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Abstract

Transactional memory is being advanced as an alternativeadiitional lock-based
synchronization for concurrent programming. Transaetianemory simplifies the
programming model and maximizes concurrency. At the same, tiransactions can
sufer from interference that causes them to often abort, froavih@verheads for
memory accesses, and from expressiveness limitationsf@g.§O operations). In this
paper we propose an adaptive locking technique that dyrsipnimbserves whether a
critical section would be best executed transactionallyloife holding a mutex lock.
The critical new elements of our approach include the adigyptogic and cost-benefit
analysis, a low-overhead implementation of statisticéectibbn and adaptive locking
in a full C compiler, and an exposition of th&ects on the programming model. In
experiments with both micro- and macro-benchmarks we f@dagptive locks to con-
sistently match or outperform the better of the two componsechanisms (mutexes
or transactions). Compared to either mechanism alone tigddpcks often provide
3-t0-10x speedups. Additionally, adaptive locks simpttig¢ programming model by
reducing the need for fine-grained locking: with adaptivekky the programmer can
specify coarse-grained locking annotations and oftenexetfine-grained locking per-

formance due to the transactional memory mechanisms.
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1. Introduction

Multi-core processors are turning shared-memory paisiielinto the default
model of computation for mainstream software developmgltihough there are ways
to take advantage of such parallelism throughiedent high-level paradigms (e.g.,
stream processing [1] or message passing [2]) Explicit iniuleading remains the
most direct way to program parallel systems. In the multedlded programming
world, interference between threads is a major issue amdtsés hard-to-trace defects
such as race conditions or deadlocks. Traditionally, mogners have coordinated
threads using programming patterns based on mutual-eéaul(rautey locks.

In recent years, an alternative model has been proposetiremd coordination.
Transactional memor{¢TM) replaces mutexes and condition variables with “atédmic
blocks of code, that are meant to execute as if all other ttsréad stopped running
during the execution of the atomic block. TM has intriguethtsoftware and hardware
designers, and many major processor manufacturers hasgglannounced support
for TM in upcoming architectures. The advantage of TM is wldf First, it dfers
a higher-level programming model by obviating the need fatirsg which locks to
acquire. This means that code is more composable: Callarstdeeed to know which
locks their callees hold, and writing code does not requisea@ knowledge of which
locks are used by possibly interfering threads. The pdagiloif low-level deadlock
is also avoided, as there is no potential for the programmertoneously specify
circular lock dependencies. Furthermore, TM does not redinie-grained delineation
of critical sections in order to achieve high concurrencyosMTM implementations
allow threads to proceed unless they interfere on the sam@dimemory data. In
contrast, mutex locks conservatively prevent threads fpooceeding if they need to
acquire the same lock, even if they never access the same data

The TM approach is not free of disadvantages, however. addiofs eliminate
deadlock, but replace it with possible livelock or sloweogness: Interfering threads
can cause each other’s transactions to abort and retnhdfarbre, transactions cannot
easily support irreversible operations, such /&, despite several proposals in this

direction [3—6]. Finally, when transactions are implengelih software they can fier



from high overheads during the execution of atomic blockerf shared memory read
and write operation needs to be trapped and treated spediak overheads have led
some authors to even claim that software TM is “only a redesny’ [7].

In this paper, we preseatlaptive locksa synchronization mechanism combining
locks and transactions for best performance. In our appralae programmer specifies
critical sections, which can be executed either with muéxalusion or atomically as

transactions. For instance a critical section

atomic (11) { ... }

is equivalent to either

atomic { ... }

(when the system executestiansaction modgor

lock(11); ... unlock(1l1l);

(when the system executesnmutex mode At any point in time, all critical sections
that use the same locki, have to execute in the same mode.

