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Abstract

We present and evaluate the idea of adaptive processor
cache management. Specifically, we describe a novel and
general scheme by which we can combine any two cache
management algorithms (e.g., LRU, LFU, FIFO, Random)
and adaptively switch between them, closely tracking the
locality characteristics of a given program. The scheme
is inspired by recent work in virtual memory management
at the operating system level, which has shown that it is
possible to adapt over two replacement policies to provide
an aggregate policy that always performs within a constant
factor of the better component policy. A hardware imple-
mentation of adaptivity requires very simple logic but dupli-
cate tag structures. To reduce the overhead, we use partial
tags, which achieve good performance with a small hard-
ware cost. In particular, adapting between LRU and LFU
replacement policies on an 8-way 512KB L2 cache yields
a 12.7% improvement in average CPI on applications that
exhibit a non-negligible L2 miss ratio. Our approach in-
creases total cache storage by 4.0%, but it still provides
slightly better performance than a conventional 10-way set-
associative 640KB cache which requires 25% more storage.

1. Introduction
The rapidly increasing gap between the relative speeds of
processor and main memory has made the need for ad-
vanced caching mechanisms more intense than ever. Pro-
cessor performance is now crucially determined by the
amount of memory accesses served from on-chip caches,
as the cost of access to RAM has grown to hundreds of cy-
cles. In response to the need for better caching, computer
architects have extensively explored the directions of ex-
panding the cache size or hiding latency through sophisti-
cated prefetching and out-of-order execution. Compared to
such techniques, there has been relatively little recent work
on improving cache replacement algorithms. Indeed, the
implicit assumption seems to be that LRU is good enough,
and that there is little one can do to increase cache hit rates
for a given size without adding expensive processing to the

cache reference handling critical path.
In this paper, we show that more sophisticated cache re-

placement algorithms exist and can substantially improve
performance. Following up on our recent work in virtual
memory management at the operating systems level [22],
we present and evaluate the idea of adaptive cache man-
agement for use in microprocessor on-chip caches. Adap-
tive cache management consists of observing the behavior
of two (or more) replacement algorithms, such as LRU and
LFU, and then mimicking the behavior of the better per-
forming policy. This work is based on a theoretical founda-
tion that guarantees that our adaptive replacement algorithm
never does worse than the better of the two component poli-
cies by more than a constant factor. In practice, our adap-
tive cache management accurately tracks the better of the
two component policies, and in some cases adaptation can
exploit differences in program phases to provide better per-
formance than either policy in isolation.

Our adaptive cache management is a general idea that
can be applied to any two cache replacement algorithms.
The implementation logic turns out to be remarkably simple
and the adaptivity actions are all performed off the critical
path of memory reference handling. With an optimization
that maintains only partial instead of full tags, the hardware
overhead of adaptive caching can be reduced to 4.0% of
the cache size for a 64-byte cache line size and 2.1% for
a 128-byte cache line size, including the algorithm-specific
per-entry overhead of the component replacement policies.

We evaluate the benefit of adaptive caching with a very
extensive suite of programs (100 in total). Our goal is to
show that over a wide range of program behaviors, our ap-
proach yields significant benefit, especially in cases of in-
tense cache activity. Nevertheless, an equally important
consideration is to show that adaptive caching never hurts
performance by more than a negligible amount, even in the
case of applications with less intense cache activity. We
demonstrate that adaptive cache management can provide
significant benefits in both miss rate reduction and overall
performance improvement. Specifically, our results show
that an LRU/LFU adaptive cache reduces the average L2
misses over all 100 benchmarks by about 19%. For the 26



programs with non-negligible L2 miss rates, the reduction
in cache misses translates in a reduction of the average CPI
by 12.9%. Adaptive caching never hurts performance by
more than about 1% in the worst case for any of the 100
programs.

In the rest of the paper, we first describe the idea and
principles of adaptive caching (Section 2). Then we discuss
the hardware implementation (Section 3) and present the
results of our evaluation (Section 4). A discussion of related
work and our conclusions follow.

2. Adaptive Caching Principles
In this section, we discuss the general idea of adaptive re-
placement and how it can be applied to a processor’s on-
chip caches.

2.1. Adaptive Cache Design
The main reason for adaptive caching is that different work-
loads have better cache behavior under different replace-
ment algorithms. Consider standard replacement policies
such as LRU (Least Recently Used), MRU (Most Recently
Used), FIFO (First-In, First-Out), or LFU (Least Frequently
Used) used to manage each set of a set-associative cache.
Traditional code that manipulates scattered data with good
temporal locality performs almost optimally with LRU and
fairly well with FIFO, yet causes LFU to underperform.
In contrast, a linear loop slightly larger than the cache is
bad for a set-associative, LRU-managed cache. In fact, the
higher the associativity the more likely it becomes for LRU
to produce bad behavior for linear loops. Finally, LFU is
ideal for separating large regions of blocks that are only
used once from commonly accessed data—a common pat-
tern in media-management applications.
2.1.1. Hardware Structures
The goal of adaptive caching is to switch on-the-fly between
two policies, in order to imitate the one that has been per-
forming better on recent memory accesses. To do this, the
adaptive cache needs to maintain some more information
than a traditional cache. Specifically, our adaptive cache de-
sign has two extra elements (shown in Figure 1) compared
to traditional caches.

The first additional structure is a set of parallel tag ar-
rays that reflect the cache contents of each of the component
policies A and B being adapted over. That is to say, each of
these tag arrays tracks what would have been in the cache if
only that one component policy was used. The parallel tag
structures for the component policies have the same num-
ber of sets and set associativity as the regular tag array of
the adaptive cache. Note that, even though the parallel tag
structures register which blocks would be in the cache for
each of the component policies, there is no record of the
data contained in these blocks.
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Figure 1. The basic hardware organization of an
adaptive cache. The additional components re-
quired for the technique are grouped on the left.

The second additional structure is a per-set miss history
buffer. For each cache set, the miss history buffer repre-
sents the past performance of the component replacement
algorithms. Whenever a memory access misses in the real
adaptive cache, the adaptive algorithm examines the miss
history buffer for the appropriate cache set and chooses to
imitate the component policy that has suffered fewer misses
according to the miss history.

