
1

In Defense of Soundiness: A Manifesto

Ben Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh
Evan Chang, Sam Guyer, Uday Khedker, Anders Møller, and Dimitrios Vardoulakis
Microsoft Research, Samsung Research America, University of Athens, University of Waterloo, University of Alberta,

University of Colorado Boulder, Tufts University, IIT Bombay, Aarhus University, Google

Static program analysis is a key component of many software development tools, including compilers, development

environments, and verification tools. Practical applications of static analysis have grown in recent years to include tools by

companies such as Coverity, Fortify, GrammaTech, IBM, and others. Analyses are often expected to be sound in that their result

models all possible executions of the program under analysis. Soundness implies that the analysis computes an over-

approximation in order to stay tractable; the analysis result will also model behaviors that do not actually occur in any program

execution. The precision of an analysis is the degree to which it avoids such spurious results. Users expect analyses to be sound

as a matter of course, and desire analyses to be as precise as possible, while being able to scale to large programs.

Soundness would seem essential for any kind of static program analysis. Soundness is also widely emphasized in the academic

literature. Yet, in practice, soundness is commonly eschewed: we are not aware of a single realistic whole-program1 analysis tool

(e.g., tools widely used for bug detection, refactoring assistance, programming automation, etc.) that does not purposely make

unsound choices. Similarly, virtually all published whole-program analyses are unsound and omit conservative handling of

common language features when applied to real programming languages.

The typical reasons for such choices are engineering compromises: implementers of such tools are well aware of how they could

handle complex language features soundly (e.g., by assuming that a complex language feature can exhibit any behavior), but do

not do so because this would make the analysis unscalable or imprecise to the point of being useless. Therefore, the dominant

practice is one of treating soundness as an engineering choice.

In all, we are faced with a paradox: on the one hand we have the ubiquity of unsoundness in any practical whole-program analysis

tool that has a claim to precision and scalability; on the other, we have a research community that, outside a small group of

experts, is oblivious to any unsoundness, let alone its preponderance in practice.

Our observation is that the paradox can be reconciled. The state of the art in realistic analyses exhibits consistent traits, while

also integrating a sharp discontinuity. On the one hand, typical realistic analysis implementations have a sound core: most

common language features are over-approximated, modeling all their possible behaviors. Every time there are multiple options

(e.g., branches of a conditional statement, multiple data flows) the analysis models all of them. On the other hand, some specific

language features, well known to experts in the area, are best under-approximated. Effectively, every analysis pretends that

perfectly possible behaviors cannot happen. For instance, it is conventional for an otherwise sound static analysis to treat highly-

dynamic language constructs, such as Java reflection or eval in JavaScript, under-approximately. A practical analysis, therefore,

may pretend that eval does nothing, unless it can precisely resolve its string argument at compile time.

We introduce the term soundy for such analyses. The concept of soundiness attempts to capture the balance, prevalent in

practice, of over-approximated handling of most language features, yet deliberately under-approximated handling of a feature

subset well recognized by experts. Soundiness is in fact what is meant in many papers that claim to describe a sound analysis. A

soundy analysis aims to be as sound as possible without excessively compromising precision and/or scalability.

Our message here is threefold:

1. We bring forward the ubiquity of, and engineering need for, unsoundness in the static program analysis practice. For static

analysis researchers, this may come as no surprise. For the rest of the community, which expects to use analyses as a black

box, this unsoundness is less understood.

1 We draw a distinction between whole program analyses, which need to model shared data, such as the heap, and modular analyses--e.g., type
systems. Although this space is a continuum, the distinction is typically well-understood.

2

2. We draw a distinction between analyses that are soundy---mostly sound, with specific, well-identified unsound choices---

and analyses that do not concern themselves with soundness.

3. We issue a call to the community to identify clearly the nature and extent of unsoundness in static analyses. Currently, in

published papers, sources of unsoundness often lurk in the shadows, with caveats only mentioned in an off-hand manner in

an implementation or evaluation section. This can lead a casual reader to erroneously conclude that the analysis is sound.

Even worse, elided details of how tricky language constructs are handled could have a profound impact on how the paper's

results should be interpreted, since an unsound handling could lead to much of the program's behavior being ignored

(consider analyzing Eclipse without understanding at least something about reflection; most of the program will likely be

omitted from analysis).

Unsoundness: Inevitable and, Perhaps, Desirable?

