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Abstract

Transactional memory is being advanced as an alternative totraditional lock-based

synchronization for concurrent programming. Transactional memory simplifies the

programming model and maximizes concurrency. At the same time, transactions can

suffer from interference that causes them to often abort, from heavy overheads for

memory accesses, and from expressiveness limitations (e.g., for I/O operations). In this

paper we propose an adaptive locking technique that dynamically observes whether a

critical section would be best executed transactionally orwhile holding a mutex lock.

The critical new elements of our approach include the adaptivity logic and cost-benefit

analysis, a low-overhead implementation of statistics collection and adaptive locking

in a full C compiler, and an exposition of the effects on the programming model. In

experiments with both micro- and macro-benchmarks we foundadaptive locks to con-

sistently match or outperform the better of the two component mechanisms (mutexes

or transactions). Compared to either mechanism alone, adaptive locks often provide

3-to-10x speedups. Additionally, adaptive locks simplifythe programming model by

reducing the need for fine-grained locking: with adaptive locks, the programmer can

specify coarse-grained locking annotations and often achieve fine-grained locking per-

formance due to the transactional memory mechanisms.
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1. Introduction

Multi-core processors are turning shared-memory parallelism into the default

model of computation for mainstream software development.Although there are ways

to take advantage of such parallelism through different high-level paradigms (e.g.,

stream processing [1] or message passing [2]) Explicit multi-threading remains the

most direct way to program parallel systems. In the multi-threaded programming

world, interference between threads is a major issue and results in hard-to-trace defects

such as race conditions or deadlocks. Traditionally, programmers have coordinated

threads using programming patterns based on mutual-exclusion (mutex) locks.

In recent years, an alternative model has been proposed for thread coordination.

Transactional memory(TM) replaces mutexes and condition variables with “atomic”

blocks of code, that are meant to execute as if all other threads had stopped running

during the execution of the atomic block. TM has intrigued both software and hardware

designers, and many major processor manufacturers have already announced support

for TM in upcoming architectures. The advantage of TM is twofold: First, it offers

a higher-level programming model by obviating the need for stating which locks to

acquire. This means that code is more composable: Callers donot need to know which

locks their callees hold, and writing code does not require global knowledge of which

locks are used by possibly interfering threads. The possibility of low-level deadlock

is also avoided, as there is no potential for the programmer to erroneously specify

circular lock dependencies. Furthermore, TM does not require fine-grained delineation

of critical sections in order to achieve high concurrency. Most TM implementations

allow threads to proceed unless they interfere on the same shared memory data. In

contrast, mutex locks conservatively prevent threads fromproceeding if they need to

acquire the same lock, even if they never access the same data.

The TM approach is not free of disadvantages, however. Transactions eliminate

deadlock, but replace it with possible livelock or slower progress: Interfering threads

can cause each other’s transactions to abort and retry. Furthermore, transactions cannot

easily support irreversible operations, such as I/O, despite several proposals in this

direction [3–6]. Finally, when transactions are implemented in software they can suffer



from high overheads during the execution of atomic blocks: Every shared memory read

and write operation needs to be trapped and treated specially. The overheads have led

some authors to even claim that software TM is “only a research toy” [7].

In this paper, we presentadaptive locks: a synchronization mechanism combining

locks and transactions for best performance. In our approach, the programmer specifies

critical sections, which can be executed either with mutualexclusion or atomically as

transactions. For instance a critical section

atomic (l1) { ... }

is equivalent to either

atomic { ... }

(when the system executes intransaction mode) or

lock(l1); ... unlock(l1);

(when the system executes inmutex mode). At any point in time, all critical sections

that use the same lock,l1, have to execute in the same mode.

The decision to execute in mutex mode or in transaction mode depends on the ob-

served behavior of the critical section, namely on thenominal contention(how many

threads are blocked on the lock when in mutex mode), theactual contention(how many

times each transaction retries when in transaction mode), and thetransactional over-

head(how much slower is the critical section when in transactionmode compared to

mutex mode). Our adaptive locks compute these three factorsdynamically during the

program’s execution and combine them for an accuratecost-benefit analysis, as de-

scribed in Section 2. We present techniques for performing this computation highly

efficiently. The overall adaptive lock implementation imposesvery low overhead com-

pared to either a regular mutex lock or a transaction.

What adaptive locks achieve is the ability to dynamically switch concurrency mech-

anisms depending on execution conditions. A single code base (e.g., a library imple-

mentation of a general data structure, such as a hash table ortree) can be used in en-

vironments with high or low contention and always achieve optimal performance. For

example, a program could contain two tree structures, both implemented by the same



code, but one of them being large and accessed by many threads, while the other being

small or only infrequently accessed concurrently. With adaptive locks, unnecessary

overheads due to concurrency mismatch will be avoided for both data structures.

The adaptive locks programming model resembles mutex locksmore than it does

transactions. For instance, the deadlock-freedom and composability guarantees of

transactions are not preserved, since our critical sections may execute in mutex lock

mode. It is, therefore, important to ask, “are adaptive locks just an optimized imple-

mentation of locks?” Based on the benefits observed in our evaluation, we argue that

the practical impact of adaptive locks is much more than that. We believe that adaptive

locks significantly change the programming model for concurrency. Adaptive locks

allow the programmer to concentrate only oncoarse-grainedlocking approaches, in-

stead of trying to achieve more performance by introducing error-pronefine-grained

locks. The performance of fine-grained locks is then often fully recovered automat-

ically by employing the TM mechanism when appropriate. All our benchmark mea-

surements are implemented with very coarse-grained lock annotations (often a single

global lock, which trivially has good composability and deadlock-freedom properties),

yet still achieve significant performance improvements. (Indeed, such coarse-grained

locks can also be automatically inferred for correctness–e.g., [8].) Thus, adaptive locks

encourage programmers to use locks at whichever level of abstraction correctness is

easy to establish, and not at the granularity needed for performance.

Some of our work’s closest relatives in the research literature are Rajwar and Good-

man’slock elision[9] and Welc et al.’stransactional monitors[10]. (There is more re-

lated work and we discuss it in detail in Section 6.) Lock elision is a hardware technique

for (effectively) implementing locks as low-level transactions, but with no clear adap-

tive cost-benefit model, as the one we introduce. Welc et al.’s transactional monitors

implement locks optimistically as soon as the monitor encounters contention. Again,

there is no dynamic cost-benefit model for the two modes of execution, or a possibility

of reverting back to locks if the TM mechanism turns out to be inefficient. Welc et al.

acknowledge the need for more adaptive solutions, which ourwork provides. Finally,

the work in this paper is an evolution and realization of thenon-blocking locksidea that

we presented in an earlier position paper [11]. Overall, ourconcrete contributions are



as follows:

• We present a highly efficient and effective implementation of the concept of adaptive

locks. Our adaptive locks keep precise statistics on the behavior of the program, and

dynamically adapt to it based on an online cost-benefit analysis, while introducing

very low overhead: acquiring an adaptive lock is practically no more costly than

acquiring a mutex lock.Importantly, this removes all performance arguments used

in favor of locks and against Software Transactional Memory[7]: transactions are

used only when they yield benefits, and incur no overhead otherwise. Thus, contrary

to the assertion of Cascaval et al., Software TransactionalMemory is much more

than a “research toy”: at the very least it is an excellent wayto implement locks. We

describe the optimizations responsible for our mechanism’s efficiency—e.g., trading

some inaccuracy in our statistics in exchange for shortening the critical path of lock

acquisition and avoiding bottlenecks. Our implementationis in the form of a full C

compiler, based on the CIL framework [12], and is freely available for download.

