Compilers

Intermediate Representations and Data-Flow Analysis

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)
Modern optimizing compiler

Front end:
1. Lexical analysis
2. Parsing
3. Semantic analysis

Middle end:
4. Analysis / Optimization

Back end:
5. Instruction selection
6. Register allocation
7. Instruction scheduling
A bit more detail

- Intermediate representations and code generation

Diagram:
- Scanner → Parser → Semantic checker
- Intermediate code generation
- Back end
- High-level IR
- Low-level IR
Low-level IR

- Linear stream of *abstract instructions*
- Instruction: single operation and assignment

\[
\begin{align*}
x &= y \text{ op } z \\
x &\leftarrow y \text{ op } z \\
\text{op } x, y, z
\end{align*}
\]

- Must break down high-level constructs
 - Example:
 \[
 \begin{align*}
z &= x - 2 \times y
\end{align*}
 \]
 \[
 \begin{align*}
t &= 2 \times y \\
z &= x - t
\end{align*}
 \]
 - Introduce temps as necessary: called *virtual registers*

- Simple control-flow
 - Label and goto

\[
\text{label1:} \quad \text{goto label1} \\
\text{if}_\text{goto } x, \text{ label1}
\]

Jump to label1 if x has non-zero value
Stack machines

- Originally for stack-based computers

- What are advantages?
 - Introduced names are *implicit*, not *explicit*
 - Simple to generate and execute code
 - Compact form – who cares about code size?
 - Embedded systems
 - Systems where code is transmitted (the ‘Net')
IR Trade-offs

for (i=0; i<N; i++)
 A[i] = i;

Loop invariant

Strength reduce to temp2 += 4

loop:
 temp1 = &A
 temp2 = i * 4
 temp3 = temp1 + temp2
 store [temp3] = i
 ...
goto loop
Towards code generation

```c
if (c == 0) {
    while (c < 20) {
        c = c + 2;
    }
} else {
    c = n * n + 2;
}
```

```
t1 = c == 0
if goto t1, lab1
t2 = n * n
c = t2 + 2
goto end
lab1:
t3 = c >= 20
if goto t3, end
c = c + 2
goto lab1
end:
```
Motivating Example: Dead code elimination

- **Idea:**
 - Remove a computation if result is never used

 \[
 y = w - 7; \\
 x = y + 1; \\
 y = 1; \\
 x = 2 * z;
 \]

 \[
 y = w - 7; \\
 y = 1; \\
 x = 2 * z;
 \]

- **Safety**
 - Variable is dead if it is never used after defined
 - Remove code that assigns to dead variables

- This may, in turn, create more dead code
 - Dead-code elimination usually works transitively
Dead code

- Another example:

  ```
  x = y + 1;
  y = 2 * z;
  x = y + z;
  z = 1;
  z = x;
  ```

- Which statements can be safely removed?

- Conditions:
 - Computations whose value is never used
 - Obvious for straight-line code
 - What about control flow?
Dead code

- With if-then-else:

 \[
 \begin{align*}
 x &= y + 1; \\
 y &= 2 * z; \\
 \text{if (c)} & \quad x = y + z; \\
 z &= 1; \\
 z &= x;
 \end{align*}
 \]

 \text{Which statements are can be removed?}

- Which statements are dead code?
 - What if “c” is false?
 - Dead only on some paths through the code
Dead code

- And a loop:

```java
while (p) {
    x = y + 1;
    y = 2 * z;
    if (c) x = y + z;
    z = 1;
}
```

Which statements are can be removed?

- Now which statements are dead code?
Dead code

- And a loop:

Which statements are can be removed?

```java
while (p) {
    x = y + 1;
    y = 2 * z;
    if (c) x = y + z;
    z = 1;
}
```

- Statement “x = y+1” not dead
- What about “z = 1”?
Low-level IR

- Most optimizations performed in low-level IR
 - Labels and jumps
 - No explicit loops

- Even harder to see possible paths

```
label1:
  jumpifnot p label2
  x = y + 1
  y = 2 * z
  jumpifnot c label3
  x = y + z
label3:
  z = 1
label2:
  jump label1
label1:
  z = x
```
Optimizations and control flow