The typical (published) whole-program analysis extolls its scalability virtues and briefly mentions its soundness caveats. For

instance, an analysis for Java will typically mention that reflection is handled "as in past work," while dynamic loading will be

(silently) assumed away, as will be any behavior of opaque, non-analyzed code (mainly native code) that may violate the analysis’

assumptions. Similar "standard assumptions" hold for other languages. Indeed, many analyses for C and C++ do not support

casting into pointers, and most ignore complex features such as setjmp/longjmp. For JavaScript the list of caveats grows even

longer, to include the with construct, dynamically-computed fields (called properties), as well as the notorious eval construct.

Can these language features be ignored without significant consequence? Realistically, most of the time the answer is no. These

language features are nearly ubiquitous in practice. Assuming the features away excludes the majority of input programs. For

example, very few JavaScript programs larger than a certain size omit at least occasional calls to eval.

Could all these features be modeled soundly? In principle, yes. In practice, however, we are not aware of a single sound whole-

program static analysis tool applicable to industrial-strength programs written in a mainstream language! The reason is that

sound modeling of all language features usually destroys the precision of the analysis because such modeling is usually highly

over-approximate. Imprecision, in turn, often destroys scalability because analysis techniques end up computing huge results--a

typical modern analysis achieves scalability by maintaining precision, thus minimizing the data sets that it manipulates.

Soundness is not even necessary for most modern analysis applications, however, as many clients can tolerate unsoundness. Such

clients include IDEs (auto-complete systems, code navigation), security analyses, general-purpose bug detectors (as opposed to

program verifiers), etc. Even automated refactoring tools that perform code transformation are unsound in practice (especially

when concurrency is considered), and yet they are still quite useful and implemented in most IDEs. Third-party users of static

analysis results---including other research communities, such as software engineering, operating systems, or computer

security --- have been highly receptive of program analyses that are unsound, yet useful.

Evaluating Sources of Unsoundness by Language

While an unsound analysis may take arbitrary shortcuts, a soundy analysis that attempts to do the right thing faces some

formidable challenges. In particular, unsoundness frequently stems from difficult-to-model language features. In the table below

we list some of the sources of unsoundness, which we segregate by language.

All features listed in the table can have

significant consequences on the program, yet

are commonly ignored at analysis time. For

language features that are most often ignored in

unsound analyses (reflection, setjmp/longjmp,

eval, etc.), more studies should be published to

characterize how extensively these features are

used in typical programs and how ignoring these

features could affect standard program analysis

Language Examples of commonly
ignored features

Consequences of not modeling
these features

C/C++ setjmp/longjmp ignored ignores arbitrary side-effects to
the program heap effects of pointer arithmetic

“manufactured” pointers

Java/C# Reflection can render much of the codebase
invisible for analysis

JNI “invisible” code may create
invisible side-effects in programs

JavaScript eval, dynamic code loading missing execution

data flow through the DOM missing data flow in program

3

clients. Recent work analyzes the use of eval in JavaScript. However, an informal email and in-person poll of recognized experts

in static and runtime analysis failed to pinpoint a single reliable survey of the use of so-called dangerous features (pointer

arithmetic, unsafe type casts, etc.) in C and C++.

Clearly, an improved evaluation methodology is required for these unsound analyses, to increase the comparability of different

techniques. Perhaps, benchmarks or regression suites could be assembled to measure the effect of unsoundness. While further

work is required to devise such a methodology in full, we believe that, at the least, some effort should be made in experimental

evaluations to compare results of an unsound analysis with observable dynamic behaviors of the program. Such empirical

evaluation would indicate whether important behaviors are being captured. It really does not help the reader for the analysis’

author to declare that their analysis is sound modulo features X and Y, only to discover that these features are present in just

about every real-life program! For instance, if a static analysis for JavaScript claims to be “sound modulo eval”, a natural question

to ask is whether the types of input program this analysis expects do indeed use eval in a way that is highly non-trivial.

Moving Forward

We strongly feel that

 The programming language (PL) research community should embrace soundy analysis techniques and tune its soundness

expectations. The notion of soundiness can influence not only tool design but also that of programming languages or type

systems. For example, the type system of TypeScript is unsound, yet practically very useful for large-scale development.

 Soundy is the new sound; de facto, given the research literature of the past decades.

 Papers involving soundy analyses should both explain the general implications of their unsoundness and evaluate the

implications for the benchmarks being analyzed.

 As a community, we should provide guidelines on how to write papers involving soundy analysis, perhaps varying per input

language, emphasizing which features to consider handling--or not handling.