• We evaluate adaptive locks with several micro- and macro-benchmarks. Our evalua-

tion shows that adaptive locks combine the performance benefits of mutex locks and

transactions. In every case, the performance of adaptive locks closely matches the

performance of the better of the two component mechanisms. This allows adaptive

locks to achieve the highest possible performance not just for different applications,

but also for different configurations of the same application. For instance,we demon-

strate performance improvements of several factors for different degrees of hardware

concurrency (e.g., 3x faster than TM for 2 processors, 3x faster than mutex locks for

64 processors).

Compared to either mutex locks or transactions alone, adaptive locks routinely

achieve order-of-magnitude performance improvements by emulating the perfor-

mance of the complementary mechanism. Adaptive locks occasionally outperform

both component mechanisms at the same time, by up to 50%, due to the varied con-

tention behavior of different application phases.



2. Design and Adaptivity Logic

We next discuss the concept of adaptive locks, as well as the cost-benefit logic that

the locks implement in order to choose their optimal execution mode.

2.1. Programming with Adaptive Locks

Adaptive locks introduce syntax for a labeled atomic section. This is a block struc-

tured construct, headed by the keywordatomic with a label indicating which adaptive

lock protects the code statement (usually a block statement) that follows. By conven-

tion, in this paper (as well as in our implementation) adaptive locks are declared as

instances of typeal t, e.g.:

al_t lock1; ...

atomic (lock1) { ... /* critical section */ }

The programmer is responsible for ensuring that the lock labels are “correct”—i.e.,

that the program will work correctly if all instances ofatomic(<lckLbl>) are replaced

by a regular mutex,Lock(<lckLbl>). (We assume a block-structured mutex lock, with

an unlock performed at the end of the block.) The programmer also has the obligation

to ensure that the program is equally correct if all lock labels are dropped and all

critical sectionsatomic(<lckLbl>)<stmt> execute as transactions,atomic <stmt>, in

a conventional TM system (e.g., [13–15]). The reason is thattransactions can have

subtly different behavior from mutex locks [11, 14, 16–18]. Nevertheless, the topic

of adaptive locks is orthogonal to such differences. For instance, one can implement

an adaptive scheme with a TM system supporting single-global-lock semantics [17].

For weaker back-end TM systems, the programmer can ensure correctness of adaptive

locks code under either mode by employingstatic separation(i.e., ensuring that data

that are ever shared are always accessed under a lock [11, 19]) or dynamic separation

[20] techniques. We will discuss this topic in Section 5, where we also offer a general

condition for the semantic equivalence of transactions andmutexes. Note also that

adaptive locks do not support transactional constructs that rely on retrying (such as an

explicit retry or abort statement). Condition synchronization is supported explicitly

as in a regular lock-based programming model, and not simulated usingretry.



The adaptive lock implementation is, thus, free to execute the critical section it

protects either as a transaction or as a critical section protected by a mutex lock.3 As

mentioned in the Introduction, we say that the adaptive lockis in transaction modeor in

mutex mode, respectively. All critical sections associated with the same adaptive lock

have to execute in the same mode at a given time. If a thread tries to acquire an adaptive

lock and decides it wants to execute in a different mode than the current one, it marks

the adaptive lock “in-transition” and waits until all current critical sections executing

with this lock finish. (Clearly, there is more than one critical section executing only

if the adaptive lock is in transaction mode.) While the lock is in-transition, no further

mode switching decisions can be made. Furthermore, in the case of lock nesting, the

mode of a nested adaptive lock cannot differ from the mode of a surrounding lock.

The reasons for switching the mode of an adaptive lock are either correctness- or

performance-related. In the former case, if the lock is executing in transaction mode

and an irreversible I/O operation is called, the (outermost) critical section restarts in

mutex mode. (Waiting on condition variables is also an irreversible action, so our

adaptive locks revert to mutex mode execution when they encounter it inside a critical

section.) The latter case captures the heuristic at the coreof adaptive locks, for deciding

when to switch modes in order to improve performance.

2.2. Cost-Benefit Analysis

The main reason for executing an adaptive lock in transaction mode is that mutex

locks can exhibitfalse exclusion[21]. A single mutex lock is commonly used to protect

a large amount of shared data—an approach known ascoarse grained locking. In this

way, multiple threads are blocked from accessing the data, even in cases when they

would not really conflict. Programmers use coarse grained locking because it is often

far easier than trying to correctly associate locks with smaller amounts of data. Several

3One can argue that the terms “transaction” and “mutex lock” refer to programming models, rather than
implementation mechanisms. E.g., transactions can be implemented by a mechanism that guarantees ex-
clusion, or mutex locks can be implemented speculatively. In this paper, we use the terms to refer to the
implementation mechanisms overwhelmingly associated with them in common practice. We have found this
to be best for communications purposes: when describing ourwork, listeners have been more likely to grasp
it quickly if we explain it as a “mechanism adapting between mutex locks and transactions” rather than as a
“mechanism adapting between speculative and non-speculative locks, where the speculation is implemented
through TM techniques”.



domains and data structures (e.g., red-black trees) are notoriously difficult to code with

a fine-grained locking discipline.

Therefore, the performance benefit of transactions is due tohigher concurrency:

More threads can execute the same critical section with transactions than with mu-

texes. Assuming that separate processors exist to run thesethreads, a net performance

increase can result.

At the same time, executing an adaptive lock in transaction mode incurs high over-

heads when there is true contention on the data. In this case,different threads interfere

with each other, preventing the successful commit of transactions. Therefore, trans-

actions have to retry multiple times before they successfully commit, and the result

is slower progress, or even livelock. The problem is solved when switching to mutex

mode because the thread “reserves” the right to run up-front, thus making progress

without interference.

A second factor hindering the performance of transaction mode is that, in pure-

software TM, there is typically a high overhead associated with executing a critical

section transactionally.Software transactional memory (STM)systems [22] need to

execute logging actions on each read or write operation of shared memory data. De-

pending on the design of the STM, the logged values are eitherused to update shared

memory on transaction commit (redo-logging), or to revert shared memory to its previ-

ous state on transaction abort (undo-logging).4 A second overhead is due to the need to

perform synchronization operations (e.g., acquiring locks associated with each written

word) to ensure consistent memory writes. The need for logging actions and syn-

chronization imposes a heavy overhead on shared memory operations and often slows

down transaction mode execution of critical sections by a significant factor (e.g., 2-8x).

Additionally, STM implementations often impose extra overheads for policy-specific

reasons—e.g., re-validating the read set when a conflict is detected, incurring cost for

aborting, etc.

4A few STM systems suffer no such overhead [23–25], by translating transactions into lock acquisitions
and releases in a way that guarantees deadlock-freedom (and, thus, the transaction never needs to retry).
The performance of such “auto-locking” systems depends crucially on (non-modular) compiler analysis or
program annotation. No representative of this approach hasyet achieved the same level of performance as
standard STMs (pessimistic or optimistic) in a general-purpose, automatic setting.