- Dead code is *flow sensitive*
 - Not obvious from program
 - *Dead code example: are there any possible paths that make use of the value?*
 - Must characterize all possible dynamic behavior
 - Must verify conditions at compile-time

- Control flow makes it hard to extract information
 - High-level: different kinds of control structures
 - Low-level: control-flow hard to infer

- Need a unifying data structure
Control flow graph

- **Control flow graph** (CFG):

 a graph representation of the program

 - Includes both computation and control flow
 - Easy to check control flow properties
 - Provides a framework for global optimizations and other compiler passes

- Nodes are **basic blocks**

 - Consecutive sequences of non-branching statements

- Edges represent control flow

 - From jump to a label
 - Each block may have multiple incoming/outgoing edges
x = a + b;
y = 5;
if (c) {
 x = x + 1;
y = y + 1;
} else {
 x = x - 1;
y = y - 1;
}
z = x + y;
Multiple program executions

- CFG models all program executions
- An actual execution is a path through the graph
- Multiple paths: multiple possible executions
 - How many?

```
x = a + b;
y = 5;
if (c)
```

```
x = x + 1;
y = y + 1;
```

```
x = x - 1;
y = y - 1;
```

```
z = x + y;
```
Execution 1

- CFG models all program executions

- Execution 1:
 - c is true
 - Program executes BB₁, BB₂, and BB₄

Control flow graph

```
Execution 1:

x = a + b;
y = 5;
if (c)

BB₁

BB₂

BB₃

BB₄

x = x + 1;
y = y + 1;

x = x - 1;
y = y - 1;

z = x + y;
```
Execution 2

- CFG models all program executions

Execution 2:
- c is false
- Program executes BB₁, BB₃, and BB₄

Control flow graph

BB₁
\[
x = a + b; \\
y = 5; \\
\text{if (c)}
\]

BB₂
\[
x = x + 1; \\
y = y + 1;
\]

BB₃
\[
x = x - 1; \\
y = y - 1;
\]

BB₄
\[
z = x + y;
\]
Basic blocks

- **Idea:**
 - Once execution enters the sequence, all statements (or instructions) are executed
 - Single-entry, single-exit region

- **Details**
 - Starts with a label
 - Ends with one or more branches
 - Edges may be labeled with predicates
 - *May include special categories of edges*
 - Exception jumps
 - Fall-through edges
 - Computed jumps (jump tables)
Building the CFG

- Two passes
 - First, group instructions into basic blocks
 - Second, analyze jumps and labels

- How to identify basic blocks?
 - Non-branching instructions

 Control cannot flow out of a basic block without a jump

 - Non-label instruction

 Control cannot enter the middle of a block without a label
Basic blocks

- Basic block starts:
 - At a label
 - After a jump

- Basic block ends:
 - At a jump
 - Before a label

```
label1:
jumpifnot p label2
x = y + 1
y = 2 * z
jumpifnot c label3
x = y + z
label3:
z = 1
jump label1
label2:
z = x
```
Basic blocks

- **Basic block starts:**
 - At a label
 - After a jump

- **Basic block ends:**
 - At a jump
 - Before a label

- **Note:** order still matters

```
label1:
  jumpifnot p label2
  x = y + 1
  y = 2 * z
  jumpifnot c label3

x = y + z

label3:
  z = 1
  jump label1

label2:
  z = x
```
Add edges

- Unconditional jump
 - Add edge from source of jump to the block containing the label

- Conditional jump
 - 2 successors
 - One may be the fall-through block

- Fall-through
Two CFGs

- From the high-level
 - Break down the complex constructs
 - Stop at sequences of non-control-flow statements
 - Requires special handling of break, continue, goto

- From the low-level
 - Start with lowered IR – tuples, or 3-address ops
 - Build up the graph
 - More general algorithm
 - Most compilers use this approach

- Should lead to roughly the same graph
Using the CFG

- Uniform representation for program behavior
 - Shows all possible program behavior
 - Each execution represented as a path
 - Can reason about potential behavior
 Which paths can happen, which can’t
 - Possible paths imply possible values of variables

- Example: *liveness* information

- Idea:
 - Define program points in CFG
 - Describe how information flows between points
Program points