There are many possible implementations of a miss his-
tory buffer. The easiest to reason about (i.e., prove theo-
rems) is one that keeps counters of all misses so far for both
component policies. Maintaining a count of all misses since
the beginning of time would require a large counter, which
is neither realistic nor likely to adapt quickly to program be-
havior. Saturating counters could also be used as an approx-
imation. In our implementation, we use a slightly different
approach for quicker adaptation to recent program behav-
ior. We keep a bit-vector of m bits, recording the latest m
misses when only one of the two (but not both) component
policies misses. (If both component policies would have
missed, then there is no need to record this in the history.)
For each such miss, the buffer’s bit indicates whether it was
a miss for the first or the second component policy. We set
the parameter m to be equal to the cache associativity (e.g.,
8 for a 8-way cache) or a small multiple of it.

The parallel tag arrays and the miss history buffers can
cause the overall size of the cache to increase quite consid-
erably. The rest of this section will continue to assume this
full overhead, and we will then explain how to reduce this
overhead to acceptable levels in Section 3.

2.1.2. The Replacement Algorithm
On every memory block reference, we update the paral-
lel tag structures by emulating the behavior of component
caches A and B for that reference. We also update the miss
history buffer of the corresponding cache set. If the refer-
ence misses the cache, then we use the adaptive replacement
logic detailed in Algorithm 1.

Note that on a cache lookup, the original tag and data
arrays (in the right side of Figure 1) remain unmodified and



therefore the adaptive policy has no impact on the overall
cache access latency. The access of the parallel tag arrays,
the miss history buffer, and updating these structures can
occur in parallel with the original cache lookup and may
even have a longer latency (see Section 3.3).

Algorithm 1 Algorithm for adaptive block replacement.
if ( misses(A) > misses(B) ) // if A missed more than
{ // B in history buffer

// then imitate B
if(B missed AND the block it evicts is in adapt. cache)

adaptive cache evicts the same block B evicts
else

adaptive cache evicts any block not in B
// such a block is guaranteed to exist, since, in this
// case, B’s cache contents are different from those
// in the adaptive cache and the two caches have
// the same size.

}
else // B missed more than A

Same as above, but with B replaced by A

2.1.3. An Example
The above definition of adaptivity is independent of the
two component policies. Figure 2 illustrates the adaptive
cache’s behavior in a specific example. The figure shows a
single set of the adaptive cache and its 4 entries. We rep-
resent the addresses of cache blocks with capital letters for
ease of reference. In this example, we also assume for sim-
plicity that the history buffer consists of two miss counters,
storing the number of misses ever suffered by each of the
component policies. The adaptive cache keeps track of the
contents of both of its component policies. After the four
initial references, all caches have the same contents and the
miss counts of both component policies are equal to 4. The
next reference, to block “D”, causes evictions. The adaptive
cache chooses to imitate policy A, since both component
policies have the same number of misses. The subsequent
reference to block “B”, however, is a miss only for policy A,
causing the adaptive cache to start imitating policy B.1 For
this to happen, the adaptive cache needs to find a block that
policy B does not currently store—effectively trying to im-
itate policy B’s cache contents. Thus, block “A” is evicted.
Subsequently, the reference to block “C” causes an eviction
only for policy A, confirming that the adaptive cache cor-
rectly picked in the previous step and reinforcing its choice
of policy B. Finally, block “G” is referenced. Policy B still
has the fewest misses and, furthermore, the contents of the
adaptive cache are now identical to that of policy B’s cache,

1To keep the example brief, we assume that the current miss is counted
in the consideration of which component policy performs best. This does
not have to be the case in an implementation.
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Figure 2. Example adaptive cache behavior.

therefore the adaptive cache replaces whichever block pol-
icy B replaces.

2.2. Theoretical Guarantees

Interestingly, it is possible to prove that our adaptive algo-
rithm fairly closely imitates the better of its two component
algorithms. In the domain of virtual memory, our previ-
ously published adaptive algorithm [22] was proven to in-
cur at most three times as many faults as the best of the
component algorithms. This algorithm is quite similar to
our cache adaptivity logic and all the proofs can be easily
adapted to our set associative domain. The complete proof
of the bound on the number of misses can be found in the
Appendix. The main theoretical result bounds the number
of misses of our adaptive policy to twice (or three times,
depending on the exact version of adaptivity) the misses
of the best of the component policies. In fact, our current
theoretical result improves on our earlier ones. Whereas
we previously only proved a bound of two for a simplified
adaptive algorithm and a bound of three for the realistic al-
gorithm, we now manage to prove a bound of two for a real-
istic version of adaptivity: one that keeps integer counts of
past misses in order to pick the best component algorithm.

Of course, in practice we want our policy to match or
outperform the best component policy, rather than just be
within a factor of 2 of its misses. (This is indeed what our
experiments later show.) Yet the 2x bound has three nice
properties. First, it is good to have a worst-case guarantee,
to bound how much the adaptivity can be “fooled.” Second,
the guarantee is often sufficient to ensure a performance
benefit, since one component algorithm may be vastly better
than the other for some program behaviors and vastly worse
for others. Third, the bound is on the misses of the adaptive
policy relative to the best component policy for every set.
Thus, if the best component policy changes from one set of
the cache to the other, the adaptive policy will outperform
both component policies overall just by selecting the better
one for every set.



3. Efficient Hardware Implementation
We next discuss hardware implementation considerations of
adaptive caching.

3.1. Partial Tags
As described, our adaptive caching mechanism can poten-
tially increase the implementation overhead of a cache by a
significant amount. For example, an 8-way set associative
512KB L2 cache with 64-byte cache lines requires about
32KB of additional storage for tags and other meta-data
for a total SRAM storage requirement of 544KB.2 Imple-
menting two additional tag arrays at 28KB each,3 plus the
miss history buffers at 1KB (8 bits per set), minus 3KB
to avoid double-counting the LRU state (we do not need
to replicate the LRU meta-data in both the main tag array
and the component array) increases the total SRAM stor-
age requirement to ∼598KB (+9.9%). An adaptive cache
that employed all of this hardware would need to pro-
vide a significant performance gain to justify the substan-
tial overhead. Furthermore, the adaptive cache must also
provide more benefit than could be had with conventional
approaches such as increasing the size and/or associativity
of the cache. For example, a 9/10-way set associative cache
provides 576KB/640KB of data at a cost of 612KB/680KB
total storage for data and tags (+12.5/25.0%) which can re-
duce both capacity and conflict misses.