The decision to execute in mutex mode or in transaction megeimids on the ob-
served behavior of the critical section, namely onmleninal contentiorthow many
threads are blocked on the lock when in mutex mode)atheaal contentiorihow many
times each transaction retries when in transaction mode)tteetransactional over-
head(how much slower is the critical section when in transactitode compared to
mutex mode). Our adaptive locks compute these three fadyaramically during the
program’s execution and combine them for an accucat#-benefit analysisas de-
scribed in Section 2. We present techniques for perforntiigydomputation highly
efficiently. The overall adaptive lock implementation impogesy/ low overhead com-
pared to either a regular mutex lock or a transaction.

What adaptive locks achieve is the ability to dynamicalljtslvconcurrency mech-
anisms depending on execution conditions. A single code f&g., a library imple-
mentation of a general data structure, such as a hash tableedrcan be used in en-
vironments with high or low contention and always achievtmal performance. For

example, a program could contain two tree structures, bofilemented by the same



code, but one of them being large and accessed by many thvelitisthe other being
small or only infrequently accessed concurrently. Withpka locks, unnecessary
overheads due to concurrency mismatch will be avoided fur bata structures.

The adaptive locks programming model resembles mutex loak® than it does
transactions. For instance, the deadlock-freedom and cosafyiity guarantees of
transactions are not preserved, since our critical sectioay execute in mutex lock
mode. It is, therefore, important to ask, “are adaptive fojclst an optimized imple-
mentation of locks?” Based on the benefits observed in oduatian, we argue that
the practical impact of adaptive locks is much more than tat believe that adaptive
locks significantly change the programming model for coremuey. Adaptive locks
allow the programmer to concentrate only ararse-grainedocking approaches, in-
stead of trying to achieve more performance by introducimgrepronefine-grained
locks. The performance of fine-grained locks is then oftdly fiecovered automat-
ically by employing the TM mechanism when appropriate. Alf denchmark mea-
surements are implemented with very coarse-grained looktations (often a single
global lock, which trivially has good composability and dexk-freedom properties),
yet still achieve significant performance improvementadé@ed, such coarse-grained
locks can also be automatically inferred for correctness;$8].) Thus, adaptive locks
encourage programmers to use locks at whichever level dfeadtion correctness is
easy to establish, and not at the granularity needed foopaédnce.

Some of our work’s closest relatives in the research litesséire Rajwar and Good-
man’slock elision[9] and Welc et al.’4ransactional monitor§10]. (There is more re-
lated work and we discuss it in detail in Section 6.) Lockiefigs a hardware technique
for (effectively) implementing locks as low-level transactiongt With no clear adap-
tive cost-benefit model, as the one we introduce. Welc et ishhsactional monitors
implement locks optimistically as soon as the monitor em¢ers contention. Again,
there is no dynamic cost-benefit model for the two modes of@tien, or a possibility
of reverting back to locks if the TM mechanism turns out totficient. Welc et al.
acknowledge the need for more adaptive solutions, whichwauk provides. Finally,
the work in this paper is an evolution and realization ofriba-blocking lock#&dea that

we presented in an earlier position paper [11]. Overall,amuncrete contributions are



as follows:

e \We present a highlyficient and &ective implementation of the concept of adaptive
locks. Our adaptive locks keep precise statistics on thasehof the program, and
dynamically adapt to it based on an online cost-benefit aislyvhile introducing
very low overhead: acquiring an adaptive lock is practjcalb more costly than
acquiring a mutex lockimportantly, this removes all performance arguments used
in favor of locks and against Software Transactional Men|@ly transactions are
used only when they yield benefits, and incur no overheadwitte Thus, contrary
to the assertion of Cascaval et al., Software Transactigleahory is much more
than a “research toy”: at the very least it is an excellent teaynplement locks. We
describe the optimizations responsible for our mechassigffitiency—e.g., trading
some inaccuracy in our statistics in exchange for shortgttia critical path of lock
acquisition and avoiding bottlenecks. Our implementaisoim the form of a full C

compiler, based on the CIL framework [12], and is freely &lzle for download.

