or aa bb)))

(aa, bb are iterators— standard Lisp/Scheme
iterator binding semantics)

• Aspect language: operations on nodes in the
dataflow graph. E.g., if two loops have the
same structure and inputs, fuse them together

• Weaver: represent the component program as a
flow graph, run aspect code on it, generate
code from higher-level abstractions

Yannis Smaragdakis

6 of 18

Other Example

• How data is serialized (and, in particular, how
much data is copied) in a distributed system is
an issue independent of the system’s main
functionality

• A communication aspect language can allow
the programmer to describe how much of an
object will be copied

- again, just a domain-specific language/
generator. You can call it AOP, but the
value is in the domain

- there is a general system called Doorastha
that does similar things in Java

• E.g., a digital library may have Book and
Repository classes. We can tell the system
to only copy parts of a Book object when
registering and unregistering it in a remote
repository

Yannis Smaragdakis

7 of 18

Example aspect program:

remote Repository {
void register (Book);
void unregister (Book: copy isbn);

// Book class has “isbn” field
Book: copy isbn lookup(String);

// method: “lookup”, return type: Book
}

Yannis Smaragdakis

8 of 18

AspectJ

• A very nice MOP/general compositional
semantic extensibility facility for Java

- used entirely for interposing code, not
changing how the object system works

- AspectJ is a transparent extension of Java,
comes with IDE support (for easier editing,
inspection of aspect code)

• To demonstrate, consider an example
application: a figure editor

FigureEle
incrXY

Point
getX
setX
incrXY

Line
getX
setX
incrXY move

aspect

Yannis Smaragdakis

9 of 18

Join points

• Many possible join points in AspectJ. At:
- method call (inside calling object)
- method call reception by an object (any

method)
- method execution (specific method)
- field access (get/set)
- constructor call (inside object doing new)
- constructor call reception (any constructor)
- exception handler execution
- class initialization (static initializers run)

Pointcuts

• Pointcut = set of join points + values from the
context (e.g., the this object, method
parameters, etc.)

call(void Point.setX(int))
- all join points where the method called is
void Point.setX(int)

Yannis Smaragdakis

10 of 18

Kinds of Pointcuts

• Pointcuts can be thought of as runtime
predicates: when they are true, we are at a join
point described by the pointcut.

• Several kinds of pointcuts. E.g.:
- call(signature)
- execution(signature)
- get/set(signature)

- value can be matched with args
- args(Type)
- handler(ThrowableClass)
- this/target(Type)
- within(Type)
- withincode(signature)
- cflow(pointcut)
- initialization(ConstrSig)
- staticinitialization(Type)

• Also: boolean pointcut operators (&&, ||, etc.)
and pointcut constants (user-defined pointcuts)

Yannis Smaragdakis

11 of 18

Pointcut Example
pointcut moves():

 call(void FigureElement.incrXY(int,int))
|| call(void Line.setP1(Point))
|| call(void Line.setP2(Point))
|| call(void Point.setX(int))
|| call(void Point.setY(int));

• describes the join points where methods that
cause “movement” of a figure are called

- Note that a “user-defined” pointcut
(operator pointcut) is used to give a
name (moves) to the pointcut

Advice

• Advice: specification of aspect code to be
interposed at pointcuts

- before, after, or instead of (around) the
code at a join point

- two special cases of “after”: after returning/after
throwing (for normal/exception exits)

Yannis Smaragdakis

12 of 18

Aspects

• Aspects have class-like syntax (and, to some
extent, semantics— e.g., for scoping). They can
contain pointcuts, advice, and regular class
declarations (member vars/methods)

aspect MoveTracking {
static boolean flag = false;
static boolean testAndClear() {

boolean result = flag;
flag = false;
return result;

}

pointcut moves():
 call(void FigureElement.incrXY(int,int))
|| call(void Line.setP1(Point))
|| call(void Line.setP2(Point))
|| call(void Point.setX(int))
|| call(void Point.setY(int));

after(): moves() { // advice
flag = true;

}
}

Yannis Smaragdakis

13 of 18

Aspects

• Aspects can have multiple instances

• There are complex rules about how aspect
execution (advice application) is ordered

- the rules take into account Aspect
relationships (e.g., if aspect A extends B,
then it’s considered more specific)

- there is a dominates keyword for aspects
that know about each other

Example (uses MoveTracking from last slide)
aspect Mobility dominates MoveTracking {

static boolean enableMoves = true;

around() returns void:
MoveTracking.moves()

{ if (enableMoves) proceed(); }
}

defines an “around” (instead-of) method
preventing moves if the flag is not set

Yannis Smaragdakis

14 of 18

Pointcut Parameters

• Advice and pointcut definitions can have
parameters (see empty parentheses in previous
examples)

• The parameters can be used in pointcut
predicates instead of type variables and take
the value of the instance matching the
predicate

- this is overloading the existing syntax for an
entirely different purpose

before(Point p, int nval):
call(void p.setX(nval)) {

System.out.println(“x value of” + p +
“ will be set to ” + nval + “.”);

}

To print a message every time the value of x for
a point changes

Example: Getting the current object

Yannis Smaragdakis

15 of 18

• regular pointcut definition:
pointcut foo() :

instanceof(Point);

• pointcut with parameter:
pointcut foo(Point p) :

instanceof(p);

• p is the object of class Point with which the
join point is associated!

Example: Around Advice and Proceed

• We saw proceed earlier, but it can also be
called with parameters

• To ensure that a method is only called with
non-negative int arguments:
around(int nv) returns void:
call(void Point.setX(nv))

{ proceed(Math.max(0, nv)); }

Yannis Smaragdakis

16 of 18

Abstract and Generic Aspects

A “virtual type”-like mechanism allows aspect
genericity
abstract aspect SimpleTracing {

abstract pointcut tracePoints();
//yet undefined

before(): tracePoints() {
printMessage(“Entering”,thisJoinPoint);

}
after(): tracePoints() {

printMessage(“Exiting”,thisJointPoint);
}

void printMessage(String s, JoinPoint tjp)
{ ... }

}

aspect XYTracing extends SimpleTracing {
pointcut tracePoints():

call(
void FigureElement.incrXY(int,int));

}
- (note the thisJointPoint variable and the
JoinPoint type: they reflectively export
details of the AspectJ implementation)

Yannis Smaragdakis

17 of 18

Wildcards

E.g.,

call(* Point.*(..))
call(Point.new(..))

Control-Flow Based Pointcuts

The cflow operator is true on points under the
dynamic extent of other join points (e.g., while
the methods corresponding to these join points
are still active on the execution stack)
pointcut moves(FigureElement fe):
<see before>;

pointcut topLevelMoves(FigureElement fe):
moves(fe) && !cflow(moves(FigureElement));

Implementation

The AspectJ compiler inserts code to check and
call the right aspects at join points: efficient

Yannis Smaragdakis

18 of 18

Introductions / Inter-type Declarations

Can declare members and supertypes for
existing classes!

A static transformation language. These
“introductions” are not advice and are not
associated with pointcuts

Add an “enabled” field to all
FigureElement s:

- boolean FigureElement.enabled=false;

Add a setter method:
- public

FigureElement.setEnabled(boolean b) {
this.enabled = b;

}

Add superclasses to FigureElement:
- declare parents:

FigureElement extends Drawable