The key insight that enables a practical adaptive cache is
the observation that a replacement policy is merely a heuris-
tic used to (hopefully) improve performance, but the choice
of policy has no bearing on the correctness of the processor.
In the same way that branch predictors do not always pro-
vide a correct branch prediction, a given replacement policy
will not always choose the optimal cache line to evict. This
implies that any modification to the adaptive replacement
scheme is acceptable in that the processor will still perform
correctly, and that enables us to explore simplifications and
approximations that yield better tradeoffs between perfor-
mance and overhead.

In our design, we reduce this overhead by employing
partial tags [12]. Traditional partial tagging serially com-
pares disjoint portions of the tag for fast miss determination,
but the entire tag is still maintained. Instead of keeping the
entire tag in our parallel tag arrays, we can keep a subset of
the tag bits [5], typically the low-order bits of the tag or a
combination (e.g., XOR of bit groups). The size of this par-
tial tag needs to be chosen such that the tag contains enough
information to make conflicts/aliasing rare. Recall that the

28K cache lines, with about 32 bits each (24 for tags assuming a 40-
bit physical address + 8 for LRU, valid, dirty and coherence bits, etc.) =
32KB.

3The additional tag arrays do not require as many meta-data bits (e.g.,
no valid, dirty, or coherence bits), which leaves 24 bits for tags + 4± bits
for policy-specific meta-data, e.g., LRU ordering or LFU counts.

parallel tag structures are used to answer the question “what
would each component cache contain at this point in the ex-
ecution?” in order to enable the adaptive cache to emulate
either component policy. If the answer is correct most of the
time, minor inaccuracies should affect performance very lit-
tle.

Using partial tags slightly changes the behavior of the
overall adaptive replacement policy. Recall that in the defi-
nition of adaptive caching, part of the algorithm is stated as
“evict a block that is not in cache A/B.” (The contents of
cache A and B are reflected in the parallel tag structures.)
We previously asserted that such blocks are guaranteed to
exist. Indeed, in the case of full tags, if no such block ex-
ists, the contents of the adaptive cache are identical to those
of the corresponding component cache, and one of the other
branches of the decision logic would be taken. In the case
of partial tags, however, the check for tag equality between
blocks in the adaptive cache and in the (partial) parallel tag
structures may succeed even though the original block in
the component cache is different. For example, the actual
cache may contain block “X”, and with full tags, the pol-
icy would choose to evict “X” because it is not present in a
cache with policy A (suppose A contains the cache line “Y”
instead). However, if the partial tag for “X” is equal to the
partial tag for “Y”, then the adaptive policy may not be able
to find a “block that is not in cache A.” This case is rare,
but if it occurs the adaptive cache simply picks an arbitrary
block to evict.

3.2. Storage Requirements
By employing partial tags, we can drastically reduce the
overhead for the parallel tag arrays. For example, with 8-
bit partial tags, the total storage requirements for the same
512KB cache discussed earlier is now reduced from 598KB
down to only 566KB (+4.0% over a conventional 512K
cache).4 For a 128-byte cache line size [11], the overhead
is reduced to only 2.1%. For the small amount of additional
storage needed for our adaptive scheme, it is not even possi-
ble to add an extra way to the cache. Using these additional
bits to add more sets would not be practical either, because
that would make the total number of sets to not be a power-
of-two.

Counting bits is only an approximation of the area and
transistor overhead. Our parallel tag arrays can be im-
plemented with somewhat less overhead due to reduced
port requirements. The main tag array needs an extra
port for snooping to maintain cache coherence in a multi-
processor/multi-core environment. However, our parallel
tag arrays can be implemented without support for snoop-
ing, which reduces the area, latency and power require-

4Each of the parallel tag arrays has been reduced from 28KB down to
12KB (1K sets × 8 ways × 12 bits for an 8-bit partial tag and four more
bits for policy-specific meta-data).



ments of our technique. As a result, the parallel tag may
report that a given cache line is present when it has been
invalidated, but this only causes the replacement policy to
deviate slightly from an implementation that accounted for
coherence invalidations. This is likely to have very little im-
pact on performance and provides a much greater benefit in
reducing the hardware overhead of the extra tag arrays.

The small area overhead for the extra logic and state of
our adaptive architecture is also a first-order approximation
of its power overhead. Nevertheless, our approach can pro-
vide a substantial reduction in off-chip memory accesses
that consume a substantial amount of power. Other mitigat-
ing factors include the fact that the adaptivity logic is only
activated on accesses to the L2 cache, and that the timing of
the adaptivity logic is off the critical path of the L2 cache
and therefore can be implemented with lower-power and/or
less leaky transistors. Thus, overall, we consider it unlikely
that power will be a concern, or even a net overhead.

3.3. Timing

When accessing the adaptive cache, the processor accesses
the primary components (right side of Figure 1) in the same
fashion as a conventional non-adaptive cache. The adaptive
cache must also access the parallel tag structures, but this
can occur in parallel and off of the critical path of the main
cache lookup. In the case of a cache hit, the adaptive cache
returns the data with the same latency as the conventional
cache, and the tag array (replacement policy) updates can
complete without slowing down the corresponding memory
instruction. The bookkeeping for the adaptive policy does
not prevent the miss from initiating a fill request from the
next level of the memory hierarchy either.5

The cache applies the adaptivity logic only in the case of
a miss and entails choosing the component algorithm to im-
itate and searching in the set for the block to replace. Even
though the decision and search will incur some overhead,
the actions take place in parallel with fetching the missed
data and should not be a bottleneck. The most involved part
of adaptivity is the search for a block that is in the adaptive
cache but not in one of the component caches. For reason-
ably low associativity caches (4-way or 8-way) this search
can be implemented in parallel efficiently with only a small
amount of hardware. In practice, this search can be made
easier by taking advantage of the properties of the specific
component policies: for instance, when adapting over LRU,
the adaptive cache can keep a recency order and evict the
least recent block when it wants to imitate LRU, instead of
checking which block is not in the LRU tag structure.