We evaluate adaptive locks with several micro- and macrehmarks. Our evalua-
tion shows that adaptive locks combine the performanceftieioé mutex locks and
transactions. In every case, the performance of adaptoks lolosely matches the
performance of the better of the two component mechanisrhis allows adaptive
locks to achieve the highest possible performance not qudifferent applications,
but also for dfferent configurations of the same application. For instamealemon-
strate performance improvements of several factors féerdint degrees of hardware
concurrency (e.g., 3x faster than TM for 2 processors, 3Jefahan mutex locks for

64 processors).

Compared to either mutex locks or transactions alone, adalstcks routinely
achieve order-of-magnitude performance improvements roylaing the perfor-
mance of the complementary mechanism. Adaptive locks aoualyy outperform
both component mechanisms at the same time, by up to 50%odhe varied con-

tention behavior of dferent application phases.



2. Design and Adaptivity Logic

We next discuss the concept of adaptive locks, as well asastebenefit logic that

the locks implement in order to choose their optimal executhode.

2.1. Programming with Adaptive Locks

Adaptive locks introduce syntax for a labeled atomic sectithis is a block struc-
tured construct, headed by the keywetdnic with a label indicating which adaptive
lock protects the code statement (usually a block statentiesnt follows. By conven-
tion, in this paper (as well as in our implementation) adegptocks are declared as

instances of typel_t, e.g.:

al_t lockil;
atomic (lockl) { ... /* critical section */ }

The programmer is responsible for ensuring that the lockladre “correct’—i.e.,
that the program will work correctly if all instances efomic (<IckLbl>) are replaced
by a regular mutex,ock (<IckLbl>). (We assume a block-structured mutex lock, with
an unlock performed at the end of the block.) The programisertzas the obligation
to ensure that the program is equally correct if all lock latsre dropped and all
critical sectionsatomic(<lckLbl>)<stmt> execute as transactions,omic <stmt>, in
a conventional TM system (e.g., [13-15]). The reason is titasactions can have
subtly diferent behavior from mutex locks [11, 14, 16-18]. Nevertb=l¢he topic
of adaptive locks is orthogonal to suctfdrences. For instance, one can implement
an adaptive scheme with a TM system supporting single-dflololt semantics [17].
For weaker back-end TM systems, the programmer can ensueetieess of adaptive
locks code under either mode by employstgtic separatior(i.e., ensuring that data
that are ever shared are always accessed under a lock [JyrH8inamic separation
[20] techniques. We will discuss this topic in Section 5, vehee also fer a general
condition for the semantic equivalence of transactions rantexes. Note also that
adaptive locks do not support transactional constructséiyaon retrying (such as an
explicit retry or abort statement). Condition synchronization is supported erpli

as in a regular lock-based programming model, and not stedlilasingretry.



The adaptive lock implementation is, thus, free to execliedritical section it
protects either as a transaction or as a critical sectiotepied by a mutex lock.As
mentioned in the Introduction, we say that the adaptive isaktransaction moder in
mutex moderespectively. All critical sections associated with tiaeng adaptive lock
have to execute in the same mode at a given time. If a threexktriacquire an adaptive
lock and decides it wants to execute in &elient mode than the current one, it marks
the adaptive lock “in-transition” and waits until all cuntecritical sections executing
with this lock finish. (Clearly, there is more than one catisection executing only
if the adaptive lock is in transaction mode.) While the logkni-transition, no further
mode switching decisions can be made. Furthermore, in the @block nesting, the
mode of a nested adaptive lock canndtetifrom the mode of a surrounding lock.

The reasons for switching the mode of an adaptive lock ahneedorrectness- or
performance-related. In the former case, if the lock is etiag in transaction mode
and an irreversible/O operation is called, the (outermost) critical sectiornia®s in
mutex mode. (Waiting on condition variables is also an &rsible action, so our
adaptive locks revert to mutex mode execution when theyumteoit inside a critical
section.) The latter case captures the heuristic at theat@eaptive locks, for deciding

when to switch modes in order to improve performance.

