Blockchain and Cryptocurrencies

Background
Virtual money

- money = something that I believe has value because I believe that others believe has value
- no inherent value, only ability to exchange
- usually this collective hallucination ("consensus") starts from a trusted authority
- in cryptocurrencies: decentralized consensus, possible without trusted authority
Ethereum hits a fresh record high and is up over 13,000% in a year

- The price of ethereum hit an all-time high of $1,417.38 on Wednesday, according to CoinDesk
- The cryptocurrency's price is up around 60 percent in the last week
- Steven Nerayoff, a co-creator of ethereum, said it could "easily" double or triple this year

Arjun Kharpal | @ArjunKharpal
Published 3:15 AM ET Wed, 10 Jan 2018 | Updated 9:56 AM ET Wed, 10 Jan 2018
Cryptography for our Purposes

Two main functions:

- unforgeable signatures, identification
- publication of boxes with locks that only I can open
 - an infinite number of boxes, of all possible sizes, can fit other boxes inside

“Have” = “Know”
Blockchain

A decentralized ledger of transactions
 • maintained by untrusted peers

Continuously expanding chain of blocks
 • longest chain is accepted as valid

Peers collect transactions, try to form new block
 • by mining: solving a crypto-puzzle (proof of work)
 • reward for solver ("miner")

Peers accept the block if transactions consistent

Blocks sign previous ones
Example Structure
Main novelty: smart contracts
• complete programs, persistently on the blockchain
• accounts managed by smart contracts
• can call into them, starts a transaction

Gas: fee paid for running them
• translated in Ether (the Ethereum currency)
• bounded/hard coded
Security Threats

Digital currency Ethereum is cratering because of a $50 million hack

The value of the digital currency Ethereum has dropped dramatically amid an apparent huge attack targeting an organisation with huge holdings of the currency.

The price per unit dropped to $15 from record highs of $21.50 in hours, with millions of units of the digital currency worth as much as $50 million stolen at post-theft valuations.

At a pre-theft valuation, it works out as a staggering $79.6 million.
Security

Parity's $280m Ethereum wallet freeze was no accident: It was a HACK, claims angry upstart

And we have evidence to prove it, says biz stiffed out of $1m

By Iain Thomson in San Francisco 10 Nov 2017 at 22:40
contract SimpleDAO {
 function withdraw(uint amount) {
 if (credit[msg.sender] >= amount) {
 msg.sender.call.value(amount)();
 credit[msg.sender] -= amount;
 }
 }
}
DAO Hack

contract SimpleDAO {
 function withdraw(uint amount) {
 if (credit[msg.sender] >= amount) {
 msg.sender.call.value(amount)();
 credit[msg.sender] -= amount;
 }
 }
}

contract Attack {
 ... function() { dao.withdraw(10); } ...
}
Gigahorse Decompiler

Go to http://contract-library.com
EVM Bytecode Decompilation is Hard!

- Ethereum vs. JVM/CIL bytecode
 - No data structures, objects, methods or types
 - Stack depth can be different under different control flow paths
 - All control-flow edges (jumps) are variables, not constants
 - All functions of a contract are fused in one (jumps transfer control)
Decompilation: Stratification Points

1. Whole contract ctx & flow sensitive analysis

2. Function extraction algorithms

3. Function argument inference with flow sensitive analysis

Original Bytecode

Whole program 3 address IR + CFG

3 address IR + function bounds + local CFGs

Functional 3-address code

Smart Contract Static Analysis
Large-Scale Recursion

CFG

Reachability

BBlock Summaries

BBlock Inputs

BBlock Outputs
Heuristics: Functions That Return

PUSH4 <return> // return address
PUSH4 0xFF // push data
PUSH4 <foo> // function address
JUMP // jumps to ‘foo’

return: JUMPDEST

...

foo: JUMPDEST

POP // pops data
JUMP // jumps to ‘return’
Heuristics: Functions That Return

PUSH4 <return> // return address
PUSH4 0xFF // push data
PUSH4 <foo> // function address
JUMP // jumps to 'foo'

return: JUMPDEST

...
...

foo: JUMPDEST
POP // pops data
JUMP // jumps to 'return'

Detect flows of Return addresses
Heuristics: Finding More Functions

\[i = 1. \]
\[
\text{do } \{
\text{InFunction}_i(block, block) \leftarrow \text{FunctionEntry}_{i-1}(block). \\
\text{InFunction}_i(next, func) \leftarrow \\
\quad \text{InFunction}_i(block, func), \text{BlockEdge}(block, next), \\
\quad \text{!FunctionCall}_{i-1}(block, next), \text{!Function Exit}(block). \\
\]
\[
\text{FunctionCall}_i(prev, block), \text{FunctionEntry}_i(block) \leftarrow \\
\quad \text{InFunction}_i(block, f1), \text{InFunction}_i(block, f2), f1 \neq f2, \\
\quad \text{BlockEdge}(prev, block), \text{!Function Exit}(prev), \\
\quad \text{!InFunction}_i(prev, f1), \text{!InFunction}_i(prev, f2). \\
\]
\[i = i + 1. \]
\} \text{until fixpoint(FunctionEntry)} \]
Output IR After Function Arg Inference

```plaintext
private 0xa3b (va1, va2, va3) → (int4, int16)
    f1 := CONST 0xa4b
    ret := CONST 0x3f
    v1, v2 := CALLPRIVATE(f1, ret, va2)
    r1 := SHA3(va2, va3)
    RETURNPRIVATE va1, r1, v1;
}
private 0xa4b(va1, va2) → (int4, int16)
    ...
}
```
Implementation

- A few (<5) KLoC of Datalog
- Decompiles 99.9% of entire Ethereum blockchain in 2 hours