Therefore the adaptive lock analysis of whether to execute in transaction mode or

mutex mode has to take into account three factors:

• Nominal contention(c): the number of threads contending for the lock. This quan-

tifies the potentialbenefitof executing in transaction mode instead of mutex mode.

The quantity can be measured by keeping a counter of how many threads are blocked

on the lock when in mutex mode. When in transaction mode,c is equal the number

of threads currently executing the critical section.

• Actual contention(a): the number of times a transaction needs to try before it com-

mits. This quantifies the contention by other threads on the actual data the critical

section tries to access. The quantity is a multiplicative factor in thecostof executing

the critical section in transaction mode.

• Transactional overhead(o): the slowdown factor due to transactional execution, be-

cause of the need to trap shared memory reads and writes, the need to synchronize,

the need to re-validate as part of a complex contention management policy, etc. This

is a multiplicative factor in thecostof transaction mode.

Thus, the cost-benefit analysis of adaptive locks is based onthe inequality:

a · o ≥ c

(The two sides correspond to the overheads of each mode of execution relative to an

idealized, no-contention execution. All three factors arecomputed separately for each

adaptive lock, since the decision on which mode to execute affects all critical sections

of the lock.) If this inequality holds, mutex mode executionis preferable, otherwise the

benefit of transaction mode execution outweighs its cost. Note that the analysis applies

and a trade-off exists even if transactional execution incurs no overhead (o = 1), e.g.,

through the use of specialized hardware.

The above cost-benefit analysis isexactand not approximate, yet approximations

need to be introduced because, for instance, it is hard to measure the overheado fully

accurately, factora is predictive of future executions so it needs to be estimated from

past data, etc. As we describe next, factorsc anda are computed dynamically at all



times. Factoro is also computed dynamically by sampling a subset of the executions—

an approach that proved superior to off-line estimates in our measurements due to the

high variance ofo for different applications and locks.

To see the advantage of having a complete model for cost and benefit, consider,

for instance, the adaptivity approach followed by Welc et al. [10]. Their technique

converts a critical section to a transactional implementation as soon asanycontention

is observed, i.e., as soon asc is more than 1. This completely disregards the costs

of transactional execution and results in obtaining good behavior only for transaction-

friendly workloads.

3. Implementation and Optimizations

We next describe our implementation of adaptive locks. We selectively present key

components that expose the precise logic (e.g., behavior when an adaptive lock is in

the process of switching modes) or reveal crucial elements for high performance.

3.1. Compiler and Locking Mechanism

We have implemented adaptive locks in a conservative extension of the C language.

Our compiler is based on the CIL infrastructure [12] for extensible C compilers. A

special pragma at the function level is used to supplyatomic annotations: the entire

body of the function is then considered to be protected by thecorresponding adaptive

lock. The compiler translates each function body with atomic annotations into two

different object code versions: araw version, used for mutex mode execution and in-

curring no further overheads, and atransactional version, where all shared memory

reads and writes become TM operations for an underlying STM.We use TL2 [26], a

high-performance STM library, as our back-end STM. Our implementation is freely

available (seehttp://ix.cs.uoregon.edu/∼takayuki/al/) and represents a mature

open-source compiler infrastructure for STM experimentation. Other researchers can

build on our compiler support for TM by modifying our CIL patterns to produce full

compilers either for different TM constructs or for different back-end TM implementa-

tions.



Our implementation of adaptive locks replaces regular lockacquisition and release

with versions that perform the adaptive reasoning. We use a standard pattern for high-

performance synchronization: The adaptive lock’s state ispacked in a memory word

and we represent bit blocks as different pseudo-variables. The components of the

state include the number of threads executing in transaction mode (thrdsInStmMode),

whether we are currently in mutex mode (mutexMode), whether the mutex lock is

held (lockHeld), and whether we are currently in the process of switching modes

(transition). The next state is then computed and updated atomically with a compare-

and-swap (CAS) instruction. The thread spins, retrying the state update until the CAS

succeeds, or until exceeding a number of tries, in which caseit has to yield the CPU.

These elements are illustrated in Figure 1, which shows the state transitions of

adaptive locks, as well as in in Figure 2, which contains the code for theacquire

routine—the main workhorse of the lock acquisition process. This routine is called

every time a thread attempts to acquire an adaptive lock. Thereturn value indicates

whether the adaptive lock was acquired in transaction mode (TRANS MODE) or mutex

mode (MUTEX MODE). Introducing some conventions is helpful:

• The separate bit ranges of both the current state (prev) and the next state (next) are

set through macros maintaining the naming convention. For instance, checking the

lockHeld bit of the current state is done with the expressionlockHeld(prev) whereas

setting the same bit to 1 on the next state is done with the callsetLockHeld(next,1).

We useTRUE and FALSE for 1 and 0, respectively, when the bit value represents a

boolean.

• Atomic operations are shown in all capital letters.INC, DEC, andCAS call (directly or

indirectly) atomic instructions. This will be important when we discuss performance

optimizations.

• Each adaptive lock holds data for computing its adaptivity statistics. These

data are not accessed directly in the code of Figure 2, with the exception of

lock->thdsBlocked: a counter of threads blocked on the lock, if the lock is in mutex

mode—addingthrdsInStmMode yields thec factor from Section 2.2. For its adaptiv-
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From To Condition for transition
S0 S1 Acquire, mode= STM
S0 L1 Acquire, mode= Lock
S1 S0 Release, thrdsInStmMode= 1
S1 S L0 Acquire, mode= Lock
L0 L1 Acquire, mode= Lock
L0 S1 Acquire, mode= STM
L1 L0 Release
L1 LS0 Acquire, mode= STM
S L0 S L1 Release, thrdsInStmMode= 1
LS0 LS1 Release
S L1 L1 Acquire
LS1 S1 Acquire

State mutexMode lockHeld thrdsInStmMode transition Description
S0 0 0 0 0 STM mode, no thread in critical region
S1 0 0 ≥ 1 0 STM mode, thread(s) in critical region
L0 1 0 0 0 Lock mode, no thread in critical region
L1 1 1 0 0 Lock mode, thread in critical region
LS0 0 1 0 1 Begin transition from lock to STM mode
LS1 0 0 0 1 Signal completed transition from lock to STM mode
S L0 1 0 ≥ 1 1 Begin transition from STM to lock mode
S L1 1 0 0 1 Signal completed transition from STM to lock mode

Figure 1: Adaptive lock state machine with explanation of states and transitions. We need two transi-
tion states in each direction, because of theAcquire/Release/Acquire handshake taking place (for ensuring
progress during mode switches). The initialAcquirechanges to the first transitional state, then waits for
the Releaseoperation to complete, which is signaled by the move to the second transitional state, and the
Acquirethen completes the transition by going toS1/L1.