2.2. Cost-Benefit Analysis

The main reason for executing an adaptive lock in transactiode is that mutex
locks can exhibifalse exclusiofi21]. A single mutex lock is commonly used to protect
a large amount of shared data—an approach knovaoasse grained lockingin this
way, multiple threads are blocked from accessing the datn & cases when they
would not really conflict. Programmers use coarse graineking because it is often

far easier than trying to correctly associate locks withllanamounts of data. Several

30ne can argue that the terms “transaction” and “mutex loek&rto programming models, rather than
implementation mechanisms. E.g., transactions can beemwgited by a mechanism that guarantees ex-
clusion, or mutex locks can be implemented speculativetythis paper, we use the terms to refer to the
implementation mechanisms overwhelmingly associatek thiém in common practice. We have found this
to be best for communications purposes: when describingvotk, listeners have been more likely to grasp
it quickly if we explain it as a “mechanism adapting betweeunter locks and transactions” rather than as a
“mechanism adapting between speculative and non-spaeulatks, where the speculation is implemented
through TM techniques”.



domains and data structures (e.g., red-black trees) apeimasly dificult to code with
a fine-grained locking discipline.

Therefore, the performance benefit of transactions is duggioer concurrency:
More threads can execute the same critical section wittrséi@ions than with mu-
texes. Assuming that separate processors exist to runtivesels, a net performance
increase can result.

At the same time, executing an adaptive lock in transactiodemncurs high over-
heads when there is true contention on the data. In this ddBerent threads interfere
with each other, preventing the successful commit of tretimas. Therefore, trans-
actions have to retry multiple times before they succelgsftdmmit, and the result
is slower progress, or even livelock. The problem is solvé@nvswitching to mutex
mode because the thread “reserves” the right to run upsftbos making progress
without interference.

A second factor hindering the performance of transactioderie that, in pure-
software TM, there is typically a high overhead associatétl executing a critical
section transactionallySoftware transactional memory (STystems [22] need to
execute logging actions on each read or write operation afeshmemory data. De-
pending on the design of the STM, the logged values are aitbent to update shared
memory on transaction commit@do-logging, or to revert shared memory to its previ-
ous state on transaction abarh@lo-logging.* A second overhead is due to the need to
perform synchronization operations (e.g., acquiring foa&sociated with each written
word) to ensure consistent memory writes. The need for hggygictions and syn-
chronization imposes a heavy overhead on shared memorgtaper and often slows
down transaction mode execution of critical sections byaificant factor (e.g., 2-8x).
Additionally, STM implementations often impose extra dwesads for policy-specific
reasons—e.g., re-validating the read set when a confligtescted, incurring cost for

aborting, etc.

4A few STM systems sffier no such overhead [23-25], by translating transactioiesldck acquisitions
and releases in a way that guarantees deadlock-freedom tfarg] the transaction never needs to retry).
The performance of such “auto-locking” systems dependsialiy on (non-modular) compiler analysis or
program annotation. No representative of this approactyéiachieved the same level of performance as
standard STMs (pessimistic or optimistic) in a generappse, automatic setting.



Therefore the adaptive lock analysis of whether to executeansaction mode or

mutex mode has to take into account three factors:

¢ Nominal contentiorfc): the number of threads contending for the lock. This quan-
tifies the potentiabenefitof executing in transaction mode instead of mutex mode.
The quantity can be measured by keeping a counter of how rhaegds are blocked
on the lock when in mutex mode. When in transaction madg equal the number

of threads currently executing the critical section.

¢ Actual contentior{a): the number of times a transaction needs to try before it-com
mits. This quantifies the contention by other threads on thesh data the critical
section tries to access. The quantity is a multiplicatieedain thecostof executing

the critical section in transaction mode.

¢ Transactional overhea(b): the slowdown factor due to transactional execution, be-
cause of the need to trap shared memory reads and writesedoketa synchronize,
the need to re-validate as part of a complex contention neanagt policy, etc. This

is a multiplicative factor in theostof transaction mode.