- In between instructions
 - Before each instruction
 - After each instruction

May have multiple successors or predecessors
Live variables analysis

- **Idea**
 - Determine *live range* of a variable
 Region of the code between when the variable is assigned and when its value is used
 - Specifically:
 - **Def:** A variable \(v \) is live at point \(p \) if
 - There is a path through the CFG from \(p \) to a use of \(v \)
 - There are no assignments to \(v \) along the path
 - Compute a set of live variables at each point \(p \)

- **Uses of live variables:**
 - Dead-code elimination – find unused computations
 - Also: register allocation, garbage collection
Computing live variables

- How do we compute live variables?
 (Specifically, a set of live variables at each program point)

- What is a straight-forward algorithm?
 - Start at uses of v, search backward through the CFG
 - Add v to live variable set for each point visited
 - Stop when we hit assignment to v

- Can we do better?
 - Can we compute liveness for all variables at the same time?
 - **Idea:**
 - Maintain a set of live variables
 - Push set through the CFG, updating it at each instruction
Flow of information

- **Question 1**: how does information flow across instructions?

- **Question 2**: how does information flow between predecessor and successor blocks?
Live variables analysis

- At each program point:
 Which variables contain values computed earlier and needed later

- For instruction I:
 - \texttt{in}[I] : live variables at program point before I
 - \texttt{out}[I] : live variables at program point after I

- For a basic block B:
 - \texttt{in}[B] : live variables at beginning of B
 - \texttt{out}[B] : live variables at end of B

- Note: \texttt{in}[I] = \texttt{in}[B] for first instruction of B
 \texttt{out}[I] = \texttt{out}[B] for last instruction of B
Computing liveness

- **Answer question 1**: for each instruction I, what is relation between $\text{in}[I]$ and $\text{out}[I]$?

- **Answer question 2**: for each basic block B, with successors B_1, ..., B_n, what is relationship between $\text{out}[B]$ and $\text{in}[B_1]$ … $\text{in}[B_n]$
Part 1: Analyze instructions

- Live variables across instructions
- Examples:

 \[
 \text{in}[I] = \{y, z\} \\
x = y + z \\
\text{out}[I] = \{x\}
 \]

 \[
 \text{in}[I] = \{y, z, t\} \\
x = y + z \\
\text{out}[I] = \{x, t, y\}
 \]

 \[
 \text{in}[I] = \{x, t\} \\
x = x + 1 \\
\text{out}[I] = \{x, t\}
 \]

- Is there a general rule?
Liveness across instructions

How is liveness determined?

- All variables that I uses are live before I
 Called the uses of I

- All variables live after I are also live before I, unless I writes to them
 Called the defs of I

Mathematically:

\[
\text{in}[I] = \text{out}[I] - \text{def}[I] \cup \text{use}[I]
\]

\[
\begin{align*}
\text{in}[I] &= \{b\} \\
a &= b + 2 \\
\text{in}[I] &= \{y,z\} \\
x &= 5 \\
\text{out}[I] &= \{x,y,z\}
\end{align*}
\]
Example

- Single basic block
 (obviously: \(\text{out}[l] = \text{in}[\text{succ}(l)] \))
 - Live1 = \(\text{in}[B] = \text{in}[l1] \)
 - Live2 = \(\text{out}[l1] = \text{in}[l2] \)
 - Live3 = \(\text{out}[l2] = \text{in}[l3] \)
 - Live4 = \(\text{out}[l3] = \text{out}[B] \)

- Relation between live sets
 - Live1 = \((\text{Live2} - \{x\}) \cup \{y\}\)
 - Live2 = \((\text{Live3} - \{y\}) \cup \{z\}\)
 - Live3 = \((\text{Live4} - \{}) \cup \{d\}\)
Flow of information

- Equation:
 \[\text{in}[l] = (\text{out}[l] - \text{def}[l]) \cup \text{use}[l] \]

- Notice: information flows **backwards**
 - Need out[] sets to compute in[] sets
 - Propagate information up

- Many problems are **forward**
 Common sub-expressions, constant propagation, others
Part 2: Analyze control flow

- **Question 2**: for each basic block B, with successors B_1, ..., B_n, what is the relationship between $\text{out}[B]$ and $\text{in}[B_1] ... \text{in}[B_n]$?