Mode acquire(al_t* lock) {

int spins = 0;

int useTransact = MUTEX_MODE;

while (TRUE) {

intptr_t prev,next;

prev = lock->state;

if (!transition(prev)) { // we are not already in transition

if ((useTransact = transactMode(lock,spins)) == TRANS_MODE)

{ // we are better off in transaction mode

if (!lockHeld(prev)) { // the lock is free or in transaction mode

next = setMutexMode(prev, FALSE);

next = setThrdsInStmMode(next, thrdsInStmMode(next)+1);

if (CAS(lock->state,prev,next) == prev) break;

} else { // the lock is in mutex mode. Need transition

next = setMutexMode(prev, FALSE);

next = setTransition(next, TRUE);

CAS(lock->state,prev,next);

}

} else { // we are better off in mutex mode

if (!lockHeld(prev) && thrdsInStmMode(prev) == 0)

{ // the lock is free, no threads in crit.sec.

next = setMutexMode(prev, TRUE);

next = setLockHeld(next, TRUE);

if (CAS(lock->state,prev,next) == prev) break;

} else if (!mutexMode(prev)) { // lock is currently in transaction mode

next = setMutexMode(prev, TRUE);

next = setTransition(next, TRUE);

CAS(lock->state,prev,next);

}

}

} else { // we are in transition

if (!mutexMode(prev)) { // we want to transition to transaction mode

if (!lockHeld(prev)) { // and the lock is no longer held

useTransact = TRANS_MODE;

next = setThrdsInStmMode(prev, 1);

next = setTransition(next, FALSE);

if (CAS(lock->state,prev,next) == prev) break;

}

} else { // we want to transition to mutex mode

if (thrdsInStmMode(prev) == 0) { // and it seems we can do so

useTransact = MUTEX_MODE;

next = setLockHeld(prev, TRUE);

next = setTransition(next, FALSE);

if (CAS(lock->state,prev,next) == prev) break;

}

}

// account for blocked thread on first spin

if (spins == 0) INC(lock->thdsBlocked);

if (spin_thrld < ++spins) Yield();

} /* end while(TRUE) */

if (0 < spins) DEC(lock->thdsBlocked);

return useTransact;

}

Figure 2: The main routine for adaptive lock acquisition. Returns whether the lock was acquired in mutex
mode or transaction mode.



ity logic, theacquire routine callstransactMode which implements the cost-benefit

analysis of Section 2.2 and returns the estimated best mode for the adaptive lock.

We can now see precisely the behavior of adaptive locks. If the lock is not already

in a state of transition from one mode to the other then the cost-benefit analysis is

performed to see what is the optimal execution mode. (It is necessary for ensuring

progress to choose the mode using the cost-benefit analysis only when the lock is not

already in transition. Otherwise, threads that decide to acquire the adaptive lock in

mutex mode might be waiting for all threads executing in transaction mode to finish.

Yet new threads can keep acquiring the lock in transaction mode with no problem, thus

causing the thread desiring to enter in mutex mode to wait forever.) All possibilities

end with an attempt toCAS into the next state of the lock. If theCAS succeeds, in most

cases we are done, unless we are switching modes, in which case theCAS will just

set the state to be in-transition, and will repeat the loop until the new state is set. A

failedCAS results in retrying, up to a predefined threshold of times (spin thrld) before

yielding.

When theacquire routine returns to its caller (not shown), the adaptive lockis

held in the appropriate mode, and the system only needs to execute the corresponding

version of the critical section (raw or transactional), perthe return value. Transaction

mode execution also maintains statistics for the cost-benefit analysis, namely it incre-

ments a counter for every transaction retry and commit.

3.2. Performance Discussion

Adaptive locks keep global statistics, necessary for computing quantitiesc, a, and

o of the adaptivity reasoning. Such statistics include thelock->thdsBlocked count, a

count of transaction tries, and a count of transaction commits. Because these counts

need to be updated by every thread’s execution, they represent a global bottleneck

for the performance of adaptive locks. Removing this bottleneck is crucial for per-

formance. In some cases, even a single extra atomic instruction (e.g., a slightly less

optimal implementation instead of that of Figure 2) would result in no scalability for

the benchmarks we present later.



One way in which we address this problem is by allowing small inaccuracies in our

statistics gathering. The inaccuracies can only influence the performance of an adap-

tive lock (i.e., which mode it chooses) and not its correctness. For instance, quantitya

of the adaptivity reasoning (the “actual contention”) is computed from counts of trans-

action tries and commits for the critical section. Althoughwe make sure that these

counts are not cached for long periods of time (by usingvolatile variables), we do

not update the counts atomically. Instead, regular memory writes are performed and

later instructions serve as memory barriers, forcing a shared memory update. This al-

lows for races, including write-write races (i.e., an update being lost because a different

thread overwrites it). In practical use, the sporadic inaccuracies in such statistics are not

significant, especially since the counts of tries and commits are cumulative (although

time-decayed).

Additionally, the transactional overhead factor,o, of our analysis depends on the

proportion of shared memory operations (which become transactional reads and writes)

in a transaction’s workload. For instance, transactions that work mostly with thread-

local memory (including non-shared external resources) will not incur a heavy over-

head for execution in an STM, in contrast to transactions that perform many shared

memory operations. The relative mix of reads and writes alsomatters, depending on

the specifics of the STM implementation. For instance, TL2 keeps the cost of reading

shared memory low, and contains special handling for read-only transactions. For these

reasons, the value of factoro varies widely between applications, as well as between

different critical sections of the same application.

In our implementation, we perform a dynamic measurement ofo, using

architecture-specific instruction (or cycle, when available) counters. Thus, we can es-

timateo by measuring the execution time of a transaction, and dividing it by the exe-

cution time minus the time spent in the wrapper functions fortransactional read/write

memory operations (which closely approximates the time that would have been spent

executing the critical section in lock mode). Getting good estimates for these times is

costly, however. We found that sampling even the cheapest CPU performance coun-

ters can be prohibitive for transactions, which are typically quite brief. Furthermore,

reading the values of performance counters on every TM read and write can disturb the



behavior of the transaction, by prolonging it.

To keep our estimate ofo precise yet inexpensive, we apply two optimizations.

First, the measurement is not performed on every transactional execution, but only in

specific sampling intervals (currently every 512 calls).5 Second, we do not measure

precisely how much time is spent in handling transactional reads and writes. Instead,

we just keep a count of the numbers of each operation and multiply these counts by a

static estimate. This is just an approximation (since the cost of reads and writes is not

constant in TL2 or other STMs) but we have not found it to induce enough noise to

skew our decisions.

The result of our dynamic estimation of the overhead factor is a mechanism that

adapts very well to the characteristics of the application and critical section, while

introducing negligible overhead, as we later show in our experiments.

3.3. Sensitivity Discussion

Although the cost-benefit analysis of Section 2.2 is fully general, our implemen-

tation is specialized for our back-end STM, TL2, and somewhat reflects our intended

execution platform. Namely:

• The main transactional overheads of TL2 are due to read and write logging [26].

Therefore our estimate ofo ignores (i.e., approximates as a constant) other transac-

tional overheads, such as the cost of acquiring locks, the cost of aborting a transaction,

the cost of contention management (e.g., delaying a transaction or re-validating the

read-set in order to make progress), or the variable cost of read operations due to

searching the write set. These either do not apply to TL2 or are expected to be sec-

ondary factors for most workloads. Generally, to measureo precisely, one needs to

measure the full end-to-end cost of equivalent executions in mutex mode and in trans-

action mode. This is usually not feasible, as the cost is dependent on other threads,

semantic equivalence is hard to establish, etc. Therefore we expect that different re-

alizations of adaptive locks will need to employ appropriately specialized techniques

for estimatingo.