5Depending on the implementation of the eviction/writeback buffers,
an entry can be pre-reserved before the actual evictee has been determined
to prevent deadlocking the buffers and queues of the hierarchy.

Instruction Cache 16KB, 64B line-size, 4-way LRU, 2 cycles
Data Cache 16KB , 64B line-size, 4-way LRU, 2 cycles
Branch Predictor 16KB gshare/16KB bimodal/16KB meta;

4K-entry, 4-way BTB
Decode/ Issue 8-wide; 32 RS entries, 64 ROB entries
Execution units 4 Integer ALUs, 4 Integer Mult/Div,

4 FP ALUs, 4 FP Mult/Div, 2 Memory ports
Execution unit IALU (1), IMULT/IDIV (8), FPADD (4),
latencies FPDIV (16)
Unified L2 Cache 512KB, 64B - line size, 8-way with

adaptive LRU/LFU replacement,
history buffer size m = 8, 5-bit LFU counters,
15 cycle hit latency, 4-entry store buffer

Memory 120 cycle latency
Bus 8B-wide split-transaction bus;

processor to bus frequency ratio 8:1

Table 1. Simulated processor configuration.

4. Evaluation
We evaluated adaptive caching primarily using an
LRU/LFU combination. This yielded significant perfor-
mance improvement over a wide range of benchmarks.

4.1. Workloads and Experimental Settings
We use cycle-level simulation to evaluate the performance
of adaptive caching. Specifically, we use the MASE sim-
ulator [13] from the SimpleScalar toolset [2] for the Alpha
instruction set architecture. We made modifications to more
accurately model the cost of memory stores, as the original
simulator effectively assumed an infinite number of store
buffers. Table 1 shows the configuration of the simulated
processor—the settings are quite analogous to other recent
caching studies [18, 19]. We later vary cache configurations
to analyze the sensitivity of our technique to different pro-
cessor configurations. Note that our L2 hit latency is pes-
simistic, which is conservative since it understates the po-
tential performance speedup of our approach.

We simulated 100 applications6 (our extended set) from
many popular benchmark suites: SPECcpu2000 (INT and
FP), MediaBench [14], MiBench [9], BioBench [1], pointer
intensive applications [3], and graphics programs includ-
ing 3D games and ray-tracing. All SPEC applications use
the reference inputs and applications with multiple refer-
ence inputs are listed with different suffixes. We used the
SimPoint 2.0 toolset to choose representative samples of
100 million instructions from these applications [17]. Us-
ing SimPoint avoids simulating non-representative portions
of an application such as start-up and initialization code,
which can sometimes take up the first several billion instruc-
tions of a program’s execution.

Of these 100 programs, we focus our attention on those
for which improvements to the L2 cache are likely to have a
performance impact and use them as the primary set for our

6Some benchmarks have multiple inputs. The number 100 counts each
benchmark×input pair as a separate “application.”
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Figure 3. L2 Misses-per-thousand-instructions (MPKI) for each benchmark in our primary set for the adaptive
policy and its component policies. (Lower is better.)

evaluation. The 26 selected programs are those whose exe-
cution suffers more than one miss per thousand instructions
(MPKI) for a 512KB L2 cache managed with plain LRU.
In the following, when we do not explicitly mention the set
of tested applications, our primary set of 26 applications
should be assumed.

4.2. Main Results
Adaptive caching has the potential to reduce cache misses
and improve overall processor performance. Figure 3 shows
the MPKI rates for each of the 26 applications and the over-
all average in our primary set.7 Note that these results are
for an implementation of adaptive caching with full tags—
we later show that 6-or-more-bit partial tags achieve practi-
cally identical miss rates and performance.

We show the miss rates for our adaptive cache, and the
LRU and LFU component policies. Of particular interest is
the ability of the adaptive cache to accurately track the bet-
ter performing component policy. For example, the lucas
benchmark shows much better miss rates with an LRU pol-
icy, and the adaptive cache achieves a nearly identical rate.
However for art, an LFU policy is superior and our adaptive
scheme accurately adopts this behavior. Overall, adaptive
caching reduces the average MPKI rate of our primary set
by 19.0%.

In a modern out-of-order processor, the impact of miss
rates on overall performance depends on many factors in-
cluding the amount of independent work available to hide
the memory latency (ILP), the degree of overlap of misses
(MLP [8]), the criticality [7] or vitalness [20] of the cache

7Throughout the paper, we present “linear” metrics of performance
cost, such as MPKI and CPI, so that they can be meaningfully averaged
with a simple arithmetic average. For instance, our arithmetic mean of
CPI rates is equivalent to the harmonic mean of IPC, and provides a metric
proportional to overall execution time.

miss, and many other factors. Figure 4 shows the CPI rates
for each program in our primary set and the average CPI
rates. Overall, adaptive caching reduces the average CPI
of these applications by 12.9%. Ten of the executions ben-
efit substantially from using adaptive caching: ammp, art
(2 runs), gcc, mcf, mgrid, twolf, x11quake (2 runs) and
xanim see a CPI improvement of 4% to 60%. The rest of
the programs are never significantly harmed by employing
adaptivity. The maximum CPI deterioration due to adaptive
caching is 1.2% for unepic. This is exactly the desired be-
havior for an adaptive caching mechanism: the mechanism
should be neutral relative to a reasonable baseline, unless it
can derive benefit.

Over all 100 programs (primary set and otherwise), the
reduction in average misses is 18.6%, and the improvement
in average CPI is 8.4%. The reduction in benefit is primarily
due to dilution from many of the traces whose working sets
fit comfortably in a 512KB cache. A program that rarely
misses in our 512KB L2 cache will not derive much bene-
fit from adaptive caching. Yet, our 100-program extended
evaluation set is important for demonstrating the stability of
adaptive caching: adaptivity never increases misses by more
than 2.7% (for the BioBench program tigr) and never hurts
CPI by more than 1.2% (for unepic, as mentioned earlier).