- Example:

  ```
  B
  out={   }
  /
  /    /
B1    ...    Bn

  in={   }
  w=x+z;
  /         /
  /   ...   /

  in={   }
  q=x+y;
  ```

- What’s the general rule?
Control flow

- Rule: A variable is live at end of block B if it is live at the beginning of **any** of the successors
 - Characterizes all possible executions
 - *Conservative*: some paths may not actually happen

- Mathematically:
 \[
 \text{out}[B] = \bigcup_{B' \in \text{succ}(B)} \text{in}[B']
 \]

- Again: information flows backwards
System of equations

- Put parts together:
 \[
 \begin{align*}
 \text{in}[l] &= (\text{out}[l] - \text{def}[l]) \cup \text{use}[l] \\
 \text{out}[l] &= \text{in}[\text{succ}(l)] \\
 \text{out}[B] &= \bigcup_{B' \in \text{succ}(B)} \text{in}[B']
 \end{align*}
 \]

- Defines a system of equations (or constraints)
 - Consider equation instances for each instruction and each basic block
 - What happens with loops?
 - Circular dependences in the constraints
 - Is that a problem?
Solving the problem

- Iterative solution:
 - Start with empty sets of live variables
 - Iteratively apply constraints
 - Stop when we reach a fixpoint

For all instructions \(\text{in}[l] = \text{out}[l] = \emptyset \)

Repeat

For each instruction \(l \)

\[
\text{in}[l] = (\text{out}[l] - \text{def}[l]) \cup \text{use}[l]
\]

\[
\text{out}[l] = \text{in}[\text{succ}(l)]
\]

For each basic block \(B \)

\[
\text{out}[B] = \bigcup_{B' \in \text{succ}(B)} \text{in}[B']
\]

Until no new changes in sets
Example

- **Steps:**
 - Set up live sets for each program point
 - Instantiate equations
 - Solve equations

```
if (c)
x = y+1
y = 2*z
if (d)
x = y+z
z = 1
z = x
```
Example

- Program points

```plaintext
if (c)
  x = y+1
  y = 2*z
  if (d)
    L1
    L5
    L2
    L3
    L4
    L7
    L8
    L9
    L10
    L11
    L12

x = y+z
z = 1
z = x
```
Example

L1 = L2 ∪ {c}
L2 = L3 ∪ L11
L3 = (L4 – {x}) ∪ {y}
L4 = (L5 – {y}) ∪ {z}
L5 = L6 ∪ {d}
L6 = L7 ∪ L9
L7 = (L8 – {x}) ∪ {y,z}
L8 = L9
L9 = L10 – {z}
L10 = L1
L11 = (L12 – {z}) ∪ {x}
L12 = {}
Questions

- Does this terminate?
- Does this compute the right answer?
- How could generalize this scheme for other kinds of analysis?
Generalization

- **Dataflow analysis**
 - A common framework for such analysis
 - Computes information at each program point
 - Conservative: characterizes all possible program behaviors

- **Methodology**
 - Describe the information (e.g., live variable sets) using a structure called a **lattice**
 - Build a system of equations based on:
 - How each statement affects information
 - How information flows between basic blocks
 - Solve the system of constraints
Parts of live variables analysis

- Live variable sets
 - Called *flow values*
 - Associated with program points
 - Start “empty”, eventually contain solution

- Effects of instructions
 - Called *transfer functions*
 - Take a flow value, compute a new flow value that captures the effects
 - One for each instruction – often a schema

- Handling control flow
 - Called *confluence operator*
 - Combines flow values from different paths
Mathematical model

- Flow values
 - Elements of a lattice $L = (P, \subseteq)$
 - Flow value $v \in P$

- Transfer functions
 - Set of functions (one for each instruction)
 - $F_i : P \to P$

- Confluence operator
 - Merges lattice values
 - $C : P \times P \to P$

- How does this help us?
Lattices

- Lattice $L = (P, \subseteq)$
- A partial order relation \subseteq

 Reflexive, anti-symmetric, transitive
- Upper and lower bounds

 Consider a subset S of P

 - Upper bound of S: $u \in S : \forall x \in S \ x \subseteq u$
 - Lower bound of S: $l \in S : \forall x \in S \ l \subseteq x$
- Lattices are complete

 Unique greatest and least elements

 - “Top” $T \in P : \forall x \in P \ x \subseteq T$
 - “Bottom” $\perp \in P : \forall x \in P \ \perp \subseteq x$
Confluence operator

