Variance In Type Systems and
Variance-Based Parametric
Types

Based on Igarashi and Viroli’s paper from
ECOOP 2002 (excellent paper! Value more In
taste, than in novelty)

- This I1s a mechanism that got integrated in Java
generics with different syntax

Yannis Smaragdakis

10f13



Subtyping
- Roughly, when a type is a subset of another

- What does that mean for method signatures?
(covariance/contravariance of arguments result

types)
- Consider (which one really defines a subset?):

interface 11 {
Animal foo(Dog d);
}

interface 12 extends 11 {
Dog foo(Animal d);
}

interface 13 extends 11 {
Object foo(PrettyDog d);
by

interface 14 extends 12 {
Dog foo(Dog d);
+

20f 13

Yannis Smaragdakis



Variance Flavors
- Covariance: R <: S => C<R> <: C<S>
- Contravariance: R <:S => C<S> <: C<R>
- Bivariance: C<R> <: C<S>, forallRand S

- Invariance: C<R> <: C<S> => R = S

Question: How Can We Have Safe Variance?

Two basic principles, applied in a variety of
mechanisms:

- C covariant in X means that X should not be
the type of a public (and writeable—e.g., non-
final) field or an argument type of a public
method

- C contravariant in X means that X should not
be the type of a public, readable field, or the
return type of a public method

30f13

Yannis Smaragdakis



Classical, Restrictive Approach

class Pair<X extends Object,
Y extends Object> {
private X fst;
private Y snd;
Pair(X fst, Y snd) {
this.fst = fts;
this.snd snd;

}
vold SetFst(X fst) {
this.fst = fst;

}% getSnd() { return snd; }

- Pair Is covariant in Y, contravariant in X
- why don’t constructors matter?

- E.g. Pair<Object, Integer> can be used
where Pair<String,Number> is expected

- (Integer <: Number <: Object)

4 of 13
Yannis Smara gdakis



Limitations of Classical Approach

Usually we use the type parameter both in
covariant and In contravariant roles

class Vector<xX> {
private X[] ar;

Vector(int size){ar = new X[size];}
int size(){return ar.length;}
X getElementAt(int 1){return ar|i];}
void setElementAt(X t,int 1) {

ar[i] = t;
}
}
- Too conservative to infer variance from code

50f13

Yannis Smaragdakis



New Insight

- Instead of conservatism, disallow some uses of
methods based on the statically known type
Information

- Think of the same single code for Vector as
defining 4 classes:

- the regular Vector

- the covariant Vector (with only read-only
methods)

- the contravariant Vector (only write-only
methods)

- the bivariant Vector (no methods with Xs in
their parameter or return list—"“frozen”
\ector)

Yannis Smaragdakis

6 of 13



Variance Annotations

Three kinds of annotations:

- + : covariance (think “const” or “read-only”)
- - . contravariance (think “write-only”)

- * : bivariance (think “contents not touched”)
Interpretation:

- C<+T>: the union of all invariant types of the
form C<S>, whereS <: T
- C with T used only to read from

- C<-T> : the union of all invariant types of the
form C<S>, where T <:- S
- C with T used only to write to

- C<*>: all invariant types of the form C<S>

(Note I say “union”—types are sets of values)

Yannis Smaragdakis

7 of 13



Rules

(For multiple type parameters, the rules apply by
varying a single parameter and keeping all
others the same)

C<T> <: C<+T>
- Vector<Integer> <: Vector<+Integer>

C<T> <: C<-T>
- Vector<Integer> <: Vector<-Integer>

C<+T> <z C<*>
- Vector<+Integer> <: Vector<*>

C<-T> <: C<*>
- Vector<-Integer> <: \Vector<*>

S <: T == C <+S> <: C<+T>
- Vector<+Integer> <: Vector<+Number>

S <:T=>C <-T> <z C=5>
- Vector<-Number> <: Vector<-Integer>

Yannis Smaragdakis

8 of 13



Example Applications: Covariance

class Vector<xX> {

void fillFrom(Vector<+X> v, iInt 1) {
for (int j=i; j<v.size(); j++)
setElementAt(
v.getElementAt(J-1),});

}
}

Fills a vector (beginning at position 1) by
reading the contents of another vector. v is read-
only, the method is covariant

Vector<Number> vn =
new Vector<Number>(20);
Vector<Integer> vi = new
Vector<Integer>(10);
Vector<Float> vf = new
Vector<Float>(10);

vn.fillFrom(vi,0);
vn.fillFrom(vf,10);

Yannis Smaragdakis

9 0of 13



Example Applications: Covariance

class Vector<xX> {

void FillFromVector(
Vector<+Vector<+X>> vv) {
int pos = 0O;
for (int 1=0; i<vv.size(); 1++) {
Vector<+X> v = vv.getElementAt(1);
iIT (postv.size() >= size()) break;
fillFrom(v,pos);
pos +=v.size();
by
+
}

Fills a vector with the contents of all vectors in a
vector-of-vectors

E.g. the Vector<X> object (this) can be
Vector<Number>, while vv is a
Vector<Vector<+Number>> (e.g., holding a
vector of Integers and a vector of Floats)

Yannis Smaragdakis

10 of 13



Example Applications: Contravariance

class Vector<xX> {

void fillTo(Vector<-X> v, 1Int 1) {
for (int j=1; j<v.size(); J+t)
v.setElementAt(
getElementAt(j).,j-1);
}

}

Fills vector v by reading the contents of another
vector (beginning at position 1). v is write-only,
the method Is contravariant

Vector<Number> vn =
new Vector<Number>(20);
Vector<Integer> vi = new
Vector<Integer>(10);
Vector<Float> vf = new
Vector<Float>(10);

vi.fillTo(vn,0);
vi.fillTo(vn,10);

Yannis Smaragdakis

11 of 13



Example Applications: Bivariance

Int countVec(Vector<+Vector<*>> vv) {
int sz = 0;

for (int i=0; i < wv.size(); i++) {
sz += vv.getElementAt(1).si1ze();
return sz;

}

We count all elements of members of a vector-
of-vectors. The second level vectors are not
touched, the vector-of-vectors is only read

As another example, think of a vector of pairs,
where only the first element of each pair Is read
and the Vector is not modified:
Vector<+Palr<+X,*>>

12 of 13

Yannis Smaragdakis



Assessment

- The variance annotations (which could be
Inferred if all the code is available for analysis)
yield more generic code

- Similar to parametric (template) methods, with
bounds on the template parameters
- but need lower bounds, in addition to the
usual “X extends C” (upper bound)
- the mechanisms are complementary—each
can do some things better than the other
(read the paper for details!)

- Informally, parametric types with variance are
like bounded existential types: e.g.,

Vector<+C> s like a type
<exists X <: C> Vector<X>

Yannis Smaragdakis

13 of 13