Thus, the cost-benefit analysis of adaptive locks is basdédeoimequality:

a-ox>c

(The two sides correspond to the overheads of each mode ofitexe relative to an
idealized, no-contention execution. All three factors@mputed separately for each
adaptive lock, since the decision on which mode to exedtiéets all critical sections
of the lock.) If this inequality holds, mutex mode executispreferable, otherwise the
benefit of transaction mode execution outweighs its coste Nt the analysis applies
and a trade- exists even if transactional execution incurs no overheas 1), e.g.,
through the use of specialized hardware.

The above cost-benefit analysiseisactand not approximate, yet approximations
need to be introduced because, for instance, it is hard teuneahe overheaal fully
accurately, factoa is predictive of future executions so it needs to be estithfitam

past data, etc. As we describe next, facmenda are computed dynamically at all



times. Factop is also computed dynamically by sampling a subset of theudiats—
an approach that proved superior té-line estimates in our measurements due to the
high variance ob for different applications and locks.

To see the advantage of having a complete model for cost amefibeconsider,
for instance, the adaptivity approach followed by Welc et [dl0]. Their technique
converts a critical section to a transactional implemémteds soon aany contention
is observed, i.e., as soon ass more than 1. This completely disregards the costs
of transactional execution and results in obtaining godthlmr only for transaction-

friendly workloads.

3. Implementation and Optimizations

We next describe our implementation of adaptive locks. Wecsigely present key
components that expose the precise logic (e.g., behavienwah adaptive lock is in

the process of switching modes) or reveal crucial elemenmtsi§h performance.

3.1. Compiler and Locking Mechanism

We have implemented adaptive locks in a conservative eiten$the C language.
Our compiler is based on the CIL infrastructure [12] for exdible C compilers. A
special pragma at the function level is used to suppbnic annotations: the entire
body of the function is then considered to be protected bytreesponding adaptive
lock. The compiler translates each function body with atarnotations into two
different object code versions:raw version used for mutex mode execution and in-
curring no further overheads, andransactional versionwhere all shared memory
reads and writes become TM operations for an underlying SMsuse TL2 [26], a
high-performance STM library, as our back-end STM. Our enpéntation is freely
available (seewttp://ix.cs.uoregon.edu/~takayuki/al/) and represents a mature
open-source compiler infrastructure for STM experimeatatOther researchers can
build on our compiler support for TM by modifying our CIL paths to produce full
compilers either for dferent TM constructs or for @ierent back-end TM implementa-

tions.



Our implementation of adaptive locks replaces regular kxzkuisition and release
with versions that perform the adaptive reasoning. We useralard pattern for high-
performance synchronization: The adaptive lock’s stafgaisked in a memory word
and we represent bit blocks adffdrent pseudo-variables. The components of the
state include the number of threads executing in transaotiode ¢hrdsInStmMode),
whether we are currently in mutex modeufexMode), whether the mutex lock is
held (LockHeld), and whether we are currently in the process of switchingleso
(transition). The next state is then computed and updated atomicallyanégompare-
and-swap ¢as) instruction. The thread spins, retrying the state updaté the cas
succeeds, or until exceeding a number of tries, in which itdeses to yield the CPU.

These elements are illustrated in Figure 1, which shows tdte $ransitions of
adaptive locks, as well as in in Figure 2, which contains tbdecfor theacquire
routine—the main workhorse of the lock acquisition proces§his routine is called
every time a thread attempts to acquire an adaptive lock. rétuen value indicates
whether the adaptive lock was acquired in transaction morli§_MODE) or mutex

mode {lUTEX_MODE). Introducing some conventions is helpful:

e The separate bit ranges of both the current statev] and the next statméxt) are
set through macros maintaining the naming convention. ®&tance, checking the
lockHeld bit of the current state is done with the expressie¢kHeld (prev) whereas
setting the same bit to 1 on the next state is done with theedlbckHeld (next,1).
We useTrUE and FALSE for 1 and O, respectively, when the bit value represents a

boolean.