5Our implementation pre-compiles a specialsampling transactional versionof the critical section, which,
in addition to TM operations, contains instrumentation forestimating the overhead of transactional execution.



• We have not found a need to employ more scalable locking or counter techniques

(e.g., avoid the bottleneck of every threadCASing the same word when the lock is in

transaction mode by using a “scalable non-zero indicator”,a.k.a. SNZI [27]). This

may be partly because our primary execution platform (a Sun Niagara2 architecture)

uses a shared L2 cache. Preliminary microbenchmarks, however, do not substantiate

this theory: we found that for much higher contention/shorter transactions the per-

formance of our technique would degrade substantially on the same architecture. We

also employed a SNZI mechanism but did not observe any performance improvement

for our regular benchmarks. Still, an implementation specialized for other architec-

tures (e.g., x86) may need to employ different low-level scalability techniques.

4. Experimental Evaluation

To evaluate the effectiveness of adaptive locks, we performed experiments with an

array of microbenchmarks (for testing boundary conditions) and macrobenchmarks.

All measurements are medians of 3 runs on a Sun UltraSparc T2 (Niagara2) T5220

machine (8 cores with 8 threads each for a total of 64 hardwarethreads, at 1.2GHz;

32 GB RAM). We used GCC 4.0.4, and our implementation of adaptive locks uses

version 0.9.4 of TL2. Our plots show the performance of our adaptive locks, compared

to modes of our compiler that perform no adaptivity reasoning. (We have confirmed

that the non-adaptive modes of our compiler yield virtuallyidentical performance to

plain mutexes and the STAMP STM under the base CIL compiler.)

4.1. Microbenchmarks

We stress-tested adaptive locks with microbenchmarks corresponding to standard

mapping data structures: red-black trees, hash tables, andsplay trees.

Red-black trees are the poster child benchmark for transactional memory systems.

Mutex-based red-black tree solutions typically do not scale, as they use coarse-grained

locking due to the very high complexity of coding a fine-grained red-black tree. TM

approaches perform well because the data structure has low actual contention (different

operations can access different parts of the tree without conflicts) and can benefit from

increased concurrency.



Splay trees, on the other hand, are pathologically bad for implementations that

emphasize concurrency (such as TM) since every update to a part of the tree needs to

change the root, which becomes a point of contention. Thus, the interesting question

for splay trees is how to incur less overhead, rather than howto gain more concurrency.

We use a single-lock splay tree in our experiments.

We experimented with two fixed-size hash table implementations: one with coarse-

grained locking (single lock per entire table) and one with fine-grained locking (one

lock per table bucket). Naturally, there is no difference in the performance of TM in

the two implementations, but mutex locks perform better in the latter.

For each data structure we used a relatively high-contention workload with 50%

lookup operations, 25% inserts and 25% deletes. Each threadperforms 100,000 oper-

ations total. Hash tables have 1024 buckets and the shown red-black trees have 1000

different keys. Our results are shown in Figure 3—note that theseare throughput plots,

so higher numbers are better. As can be seen, none of the benchmarks scales perfectly

to 64 threads, largely because of the small size of the data and the resulting contention.

Adaptive locks succeed in closely tracking the performanceof the better of the two

component mechanisms for each benchmark. This means that adaptive locks soundly

outperform either of the component mechanisms on its own. Statistically, over all mi-

crobenchmarks and all thread configurations, adaptive locks are on average 47% faster

than mutexes (min: -16%, max: 433%) and 176% faster than transactions (min: -26%,

max: 837%). (This should only be viewed as a summary of the figure data, as the

average does not map to a real-world quantity.) For red-black trees and coarse-grained

hash tables, adaptive locks imitate a mutex lock for low degrees of parallelism (1-2

threads) and a TM for more threads, outperforming the mutex-based implementation.

For splay trees, adaptive locks precisely match the performance of a plain mutex lock,

outperforming the STM implementation. For fine-grained hash tables, adaptive locks

emulate mutexes, yielding better performance than TM for few threads and identical

performance for more threads. The stress-testing reveals small overheads in our adap-

tive locks, compared to a plain STM approach (see the difference between TM and

adaptive locks in the red-black tree plot). This is due to thecost of the adaptivity logic,

as discussed in Section 3.2. We observed such overheads onlyin stress-testing scenar-
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ios but not in more realistic settings, so we have not emphasized removing the last bit of

overhead. Compared to mutex locks, our adaptive locks have no measurable overhead,

as seen in the splay tree benchmark.

Sensitivity Analysis.In Section 3.3 we mentioned that our current implementation

seems scalable enough for our hardware and compiler setting. Nevertheless, this does

not negate the general observation that adaptive locks are alow-level mechanism whose

performance depends very crucially on careful, often architecture-specific, implemen-

tation. Our code in Figure 2 offers a good example. The code has the following general

structure:

int acquire(al_t* lock) {

int spins = 0; ...

while (TRUE) {

... // try to acquire, break if successful

if (spins == 0) INC(lock->thdsBlocked);

if (spin_thrld < ++spins) Yield();

}

if (0 < spins) DEC(lock->thdsBlocked); ...

}

(Recall that capitalized functions denote atomic operations.) The above code only

performs anINC andDEC operation after a thread starts to spin. That is, the thread is not

accounted for in thethdsBlocked variable until it is delayed in acquiring the lock. This

allows a slightly longer window of inaccuracy in the statistics. The alternative would

be to try to update the counter as eagerly as possible:6

int acquire(al_t* lock) {

int spins = 0; ...

INC(lock->thdsBlocked);

while (TRUE) {

... // try to acquire, break if successful

if (spin_thrld < ++spins) Yield();

}

DEC(lock->thdsBlocked); ...

}

This, however, introduces two atomic operations in the critical path of an uncon-

tested lock acquisition: there are atomic instructions before and after spinning. These

6This counter has higher accuracy requirements than the (racy) counters of transaction tries and commits,
because it pertains to the current state of the lock only, instead of being cumulative (and thus tolerating more
noise).



can interfere unnecessarily with other threads trying to acquire the lock. Furthermore,

in the case of execution in transaction mode, these instructions are a no-op for all

threads: All threads do an atomic increment, attempt to acquire the lock, succeed in

acquiring it in transaction mode, and immediately perform an atomic decrement.