4.3. Partial Tags
Partial tags are necessary to reduce the hardware cost of im-
plementing adaptive caching. At the same time, partial tags
introduce inaccuracies due to false positive matches. Ex-
cessive false positives could make the adaptive cache per-
formance suffer by not accurately tracking the policy that
truly has fewer misses.

We expect such errors to be quite rare with reasonable
length partial tags. For our 8-way cache, we simulated par-
tial tags of 4, 6, 8, 10, and 12 bits, using only the low-order
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bits of the tag (no XOR’ing of tag bits). Figure 5 compares
the miss rate and CPI performance of full tags compared to
partial tags for the 26 programs of our primary set. As Fig-
ure 5 shows, the difference is minimal: under 1% for partial
tags of 6 bits or more. This difference does not affect in a
significant way the benefit of adaptivity we reported earlier.
With 8-bit partial tags we obtain about a 12.7% improve-
ment in average CPI, compared to the 12.9% of full tags.
Inspecting the individual programs’ performance confirms
that partial tags of 8 bits or higher do not distort the per-
formance of adaptivity. 6-bit partial tags also achieve very
good overall performance, however they introduce more
per-benchmark variation. Whereas the maximum CPI de-
terioration for adaptive caching was around 1% with 8-bit
or higher partial tags, with 6-bit partial tags this number
climbs to 4% (for the lucas benchmark).

As discussed earlier in Section 3, using 8-bit partial tags
results in an overall SRAM storage requirement of 566KB
for our adaptive cache. An alternative to dedicating more re-
sources to building an adaptive cache is to implement larger
caches. Figure 6 shows the CPI performance for our adap-
tive cache with full tags, 8-bit partial tags, and conventional
LRU caches with 8-, 9- and 10-way set associativities. Note

that our adaptive cache is only 4.0% larger than the 512KB
8-way cache, whereas the 9-way and 10-way caches are
12.5% and 25% larger, respectively. We can see that for
these applications, it is much more effective to use the ex-
isting resources more intelligently (i.e. use adaptation) than
to blindly increase the size of the cache. With less than one
sixth of the overhead (4.0% vs. 25.0%), our adaptive cache
still performs slightly better (2.8%) than the 10-way 640KB
cache.

4.4. Adaptivity Behavior and Comparison to Other
Replacement Policies

We have already shown how our adaptive caching is able
to accurately mimic the better of two replacement poli-
cies (LRU and LFU). However, on occasion, as for the
ammp benchmark, the adaptive cache outperforms both of
the component LRU and LFU policies, suggesting that each
of them is more appropriate for different cache sets and/or
phases of program execution. That is, the adaptive cache
can track different behaviors temporally across different
phases of a program as well as spatially across the differ-
ent cache sets.

Indeed, ammp’s behavior switches between LFU-
friendly and LRU-friendly during the course of its execu-
tion. Figure 7(a) shows the behavior of all 1024 sets in our
cache for ammp, sampled every one million cycles. A dark
point in the figure indicates that the majority of replace-
ment decisions during that time quantum were LRU, while
a white point corresponds to LFU. As can be seen, there is
a distinct phase at the beginning of execution where both
LFU and LRU are the best replacement policies depending
on the cache set, then from about 34M to 46M cycles, LFU
is dominant, and then finally LRU takes over for the vast
majority of the sets.

The pattern of switching behaviors during execution is
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Figure 8. L2 Misses-per-thousand-instructions
(MPKI) for a policy adapting between FIFO and
MRU. (Lower is better.)

not rare among the tested applications. Similar to ammp,
consider the mgrid benchmark whose behavior is shown
in Figure 7(b). There is a clear pattern of behavior that
favors LFU at first. The extent of the pattern gradually
disappears and eventually the program’s behavior is LRU-
friendly. However, the rate of transition to LFU also varies
spatially per set. The mgrid benchmark handles large 3-
dimensional arrays, but the refernce patterns to the arrays
vary depending on the exact subroutine. The subroutines
such as ZERO3 and NORM2U3 traverse the arrays in a lin-
ear fashion, whereas the subroutine RPRJ3 skips elements
but references all of the neighboring array entries.

We have also experimented with combinations of a few
other standard algorithms, such as FIFO, MRU, and Ran-
dom. These expriments are important for demonstrating the
generality of our adaptivity approach, as well as for explor-
ing the design space. For instance, consider Figure 8, which
shows the misses of an L2 cache adapting between FIFO
and MRU. This is an interesting combination in that MRU
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on its own is typically a very bad replacement algorithm.
Yet for programs with large linear loops, MRU will outper-
form more reasonable policies such as LRU and FIFO. As
can be seen in Figure 8, the adaptive policy tightly tracks
the better of the two component algorithms. MRU is only
beneficial for one of the gcc inputs, as well as for the art
benchmark. For these, the adaptive policy tracks the MRU
behavior.

Across the board, no combination of policies outper-
formed the LRU+LFU adaptivity. Furthermore, we exper-
imented with a generalized version of the adaptive policy
which combined five policies (LRU, LFU, FIFO, MRU, and
Random). Although this is perhaps not a realistic configu-
ration due to its high implementation overhead for five sets
of extra parallel tag arrays (even with partial tags), it is in-
teresting to see the achievable benefit in practice. The com-
bination of all five policies was not clearly superior to just
combining LRU and LFU, however. Although some bench-
marks exhibited improvement, of up to 10% in CPI, oth-
ers experienced an equal loss. The cumulative CPI over
our primary evaluation set was virtually identical to that of
LRU/LFU adaptivity.

4.5. Sensitivity Analysis
We next examine the sensitivity of our adaptive cache to
various parameters and show that it is robust across a range
of design points. In the rest of this section, our sensitivity
results are for configurations using full tags. We do this to
isolate the effects of the parameter under consideration from
effects due to partial tagging. We have also repeated all of
these experiments using 8-bit partial tags and have verified
that the results still hold, but we do not include them here in
the interest of space.
4.5.1. Associativity
In Figure 9 we show how the benefit metrics discussed ear-
lier (improvement in average CPI and reduction of aver-
age misses) vary relative to associativity, over the 26 ap-
plications of our primary evaluation set. All configurations
are for a 512KB cache, and so, for example, the 16-way
cache (indicated by white points in the figure) has only

half as many sets as the baseline 8-way cache. For highly
set-associative caches (16- and 32-way), the relative bene-
fit of the adaptive cache policy increases slightly, indicat-
ing that our technique would be effective for future highly-
associative last-level caches.