e Atomic operations are shown in all capital lettersc, DEc, andcas call (directly or
indirectly) atomic instructions. This will be important @h we discuss performance

optimizations.

e Each adaptive lock holds data for computing its adaptivigtistics. These
data are not accessed directly in the code of Figure 2, withekception of
lock->thdsBlocked: a counter of threads blocked on the lock, if the lock is inexut

mode—addinghrdsInStmMode Yields thec factor from Section 2.2. For its adaptiv-



From | To Condition for transition

So S; Acquire, mode= STM

So Ly Acquire, mode= Lock

S; So Release, thrdsiInStmModel

S; Sl | Acquire, mode= Lock

Lo Ly Acquire, mode= Lock

Lo S, Acquire, mode= STM

Ly Lo Release

Ly LS, | Acquire, mode= STM

Sl Sl; | Release, thrdsinStmModel

LSy LS; | Release

Sl Ly Acquire

LS; S, Acquire

State | mutexMode | lockHeld | thrdsInStmMode| transition | Description

So 0 0 0 0 STM mode, no thread in critical region
S 0 0 >1 0 STM mode, thread(s) in critical region
Lo 1 0 0 0 Lock mode, no thread in critical region
L1 1 1 0 0 Lock mode, thread in critical region

LSo 0 1 0 1 Begin transition from lock to STM mode
LS: 0 0 0 1 Signal completed transition from lock to STM mode
Sly 1 0 >1 1 Begin transition from STM to lock mode
Sl 1 0 0 1 Signal completed transition from STM to lock mode

Figure 1: Adaptive lock state machine with explanation eftet and transitions. We need two transi-
tion states in each direction, because of AuguirgReleas@\cquire handshake taking place (for ensuring
progress during mode switches). The initdquire changes to the first transitional state, then waits for
the Releaseoperation to complete, which is signaled by the move to tlverse transitional state, and the
Acquirethen completes the transition by goingSg/L;.



Mode acquire(al_t* lock) {
int spins = 0;
int useTransact = MUTEX_MODE;

while (TRUE) {
intptr_t prev,next;
prev = lock->state;
if (!transition(prev)) { // we are not already in transition
if ((useTransact = transactMode(lock,spins)) == TRANS_MODE)
{ // we are better off in transaction mode
if (!'lockHeld(prev)) { // the lock is free or in transaction mode
next = setMutexMode(prev, FALSE);
next = setThrdsInStmMode(next, thrdsInStmMode(next)+1);
if (CAS(lock->state,prev,next) == prev) break;
} else { // the lock is in mutex mode. Need transition
next = setMutexMode(prev, FALSE);
next = setTransition(next, TRUE);
CAS(lock->state,prev,next);
}
} else { // we are better off in mutex mode
if (!'lockHeld(prev) && thrdsInStmMode(prev) == 0)
{ // the lock is free, no threads in crit.sec.
next = setMutexMode(prev, TRUE);
next = setLockHeld(next, TRUE);
if (CAS(lock->state,prev,next) == prev) break;
} else if (!mutexMode(prev)) { // lock is currently in transaction mode
next = setMutexMode(prev, TRUE);
next = setTransition(next, TRUE);
CAS(lock->state,prev,next);
}
}
} else { // we are in transition
if (!mutexMode(prev)) { // we want to transition to transaction mode
if (!'lockHeld(prev)) { // and the lock is no longer held
useTransact = TRANS_MODE;
next = setThrdsInStmMode(prev, 1);
next = setTransition(next, FALSE);
if (CAS(lock->state,prev,next) == prev) break;
}
} else { // we want to transition to mutex mode
if (thrdsInStmMode(prev) == 0) { // and it seems we can do so
useTransact = MUTEX_MODE;
next = setLockHeld(prev, TRUE);
next = setTransition(next, FALSE);
if (CAS(lock->state,prev,next) == prev) break;
}
}
// account for blocked thread on first spin
if (spins == 0) INC(lock->thdsBlocked);
if (spin_thrld < ++spins) Yield();
} /* end while(TRUE) */
if (0 < spins) DEC(lock->thdsBlocked) ;
return useTransact;

}

Figure 2: The main routine for adaptive lock acquisition.tuRes whether the lock was acquired in mutex
mode or transaction mode.



ity logic, theacquire routine callstransactMode Which implements the cost-benefit

analysis of Section 2.2 and returns the estimated best noodled adaptive lock.