The effect of this change is far from negligible. The performance ofadaptive locks

drops drastically, as the counter of spinning threads becomes a bottleneck even when

in transaction mode. The result is shown in Figure 4 for the red-black tree and hash

table benchmark. Comparing with Figure 3 makes evident the value of the optimized

code. This also underscores the effectiveness of our adaptive locks: The challenge

that our implementation meets is to provide a mechanism thatis sophisticated enough

to closely emulate the behavior of either mutexes or transactions, without allowing

the adaptive reasoning to impose undue overhead over these low-level, performance-

critical mechanisms.
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4.2. Macrobenchmarks

For larger benchmarks of adaptive locks, we used the STAMP (Stanford Transac-

tional Applications for Multi-Processing) benchmark suite [28], version 0.9.7. Subse-

quently, a new version of the STAMP benchmarks has been released and we ported

the three new benchmark applications of STAMP 0.9.10 to alsowork with adaptive



locks (while keeping the slightly different library interface of STAMP 0.9.7, which

was already rewritten for adaptive locks). STAMP comprises8 applications:bayes(a

bayesian network learning program),genome(a gene sequencing program),intruder

(a network intrusion detector),kmeans(an implementation of K-means clustering),

labyrinth (a maze routing program),ssca2(a graph analysis compute-intensive bench-

mark),vacation(a client/server travel reservation system), andyada(an implementa-

tion of Delaunay mesh refinement). All STAMP applications are written to employ

a TM system explicitly. That is, the code contains explicit STM primitives (of the

TL2 STM) for beginning a transaction, transactionally reading/writing a word from/to

shared memory, committing a transaction, etc. As discussedin Section 3, our adap-

tive lock compiler supports a higher-level programming interface: all shared memory

operations become implicitly transactional loads/stores when executing in transaction

mode. Therefore, the STAMP applications needed careful manual modification to en-

sure that the output of our compiler reflects the original hand-written code, and to in-

troduce locking annotations in the code. Our goal was to add only very coarse-grained

locking, equivalent to what a programmer would be able to addwith minimal effort and

sophistication. Indeed, for seven out of the eight STAMP benchmarks (bayes, genome,

intruder, labyrinth, ssca2, vacation, yada) we only introduced trivial locking: a single

global lock for the entire application. For kmeans, 3 separate locks were introduced,

with a localized code change (the critical sections for all 3locks are in a single file and

in adjacent routines).

The performance of adaptive locks for the STAMP benchmarks is illustrated in

Figure 5. (Unless noted, we use the recommended options for high contention non-

simulator runs.) The graphs plot execution times, so lower is better. For a statistical

summary, over all STAMP benchmarks and all thread configurations, adaptive locks

are on average 103% faster than mutexes (min: -27%, max: 1021%) and 76% faster

than TM (min: -35%, max: 660%).

Adaptive locks track very closely, and even outperform the better of the two com-

ponent mechanisms over all applications. We should note that we have low confi-

dence in the results for yada: we have already fixed a number ofperformance and

correctness bugs in the application (independent of adaptive locks) and the measure-
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ments shown were taken after performing an overly conservative, STM-disadvantaging

rewrite (turned many local operations into transactional ones) to avoid crashes. (More

study and a deeper understanding of the yada semantics will undoubtedly address this

problem.) For labyrinth, adaptive locks imitate TM behavior and vastly outperform

mutex locks for all thread configurations. For kmeans, adaptive locks imitate mutexes

and outperform the TL2 STM for all thread configurations. Thebehavior of bayes is

unstable by its nature (the STAMP documentation reads “for multithreaded runs, the

running time can vary depending on the insertion order of edges”, hence performance

is dependent on the scheduling order of threads) but adaptive locks consistently per-

form well for 4 or more threads. More interesting behavior can be seen for genome,

ssca2, and vacation, where adaptive locks emulate mutexes for best performance with

a low number of threads, while executing in transactional mode and perfectly matching

or beating the performance of plain TL2 for higher numbers ofthreads. Occasionally,

adaptivity is profitable even in the course of the same execution. For instance, for

most of the intruder data points, as well as for genome in a 2-4thread configuration,

the adaptive lock version of the program profitably switchesmodesduring execution,

outperforming both mutexes and transactions alone.

Overall, the performance of adaptive locks for STAMP benchmarks validates the

approach very well. Our use of only coarse-grained adaptivelocking illustrates the in-

tended usage mode of the mechanism. Adaptive locks simplifythe multi-threaded pro-

gramming model, by allowing the programmer to write coarse-grained annotations and

achieve easy multi-threaded correctness. The conveniencecomes without sacrificing

concurrent performance: The adaptivity mechanism can detect when coarse-grained

locking is too conservative and recover concurrency (as if using fine-grained locks) by

executing in transaction mode.

Sensitivity Analysis.Adaptive locks may be most useful in settings where transactional

mechanisms are pessimal. It is hard or impossible to statically discern when such

cases may arise. For instance, a single transactional implementation of a data struc-

ture may be included in a program and tested to perform well onits expected platform

and program inputs. When, however, the platform or program inputs vary (e.g., be-



cause other cores on the machine are occupied, or because theinput causes contention

or long-running transactions) performance can be severelysub-optimal. As discussed

earlier, transactional memory mechanisms in software can suffer very high overheads.

Adaptive locks are an automatic way to protect against such variation in setting. Our

benchmarking revealed such cases. For example, Figure 6 shows the performance of

the STAMP vacation benchmark for a very high contention (thehighest of the “rec-

ommended”) setting and a large size (outside the range recommended for “simulator”

execution but still smaller than the non-simulator range).The benchmark consists of a

number of agents performing queries on a database residing in an in-memory red-black

tree. The vast majority of the program’s running time is spent within several heavy-

weight (long) critical sections. The STM’s memory access overhead is crippling in this

scenario. The benchmark is orders of magnitude faster with locks than it is with trans-

actional memory. At the same time, this setting makes concurrency yield no benefit for

the benchmark. This is not the intended deployment domain for vacation, but it is a

perfectly valid input and within the STAMP input recommended range. The large dis-

crepancy in performance, together with the precise imitation of mutex locks, showcase

why adaptive locks can be highly desirable compared to a hard-coded implementation

choice.
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5. Semantic Discussion

It is interesting to note that the transaction and mutex modes of adaptive locks

are not always equivalent. The topic of the semantic differences between locks and

transactions has been covered in significant detail in previous literature [11, 14, 16–

18, 29], and we next discuss how the differences affect adaptive locks.

Although both transactions and mutex locks enforce isolation, mutex locks also

have barrier semantics for both lock acquisition and release, ensuring that all preceding

memory operations are visible to all threads. This can produce surprising results if the

programmer uses adaptive locks with the expectation of getting the exact behavior of

mutex locks. The cases of interest can be broadly classified asprivatization/publication

patterns[14, 29, 30] andlock nesting.

We should note that the our adaptivity ideas are orthogonal to such semantic dif-

ferences. For instance, adaptive locks can employ a transactional memory system en-

forcing strong atomicity [14, 31] or single-global-lock semantics [17], which would

avoid all semantic differences with privatization/publication patterns. Nevertheless,

implementations of adaptive locks may opt to emphasize performance at the expense

of mutex-like semantics, therefore the discussion of this section is highly pertinent. In

particular, our current implementation of adaptive locks uses a TM that does exhibit

semantic differences from mutex locks.

5.1. Privatization/Publication patterns

Consider the following privatization example, adapted from [14]. (The case of

publication [29] is analogous and our statements apply. In fact, it is even harder for an

efficient STM to be publication-safe.)