4.5.2. Store Buffer Capacity
Out-of-order processors often use store buffers to queue up
cache writeback requests after store instructions have re-
tired from the main processor buffers (e.g., the store queue
and ROB). The store buffer may also perform other func-
tions such as write combining to further enhance perfor-
mance. Figure 10 shows the effect of varying the number of
entries in the store buffer on overall performance (average
CPI improvement over the 26 benchmarks of our primary
set). The benefit of adaptive caching is not only due to read
misses but also due to store buffer stalls. As the number of
store buffer entries increases, processor stalls due to store
buffer contention decreases which reduces the overall num-
ber of opportunities for adaptive caching to provide a ben-
efit. However, more than half of the benefit remains even
for an unrealistically large 256-entry store buffer. The re-
duction in overall performance benefit degrades gracefully
as the store buffer size increases (note that, after 16, the X
axis becomes logarithmically spaced).

4.6. Adaptivity at Other Levels
The idea of adaptive caching can be applied at other lev-
els of the cache hierarchy. We simulated our standard con-
figuration with LRU/LFU adaptive L1 instruction and data
caches. In a 16KB instruction cache, the adaptive approach
reduces the average MPKI rate by about 12%, whereas in
the data cache the miss rate reduction was less than 1%.
This did not result in any meaningful performance improve-
ment (<0.1%) because our out-of-order microarchitecture
can buffer enough instructions to tolerate the occasional in-
struction cache miss, and the L1 data cache is so dominated
by capacity misses where there is not much opportunity for
better replacement policies to help.

4.7. Eliminating the Overheads with Set Sampling
(SBAR)

Although the hardware overheads of our adaptive cache are
low (4.0% for the evaluated version), they can be further
reduced by eliminating the overhead for all but a few sam-
ple sets in the cache. This is the recently proposed Sam-
pling Based Adaptive Replacement (SBAR) technique of
Qureshi, Lynch, Mutlu and Patt [18]. Under SBAR, a small
number of “leader” sets are used to approximate how well
a cache using an alternative policy would have performed.
In fact, Qureshi et al. mentioned the potential of SBAR as
a general technique capable of adapting between any two
policies, and proposed the evaluation of the general case as
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future work. Our evaluation shows that indeed SBAR is
very promising as a general adaptivity technique.

We implemented an SBAR-like adaptive cache in our
simulator, using the same component policies as described
earlier, namely LRU and LFU. Policy-specific meta-data
(e.g., frequency counts or recency information) are kept at
all times for the blocks in the cache. For the leader sets (the
few sample sets used to determine which policy performs
best) the SBAR-like policy is very similar to our regular
adaptive policy. Nevertheless, the SBAR-like cache does
not have duplicate tag structures for the rest of the sets.
Thus, when a decision is made to switch from, e.g., LRU
to LFU, the cache does not have a record of what the con-
tents of the LFU cache would have been at this point in the
execution. Instead, the LFU algorithm begins executing on
the blocks that are currently in the cache, and replaces the
one with the lowest frequency. This means that the SBAR-
like cache does not enjoy the theoretical guarantees of our
adaptivity scheme, and may suffer a few more misses when
switching policies often.

Yet in practice the SBAR-like cache’s performance turns
out to be quite competitive. For the programs in our primary
set, the SBAR-like cache results in a 12.5% improvement
in average CPI while our regular adaptive cache is only
slightly better at 12.9%. As expected, the SBAR-like cache
is a little less robust. We observed two benchmarks where
the regular adaptive cache performed much better than the
SBAR-like cache (9% on ammp and 40% on xanim) and
the SBAR-like cache never performed much better (at most
4.4% on twolf). However, the SBAR-like cache’s hardware
overhead is just 0.16% compared to 11.8% for an adaptive
cache with full tags, and 4.0% for an adaptive cache with
8-bit partial tags.

For even further benefits, the set sampling and partial
tags techniques can be combined. When the leader sets of
the SBAR-like policy make use of 8-bit partial tags, the per-
formance is nearly identical to the original SBAR-like con-
figuration and the overhead has been reduced to a miniscule

0.09%. Our evaluation over a larger set of benchmarks for
both the basic adaptive cache and the SBAR-variant pro-
vides very strong evidence for the value of adaptive replace-
ment policies for on-chip caching.

5. Related Work
There is clearly much work on improving cache perfor-
mance for modern microarchitectures. We next selectively
discuss only representative recent work or work particularly
related to ours, and compare to our adaptive caching when
possible.

The closest relatives of our work are our past research
on adaptivity in virtual memory systems [22] and the recent
work of Qureshi, Lynch, Mutlu and Patt [18].

Adaptive replacement algorithms in virtual memory sys-
tems [22] are algorithmically quite similar to our hardware
scheme and offer the inspiration for stating our algorithm
in its general form and proving theoretical bounds about it.
The adaptive virtual memory management scheme operates
by simulating two competing replacement policies, and then
mimicking the best one. Just like in our approach, the OS
needs to maintain three sets of “tags” (i.e., VM subsystem
data structures with an entry for each page) and simulate the
component policies in addition to managing real memory.
However, the tag data structures are small (the meta-data for
a 4K OS page is typically around a 40-byte linked-list node)
and the extra processing time (perhaps a few microseconds)
is a negligible price to pay for the corresponding reduc-
tion in disk accesses due to page misses (many millisec-
onds). Yet the adaptive replacement work in virtual mem-
ory did not examine the problem at all from the perspective
of processor microarchitectures (e.g., set-associativity) and
the physical constraints of a hardware implementation (e.g.,
timing, hardware cost of tag structures).