We can now see precisely the behavior of adaptive lockselfdbk is not already
in a state of transition from one mode to the other then thé-lesefit analysis is
performed to see what is the optimal execution mode. (It esgary for ensuring
progress to choose the mode using the cost-benefit anahjlgisvben the lock is not
already in transition. Otherwise, threads that decide tuime the adaptive lock in
mutex mode might be waiting for all threads executing in $eation mode to finish.
Yet new threads can keep acquiring the lock in transactiotlemdgth no problem, thus
causing the thread desiring to enter in mutex mode to wadvierr) All possibilities
end with an attempt toas into the next state of the lock. If theas succeeds, in most
cases we are done, unless we are switching modes, in whiehtlvasas will just
set the state to be in-transition, and will repeat the loaiil the new state is set. A
failed cas results in retrying, up to a predefined threshold of timgs{_thr1d) before
yielding.

When theacquire routine returns to its caller (hot shown), the adaptive lack
held in the appropriate mode, and the system only needs tutxthe corresponding
version of the critical section (raw or transactional), thex return value. Transaction
mode execution also maintains statistics for the costitaarealysis, namely it incre-

ments a counter for every transaction retry and commit.

3.2. Performance Discussion

Adaptive locks keep global statistics, necessary for cdmguuantitiesc, a, and
o of the adaptivity reasoning. Such statistics includeltstex->thdsBlocked count, a
count of transaction tries, and a count of transaction camnBecause these counts
need to be updated by every thread’s execution, they reprasglobal bottleneck
for the performance of adaptive locks. Removing this bo#tk is crucial for per-
formance. In some cases, even a single extra atomic instnu@.g., a slightly less
optimal implementation instead of that of Figure 2) wouldul¢in no scalability for

the benchmarks we present later.



One way in which we address this problem is by allowing snmatturacies in our
statistics gathering. The inaccuracies can only influeheegerformance of an adap-
tive lock (i.e., which mode it chooses) and not its corressnd-or instance, quantity
of the adaptivity reasoning (the “actual contention”) isnguted from counts of trans-
action tries and commits for the critical section. Although make sure that these
counts are not cached for long periods of time (by usisithtile variables), we do
not update the counts atomically. Instead, regular memaitgsvare performed and
later instructions serve as memory barriers, forcing assharemory update. This al-
lows for races, including write-write races (i.e., an ugdaging lost because afdirent
thread overwritesit). In practical use, the sporadic in@acies in such statistics are not
significant, especially since the counts of tries and cosanié cumulative (although
time-decayed).

Additionally, the transactional overhead factoy,of our analysis depends on the
proportion of shared memory operations (which become ér@ieamal reads and writes)
in a transaction’s workload. For instance, transactioas work mostly with thread-
local memory (including non-shared external resourceB)net incur a heavy over-
head for execution in an STM, in contrast to transactions pleaform many shared
memory operations. The relative mix of reads and writes alatters, depending on
the specifics of the STM implementation. For instance, TL&pethe cost of reading
shared memory low, and contains special handling for redgtmnsactions. For these
reasons, the value of factorvaries widely between applications, as well as between
different critical sections of the same application.

In our implementation, we perform a dynamic measurementoofusing
architecture-specific instruction (or cycle, when avd#ylsounters. Thus, we can es-
timateo by measuring the execution time of a transaction, and digidi by the exe-
cution time minus the time spent in the wrapper functiondfansactional regdrite
memory operations (which closely approximates the timéwuald have been spent
executing the critical section in lock mode). Getting gostireates for these times is
costly, however. We found that sampling even the cheapeist i&Pformance coun-
ters can be prohibitive for transactions, which are typycaqlite brief. Furthermore,

reading the values of performance counters on every TM reddvaite can disturb the



behavior of the transaction, by prolonging it.