Thread 1 Thread 2

Item *item; atomic (listlock) {

atomic (listlock) { if (!isEmpty(list)) {

item = Item *item =

removeFirst(list); getFirst(list);

} item->val1++;

int r1 = item->val1; item->val2++;

int r2 = item->val2; }

// Canr1 != r2 ? }

Assume that the program wants to maintain the invariantitem->val1 ==

item->val2 throughout the execution. If the critical sections are executed in mutex

mode, the above code is correctly synchronized, with no raceconditions, and the in-

variant is kept. The two accesses to the item values in thread1 are safe because the

item has been removed from the shared data structure (“privatized”) and therefore can-

not be accessed by other threads—there is no way to observe intermediate states with a

changedval1 but notval2. This is not, however, necessarily the case when the critical

sections are executed in transaction mode. For instance, consider our current imple-

mentation of adaptive locks, which uses TL2 [26] as its underlying TM system. TL2

uses a “deferred update” approach, where writes to memory are stored in a log. A trans-

action commits by first locking all the memory words written by the transaction, then

validating all memory words read (by checking their “version numbers”) and finally

copying the updated values from the log to the written words in shared memory. In this

example, the two transactions do not write to the same words.Therefore, transaction 2

can commit “first” (i.e., validate its read of the first data structure item before transac-

tion 1 updates it) yet, while it writes to shared memory the changes toitem->val1 and

item->val2, transaction 1 can commit, removingitem from the data structure while it

is being updated.

One way to view the problem is that TL2 guarantees the serializability of transac-

tions only for direct read-write and write-write conflicts,and not for indirect conflicts.

In this example, the transactional system has no way of knowing that the writes to



item->val1 anditem->val2 can conflict with the read actions of Thread 1, since these

are outside all transactions. In other cases, such conflictswould be races even in the

mutex mode of execution of an adaptive lock. Nevertheless, privatization is a special

case, as it makes the data structure element invisible to anyother thread.

This observation leads to a simple (though perhaps too strict) criterion for the equiv-

alence of mutex mode and transaction mode execution of adaptive locks: For each

shared memory location there should be a lock, such that every access to the shared

memory location occurs with the lock held. This is a form of astatic-separationcri-

terion for partitioning shared data according to their expected accesses. Indeed, this is

the standardlockset[32] well-formedness criterion for multi-threaded programs. The

lockset heuristic has been used (in its pure form or with various refinements) as the ba-

sis of some of the best known race detectors and multi-threaded correctness checkers

[32–35]. We can check that a program respects the lockset correctness condition using

any of these static or dynamic analyses. Note that this condition disallows our priva-

tization example. If the program does respect the lockset criterion, then all possible

(low-level) races are prevented by the TM system, as shared data are always accessed

while holding an adaptive lock (i.e., inside a transaction,when in transaction mode).

This guarantees the safety of transactional execution if mutex mode execution is safe.

Still, as explained in the next section, this is not a full correctness guarantee.

Other, more permissive, programming models for transactions with weak atomicity

have been recently proposed and can be similarly adapted to our setting. For instance,

dynamic separation[20] requires that data be explicitly “released” at run-time, when

they go from being accessed inside transactions to being accessed outside transactions.

This can be again used to make the transactional memory mechanism handle privatiza-

tion and publication correctly, without imposing undue overhead to regular transaction

execution.

5.2. Lock Nesting

We view nesting as the complementary problem of privatization (and weaker atom-

icity models, more generally) in the semantic differences between transactions and

locks. Nesting concernsprogressproperties while atomicity models concernsafety.



Nesting causes problems when programmers expect that the effects of a shared

memory operation become accessible to other threads at the point of a lock-release. In-

deed, most concurrent memory models guarantee that a lock-release operation acts as a

memory barrier, resulting in the flushing of write buffers. When transactions are nested,

however, their results do not become visible until the outertransaction commits—this

is the standardclosed-nestedsemantics of transactions. In this case, implementing the

outer critical section as a transaction is incorrect. To seethe problem, consider the

following example. Functionbarrier implements a simple barrier by spinning until

all threads reach the same point.

void barrier() {

atomic (l1) { n++; }

bool done = false;

do {

atomic (l1) {

if (n == allThreads) done = true;

else sleep();

}

} while (!done);

}

The problem begins when thebarrier routine happens to be used inside a different

critical section, possibly protecting completely distinct data.

atomic (l2) { ... barrier(); ... }

If this code executes in mutex mode, the barrier is correct. If, however, the code

executes in transaction mode, then the execution of the entire outer transaction (on

adaptive lockl2) happens in an all-or-nothing way. That is, the incrementn++ can

never be visible to other threads until the outer transaction commits, which will never

happen, as the thread needs to see then++ actions of all other threads prior to exiting

the barrier.

This semantic difference between mutex and transaction mode is a much less se-

rious problem than that of privatization, as it only arises for low-level mechanisms

that rely on noticing updates to shared data and reacting to them while holding locks.

Doing so, however, requires repeated sampling of the shareddata—i.e., spinning. In

practice, most programs will implement shared-data communication using some high-

level mechanism, such as condition variables. Past studies[36, 37] have also found



lock nesting to be rare in existing multi-threaded applications (although other studies

disagree for the domain of kernel synchronization [38]). Despite the low practical inter-

est, however, it is worthwhile to discuss this case for completeness: It is an interesting

question whether we can ensure the full equivalence of mutexand transaction modes,

even for low-level coding patterns.

Note that the lockset criterion of Section 5.1 does not protect us against this se-

mantic issue. For instance, the barrier example does respect the lockset heuristic, as

every shared memory word is accessed withl1 held. Nevertheless, there is a sim-

ple additional condition that prevents such problems:If the set of held locks (i.e., all

surrounding locks) is the same for every thread that tries toenter a critical section

protected by lock l, then transaction mode and mutex mode execution are equivalent.

This condition does not require a separate analysis of the program. It can be checked at

run-time, when a thread acquires adaptive lockl and the adaptivity mechanism decides

to execute the critical section in transaction mode. In thiscase, the set of already held

locks is compared against the set of held locks by other threads that also holdl. If the

two sets differ, then the original critical section needs to be aborted and restarted in mu-

tex mode. Our current adaptive locks implementation does not support this mechanism

for reasons of engineering and because of its questionable practical impact.

Why is this condition sufficient for preventing semantics differences, however? The

reason is that for the semantic difference to become apparent, a thread needs to be able

to observe the effects of an inner critical section, without needing to hold the same

outer lock (or else it would be prevented from entering the outer lock even in mutex

mode). Consider our barrier example. The essence of the problem is that thebarrier

routine can be called whilesometimesholding lockl2 and sometimes not. If all threads

consistently calledbarrier while holdingl2, then the result would suffer from the

lack-of-progress error, but the error would also exist in mutex mode. Only when a

thread is allowed to callbarrier without holdingl2 is the mutex mode execution

correct, while the transaction mode one is incorrect.

To summarize, we have shown that although the semantics of mutex mode and

transaction mode are not identical, the difference is confined to limited cases. The

most important one in practice is the case of privatization and publication, which can



be detected using standard multi-threaded correctness analyses.

6. Related Work

We discussed directly related work throughout the previoussections. Here we out-

line some work that is less directly related, yet offers context for our work, or explores

closely related directions in different settings.

Transactions originated in the databases research literature [39] before they transi-

tioned to general-purpose programming in the form of transactional memory [40]. Al-

though the principles are similar, the challenges in the twodomains are quite distinct.

For instance, TM has to allow for arbitrary memory accesses and, thus, cannot gener-

ally predict all locks that need to be acquired. Furthermore, the granularity of access is

finer in TM, creating very different trade-offs for high-performance implementations.