On the other hand, Qureshi et al. [18] recently proposed
an adaptive caching scheme for processor caches. Their
scheme is similar to ours, in that duplicate tag structures
are maintained and adaptivity is affected by choosing the



algorithm to imitate based on past statistics. Qureshi et al.’s
work focused on adding awareness of memory-level paral-
lelism to the cache subsystem. Their adaptivity considers
switching between LRU and their LIN algorithm, which
combines recency information with the expected cost to
fetch a block. Qureshi et al. proposed the evaluation of
their scheme for general adaptivity as future work. Indeed,
our experiment of Section 4.7 shows that their set sampling
(SBAR) approach is very powerful for general adaptivity.

Much of the recent work in caching deals with the elim-
ination of context misses using techniques to increase the
effective associativity, either uniformly for the entire cache,
or on a dynamic, per-set basis. Good representatives of
such work are Hallnor and Reinhardt’s fully associative
cache [10] and Qureshi et al.’s V-Way cache [19]. We next
discuss the V-Way cache as an example, but our comments
also hold for most other work in increasing associativity.
The V-Way cache is a technique for dynamically varying
the associativity of a cache on a per-set basis, in response
to program behavior. Thus, the V-Way cache has some
similarities to our approach, due to its adaptive and per-
set character. Nevertheless, our adaptive caching scheme
is strictly employed within the framework of a standard set-
associative cache and incurs no overhead in the critical path
of cache access. Our adaptive caching technique is suffi-
ciently general in that it can simulate adapting between two
different set associativities where policy A uses all n ways,
and policy B effectively manages its cache lines as two sep-
arate sets of n/2 ways. Peir, Lee and Hsu also employ cache
adaptivity for determining globally “least recently used”
blocks for replacement [16]. Their work is closest to the
V-Way cache, rather than to our adaptive replacement—the
Peir, Lee and Hsu cache’s adaptive behavior can be seen as
a way to dynamically vary its associativity.

The above is also a more general observation: any ad-
vanced caching algorithm can be used as a component al-
gorithm in an adaptive cache implementation. Examples
include Seznec and Bodin’s skewed associativity [4, 21],
Hallnor and Reinhardt’s fully associative cache [10], etc.
Given the robust performance of an adaptive cache and its
ability to faithfully imitate the better one of its component
mechanisms, we believe that our work is orthogonal to other
recent caching advances.

Other work uses adaptivity in processor caching, yet
without applying it in relation to replacement algorithms.
Speight et al. described “adaptive mechanisms” for manag-
ing cache hierarchies in multiprocessors [23]. This is a very
different use of adaptivity, however. Their cache adapts its
behavior (e.g., the way to perform write-backs) based on
hints regarding the residence of blocks at different cache
levels. Yet the replacement policy is never varied.

Although not entirely directly related to caching, there
has also been much work in predictor design that attempts to

make use of adaptivity between multiple policies (i.e. pre-
dictors). For example, there have been a variety of hybrid
branch predictors that attempt to combine or adapt across
multiple component algorithms [6, 15], and similar tech-
niques have been attempted for value prediction [24], and
load hit-miss prediction [25]. It may be possible to gen-
eralize the theoretical underpinnings of our work to prove
worst-case bounds on these other types of adaptivity.

6. Conclusions
While there has been much work on improving processor
caches, our work makes several new contributions:

• We introduce a general adaptivity scheme based on a
strong theoretical foundation which provides a guaran-
teed worst-case bound on the number of misses relative
to the component replacement policies.

• We propose a practical hardware embodiment of the
adaptive replacement algorithm employing a partial-
tagging scheme to reduce implementation overhead.

• We evaluate our approach thoroughly over a wide va-
riety of benchmark programs, demonstrating the effec-
tiveness and robustness of the technique across differ-
ent behaviors as well as cache configurations.

There are several possible future directions for this work.
We plan on evaluating adaptive caching policies for shared
last-level caches in a multi-core environment. We believe
that the combination of memory traffic from dissimilar
threads or applications will provide even more opportunities
for the adaptive mechanism to help performance. Our adap-
tation technique could possibly be modified to improve hy-
brid hardware prefetchers as well (hit/miss is replaced with
useful/not-useful prefetch). As discussed earlier, the theo-
retical analysis of worst-case adaptation behavior can be ex-
tended to other hybrid/adaptive microarchitecture structures
to better understand how and why these techniques improve
processor performance. The strong theoretical guarantees
of our technique increase the likelihood that it will be effec-
tive across a wide range of microarchitecture applications.
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Appendix

Below we prove that the adaptive caching mechanism, as de-
fined in Section 2, never incurs more than a small factor (plus a
constant) more misses than either of its component algorithms. We
examine two versions of adaptivity: one where the miss history
buffer records the counts of all misses since the beginning of exe-
cution for the component policies, and one that models our exact
implementation, which maintains an m-bit vector of recent misses.
In the former case we prove that the adaptive caching technique is
always within a factor of 2, plus a constant, of the best component
policy. In the latter case, we prove a factor of 3. Our approach
is similar to that of our earlier work [22], but our first version of
adaptivity improves on the earlier result by showing a two-fold
bound for a non-contrived algorithm.

Consider first an adaptive cache that keeps two counters CA

and CB of all misses suffered by component policies A and B.
Then, at every miss, the adaptive policy will imitate the compo-
nent policy with the lowest miss count. We will prove that such an
adaptive policy will never suffer more than twice as many misses
as either of its component policies. (The counters can be peri-
odically reset, but our theorem will hold, adjusted by a constant,
between successive resets.)

First we show an intermediate lemma.

Lemma 1 If a tag appears in the parallel tag structures for both
component algorithms A and B then it is also in the adaptive
cache.

Proof : The above property holds initially (empty caches) and if it
holds up to a point, then consider the next miss for either algorithm
A or B. If the access is not a miss for the adaptive cache, then
the property will hold after the eviction (because the new block
is already in the adaptive cache). If the access is also a miss for
the adaptive cache, then there are 4 cases in the adaptive cache’s
eviction logic:

• the adaptive cache evicts a block not in B’s tag structure.

• the adaptive cache evicts a block not in A’s tag structure.

• the adaptive cache evicts evicts the same block as A

• the adaptive cache evicts evicts the same block as B

In each of the above cases, the block evicted by the adaptive cache
either could not have been in both A’s and B’s tag structures
before the eviction or will be evicted from one of them at the same
time. Thus, if the property held before the current miss, it will
hold after the eviction.