- Combine flow values
 - “Merge” values on different control-flow paths
 - Result should be a safe over-approximation
 - We use the lattice \subseteq to denote “more safe”

- Example: live variables
 - $v_1 = \{x, y, z\}$ and $v_2 = \{y, w\}$
 - How do we combine these values?
 - $v = v_1 \cup v_2 = \{w, x, y, z\}$
 - What is the “\subseteq” operator?
 - Superset
Meet and join

- **Goal:**

 Combine two values to produce the “best” approximation

 - **Intuition:**
 - Given $v_1 = \{x, y, z\}$ and $v_2 = \{y, w\}$
 - A safe over-approximation is “all variables live”
 - We want the smallest set

- **Greatest lower bound**

 - Given $x, y \in P$
 - $\text{GLB}(x, y) = z$ such that
 - $z \subseteq x$ and $z \subseteq y$ and
 - $\forall w \ w \subseteq x$ and $w \subseteq y \Rightarrow w \subseteq z$
 - **Meet** operator: $x \land y = \text{GLB}(x, y)$

- Natural “opposite”: Least upper bound, **join** operator
Termination

- **Monotonicity**
 Transfer functions F are *monotonic* if
 - Given $x, y \in P$
 - If $x \subseteq y$ then $F(x) \subseteq F(y)$
 - Alternatively: $F(x) \subseteq x$

- **Key idea:**
 Iterative dataflow analysis terminates if
 - Transfer functions are monotonic
 - Lattice has finite height
 - *Intuition*: values only go down, can only go to bottom
Example

- Prove monotonicity of live variables analysis
 - Equation: \(\text{in}[i] = (\text{out}[i] - \text{def}[i]) \cup \text{use}[i] \)

 \((\text{For each instruction } i)\)
 - As a function: \(F(x) = (x - \text{def}[i]) \cup \text{use}[i] \)
 - Obligation: If \(x \subseteq y \) then \(F(x) \subseteq F(y) \)
 - Prove:
 \[x \subseteq y \implies (x - \text{def}[i]) \cup \text{use}[i] \subseteq (y - \text{def}[i]) \cup \text{use}[i] \]
 - Somewhat trivially:
 - \(x \subseteq y \Rightarrow x - s \subseteq y - s \)
 - \(x \subseteq y \Rightarrow x \cup s \subseteq y \cup s \)
Dataflow solution

- **Question:**
 - What is the solution we compute?
 - Start at lattice top, move down
 - Called greatest *fixpoint*
 - Where does approximation come from?
 - Confluence of control-flow paths

- **Ideal solution?**
 - Consider each path to a program point separately
 - Combine values at end
 - Called *meet-over-all-paths* solution (MOP)
 - When is the fixpoint equal to MOP?
Dataflow solution

- **Question:**
 - What is the solution we compute?
 - Start at lattice top, move down
 - Called greatest *fixpoint*
 - Where does approximation come from?
 - Confluence of control-flow paths

- **Knaster Tarski theorem**
 - Every monotonic function F over a complete lattice L has a unique least (and greatest) fixpoint
 - (Actually, the theorem is more general)
Composition of functions

Consider if-then-else graph

- If we compute each path:
 - \(\text{in} = F_4(F_2(F_1(\text{out}))) \)
 - \(\text{in} = F_4(F_3(F_1(\text{out}))) \)

- Two solutions

 MOP:
 - \(\text{in} = F_4(F_2(F_1(\text{out}))) \land F_4(F_3(F_1(\text{out}))) \)

 Fixpoint:
 - Merge live vars before applying \(F_4 \)
 - \(\text{in} = F_4(F_2(F_1(\text{out})) \land F_3(F_1(\text{out}))) \)

- When are these two results the same?
 - When the transfer functions are **distributive**
 - Prove: \(F(x) \land F(y) = F(x \land y) \)
Summary

- Dataflow analysis
 - Lattice of flow values
 - Transfer functions (encode program behavior)
 - Iterative fixpoint computation

- **Key insight:**

 If our dataflow equations have these properties:
 - Transfer functions are monotonic
 - Lattice has finite height
 - Transfer functions distribute over meet operator

 Then:
 - Our fixpoint computation will terminate
 - Will compute meet-over-all-paths solution