In the database world, our adaptive locks might be describedas a mechanism adapt-

ing betweenoptimistic concurrency controlandpessimistic concurrency control. The

term “optimistic” refers to allowing transactions to proceed in the hope that they will

not conflict, while installing mechanisms to detect such conflicts. The term “pes-

simistic” refers to acquiring locks up front, so that any transactions that have the

possibility of conflict end up serializing. Database researchers have explored com-

binations of optimistic and pessimistic concurrency control, and so have researchers in

automatic parallelization [21, 41]. The options are sometimes said to be akin to “apol-

ogizing versus asking permission” [42]. The mutex mode of our adaptive locks is an

ultra-pessimistic mechanism, as it forces all transactions to “ask permission” up front.

Receiving permission means that the transaction can proceed and is guaranteed to not

roll back: it has “reserved” the right to perform its memory operations.

The PhTM [43] system is related to our work in that it describes a mechanism for

dynamically switching synchronization mechanisms. Nevertheless, our work advances

the PhTM ideas in several ways. First, PhTM introduces only asingle global lock

instead of individual locks. Second, although the PhTM “S-N” mode

supports switching to lock-based execution, the PhTM prototype does not support such

switching. In fact, the PhTM authors speculate, “we can likely improve performance

in most cases by monitoring progress of transactions, commit/abort rates, status of



transactions with respect to the current mode, etc.” and conclude that “[f]uture work

includes ... mechanisms for deciding when to switch to what mode.” Our work directly

addresses these topics. Other researchers have recently also proposed mechanisms for

replacing locks with software transactions [44], again without a cost-benefit adaptivity

model to guide a run-time mode switch.

Several other recent research projects have either alternated between pessimistic

and optimistic TM implementations or provided support for irrevocable/single-mutex-

mode transactions [45, 46]. Additionally, the issue of contention management [47–49]

is closely related to adaptive mode switching. A contentionmanager decides on a

policy for favoring transactions in the case of contention,possibly radically switching

the performance characteristics of the system. A close relative of adaptive locks in this

space is the work of Ni et al. [48], which describes a real-world implementation of

transactional constructs for C and C++. Their approach includes multiple mechanisms

that are related to switching implementation policy, including transactions that can

perform irrevocable operations, transactions that put allother transactions on hold,

and switching a transaction between optimistic and pessimistic concurrency control.

Nevertheless, neither the Ni et al. work, nor other work on irrevocable transactions

or contention management offer a clear cost-benefit model for dynamically deciding

concurrency vs. exclusion for best performance. Specifically, none of the above work

seems to collect statistics on nominal contention per lock,or on transactional execution

overhead, although taking the number of transaction (re-)tries into account is common.

Our exploration of adaptive locks is in the context of a pure software implementa-

tion. An important trend is to provide hardware support for TM [50–61]. With hard-

ware support, the performance trade-offs change—e.g., the transactional overhead of

loads and stores may be virtually eliminated. Yet the idea ofadaptive locks should be

quite applicable to hardware TMs: even with no overhead for TM execution, it will

be beneficial to adaptively detect when transactions have high actual contention and

mutual exclusion would be profitable. (In practice it is unlikely that TM execution will

incur truly no overhead, i.e., that the factoro will be 1. Failed transactions can generate

bus traffic that will slow down successful transactions. Additionally, the system may

prefer to delay transactions and retry a memory operation, rather than aborting, possi-



bly also for energy reasons. Overall, it is likely that all three factorso, a, andc of our

cost-benefit analysis will play a role, even in hardware implementations.) Furthermore,

most hardware support for TM employs a hybrid software-hardware approach—e.g.,

transactions that access a lot of shared data need to be implemented in software, making

our approach perfectly applicable. Finally, many of the adaptivity ideas of this paper

(e.g., keeping track of the number of transaction tries or blocked threads and deciding

the execution mode based on those) can be employed in hardware mechanisms such as

speculative lock elision [9] or optimistic thread concurrency [61].

Dice et al. [62] present a survey of tests on the Rock multicore processor’s hardware

transactional memory feature. The feature is described as abest-effort HTM. It can

fail for any number of reasons and, when it does, it relies on software to handle the

aborted transaction. In addition, a register is set to detail the cause of the failure.

Causes include coherence violations, branch mispredictions or the simple filling of the

hardware buffer that holds changes prior to commit. The experiments handle the aborts

by either retrying, backing off, switching to an STM or switching to a lock. A simple

notion of adaptivity is employed, since the switches only occur after a certain amount

of aborts and, in some scenarios, different causes for aborts are weighted differently.

The TxLinux work [38] provides synchronization primitivesto allow transaction-

and mutex-based synchronization to co-exist. The mechanism automatically detects

I/O and restarts the running transaction in mutex mode. TxLinux is implemented using

special primitives offered by its HTM that adopts eager conflict detection and in-place

updates, and some special features of its processor to support I/O detection. No adap-

tivity between transaction and mutex is explored for performance.

Volos et al. [63] introduce xCalls: wrapper functions around some system calls

that provide transaction-friendly semantics. xCalls workby deferring side effects until

commit or executing immediately and reverting at commit time. xCalls do not have

wrappers for system calls that cannot be dealt with on these terms. A number of the

calls use user-level OS locks on system resources to preventother threads from seeing

changes from in-flight transactions. It would be interesting to integrate xCalls with

adaptive locks, in order to expand the space of code that can execute in transaction

mode (by including also code that performs some I/O calls). Nevertheless, the integra-



tion would require significant work, because of the possibility of “undone” effects of

past system calls existing when we switch from transaction mode to lock mode. For

instance, on a pipe read call, xCalls keeps a buffer of destroyed data, to be used in case

of a transaction abort and retry. Switching to mutex mode would result in calling the

unwrapped system call and missing these data.

7. Conclusions

We presented the idea ofadaptive locksas a concurrency control construct for

multi-threaded programming. A major contribution of our work is in identifying the

statistics needed for an effective cost-benefit adaptivity analysis and in developing

mechanisms for maintaining such statistics highly efficiently. Overall, we believe that

our work establishes adaptive locks as an excellent candidate for inclusion in industrial-

strength systems.

The efficiency of our adaptivity approach suggests several other future applica-

tions. One promising possibility is adaptive switching between a pessimistic and an

optimistic TM implementation—i.e., rolling back on deadlock vs. rolling back on ac-

tual contention. Although both pessimistic and optimisticTM approaches perform

best when there is no actual contention on the data, pessimistic TM approaches re-

duce the probability of roll-back at the expense of some thread waiting for locks to

become available. Adaptivity can help determine when this trade-off is profitable. An-

other potential application of adaptivity is in changing the locking granularity of a TM

system: an adaptive TM can start with associating lock words(used internally by the

TM implementation) at a coarse granularity. Then, as nominal contention is encoun-

tered, the system can switch to a finer granularity, and possibly back, if the overhead of

fine-grained locking appears heavy and unwarranted. Such granularity switching is ap-

plicable to practically all TM systems we are aware of, both pessimistic and optimistic.

Our adaptive locks can be seen as an extreme case of both granularity switching and

pessimistic-optimistic switching at the same time.

Generally, we believe that the idea of adaptive concurrencycontrol holds significant

promise and that adaptive locks, as analyzed in this paper, are an excellent representa-

tive of the possibilities.
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