Now we can show our theorem.

Theorem 1 The adaptive cache will never suffer more than 2x +
w misses, where x is the minimum of the numbers of misses of
component algorithms A and B, and w is the size of the cache in
blocks.

Proof :
We will treat each cache set independently and will prove that

the total misses suffered by the adaptive cache for a single set alone
are at most twice the misses of algorithms A or B for that same

set plus a constant equal to the cache’s associativity, a. If we then
sum over all sets, we get the desired theorem.

We define “potential” quantities and examine how their values
change on every miss for either algorithm A or B.

Let dA be the number of blocks currently in the adaptive cache
that are not in A’s tag structure. Let dB be the number of blocks
currently in the adaptive cache that are not in B’s tag structure.

The values of CA, CB , dA, and dB change as follows on every
miss (we denote the new values C′

A, C′
B , d′

A, and d′
B):

(Note that according to Lemma 1 a hit for both A and B implies
a hit for the adaptive cache and none of the potentials changes.)

1. if CA > CB (the adaptive cache imitates policy A)

(a) miss for B, hit for A, hit for adaptive: C′
A = CA,

C′
B = CB + 1, d′

A = dA, d′
B ≤ dB

(b) miss for B, hit for A, miss for adaptive: C′
A = CA,

C′
B = CB + 1, d′

A ≤ dA, d′
B ≤ dB

(c) miss for B, miss for A, miss for adaptive: C′
A = CA+

1, C′
B = CB + 1, d′

A ≤ dA + 1, d′
B ≤ dB

(d) miss for B, miss for A, hit for adaptive: C′
A = CA+1,

C′
B = CB + 1, d′

A ≤ dA, d′
B ≤ dB

(e) hit for B, miss for A, hit for adaptive: C′
A = CA + 1,

C′
B = CB , d′

A ≤ dA, d′
B = dB

(f) hit for B, miss for A, miss for adaptive: C′
A = CA+1,

C′
B = CB , d′

A ≤ dA + 1, d′
B < dB

2. if CA ≤ CB

(a) miss for B, hit for A, hit for adaptive: C′
A = CA,

C′
B = CB + 1, d′

A = dA, d′
B ≤ dB

(b) miss for B, hit for A, miss for adaptive: C′
A = CA,

C′
B = CB + 1, d′

A < dA, d′
B ≤ dB + 1

(c) miss for B, miss for A, miss for adaptive: C′
A = CA+

1, C′
B = CB + 1, d′

A ≤ dA, d′
B ≤ dB + 1

(d) miss for B, miss for A, hit for adaptive: C′
A = CA+1,

C′
B = CB + 1, d′

A ≤ dA, d′
B ≤ dB

(e) hit for B, miss for A, hit for adaptive: C′
A = CA + 1,

C′
B = CB , d′

A ≤ dA, d′
B = dB

(f) hit for B, miss for A, miss for adaptive: C′
A = CA+1,

C′
B = CB , d′

A ≤ dA, d′
B ≤ dB

We do not show all the case-by-case reasoning needed to derive
the above values. As a single example, consider, for instance, case
1.e. In this case, there is a miss for A but none for B, which is
reflected in the update of miss counts. Since the reference is a
hit for the adaptive cache, one extra common block will exist in
both tag structures (for A and for adaptive) after this reference is
processed. At the same time, however, A can evict a block that is
in the adaptive cache, so dA (the number of blocks in the adaptive
cache’s tag structure that are not in A’s tag structure) may decrease
or stay the same (hence the d′

A ≤ dA). dB stays the same since the
reference was a hit both for the adaptive cache and for algorithm
B.

Now we are ready to show our result. Assume, without loss
of generality, that the algorithm with the fewest total misses is B.
(The case where A is the better algorithm for the current execution



is handled practically identically.) Consider the point in the execu-
tion when CA was last equal to CB—we will call this the “turning
point”. This was the last time the adaptive cache ever emulated
policy A. (This point, of course, could be the very beginning of
the execution.) The main theorem will be broken up to two parts:
first we show that the adaptive policy cannot have suffered more
than twice as many misses as B until the turning point, and then
we show that the adaptive policy cannot have suffered more than a
more misses than B after the turning point. The two bounds have
a total of 2x + a.

It is easy to see that the adaptive cache never suffered more
than twice as many misses as policy B until the turning point: The
adaptive cache suffers a miss that is not a miss for B only in cases
1.f and 2.f, above. But each of these cases increases the metric
CA − CB . Since CA − CB is zero initially and also zero at the
turning point (by definition), the number of times cases 1.f and 2.f
could have occurred is at most as many as the number of times the
difference CA − CB has decreased. But this only occurs in cases
1.a, 1.b, 2.a, and 2.b, and in all of those policy B suffers a miss. In
other words, the number of misses for the adaptive cache that are
not misses for policy B are at most as many as the misses of B.
That is, the adaptive cache can only suffer up to twice the misses
of cache B up until the turning point.

At the turning point (and, in fact, at any point) the value of
quantity dB is at most equal to the associativity, a—since dB re-
flects how many blocks in the set are different in the adaptive cache
and in cache B. After the turning point, the adaptive cache imitates
policy B. Thus, the only case where the adaptive cache suffers a
miss that is not a miss for B is case 1.f. But in this case, dB gets
decremented and it can never fall below zero. Thus, the adaptive
cache suffers at most dB misses over those of B after the turning
point, which is at most equal to a.

To summarize, for any given set, the number of misses of the
adaptive cache are at most 2x + a, where x is the number of
misses of the better of the two policies for that set. If we sum
over all sets in the cache, we see that the adaptive policy never
suffers more than twice plus w the misses of the better of the two
component policies. �

Consider now the version of adaptivity where the miss history
buffer consists of m bits recording the last m misses for either
policy A or policy B but not for both. We have not been able to
prove a 2x bound in this case, but proving a 3x bound is simple
by appealing directly to a theorem in our earlier work for fully-
associative memory [22]. If we treat each set as a separate fully
associative memory, our m-bit miss history buffer is identical to
the data structure kept in that work, for which we proved a 3x
bound of the adaptive policy [22].