To keep our estimate ai precise yet inexpensive, we apply two optimizations.
First, the measurement is not performed on every transedtéxecution, but only in
specific sampling intervals (currently every 512 callssecond, we do not measure
precisely how much time is spent in handling transactioeatis and writes. Instead,
we just keep a count of the numbers of each operation andptyultiese counts by a
static estimate. This is just an approximation (since tret obreads and writes is not
constant in TL2 or other STMs) but we have not found it to ir@eaough noise to
skew our decisions.

The result of our dynamic estimation of the overhead facta mechanism that
adapts very well to the characteristics of the applicatiod eritical section, while

introducing negligible overhead, as we later show in oureexpents.

3.3. Sensitivity Discussion
Although the cost-benefit analysis of Section 2.2 is fullpgel, our implemen-
tation is specialized for our back-end STM, TL2, and soméwidects our intended

execution platform. Namely:

e The main transactional overheads of TL2 are due to read aitd lwgging [26].
Therefore our estimate afignores (i.e., approximates as a constant) other transac-
tional overheads, such as the cost of acquiring locks, thiead@borting a transaction,
the cost of contention management (e.g., delaying a tréinsaar re-validating the
read-set in order to make progress), or the variable costad pperations due to
searching the write set. These either do not apply to TL2 @eapected to be sec-
ondary factors for most workloads. Generally, to measupeecisely, one needs to
measure the full end-to-end cost of equivalent executimnaitex mode and in trans-
action mode. This is usually not feasible, as the cost is migget on other threads,
semantic equivalence is hard to establish, etc. Thereferexpect that dierent re-
alizations of adaptive locks will need to employ appromiaspecialized techniques

for estimatingo.

50Our implementation pre-compiles a spesiapling transactional versioof the critical section, which,
in addition to TM operations, contains instrumentationgstimating the overhead of transactional execution.



¢ We have not found a need to employ more scalable locking onteotechniques
(e.g., avoid the bottleneck of every threaging the same word when the lock is in
transaction mode by using a “scalable non-zero indicatmk.a. SNZI [27]). This
may be partly because our primary execution platform (a Sagata2 architecture)
uses a shared L2 cache. Preliminary microbenchmarks, lemwew not substantiate
this theory: we found that for much higher contentgirorter transactions the per-
formance of our technique would degrade substantially erséime architecture. We
also employed a SNZI mechanism but did not observe any padoce improvement
for our regular benchmarks. Still, an implementation salézd for other architec-

tures (e.g., x86) may need to employtdient low-level scalability techniques.

4, Experimental Evaluation

To evaluate theféectiveness of adaptive locks, we performed experimentsavit
array of microbenchmarks (for testing boundary conditjcarsd macrobenchmarks.
All measurements are medians of 3 runs on a Sun UltraSpardNie@dra2) T5220
machine (8 cores with 8 threads each for a total of 64 hardiaeads, at 1.2GHz;
32 GB RAM). We used GCC 4.0.4, and our implementation of adepocks uses
version 0.9.4 of TL2. Our plots show the performance of owapditte locks, compared
to modes of our compiler that perform no adaptivity reasgnifiWe have confirmed
that the non-adaptive modes of our compiler yield virtuadgntical performance to

plain mutexes and the STAMP STM under the base CIL compiler.)

4.1. Microbenchmarks

We stress-tested adaptive locks with microbenchmark&sponding to standard
mapping data structures: red-black trees, hash tablesagtrees.

Red-black trees are the poster child benchmark for traiosettmemory systems.
Mutex-based red-black tree solutions typically do notecas$ they use coarse-grained
locking due to the very high complexity of coding a fine-getdired-black tree. TM
approaches perform well because the data structure hastowal aontention (dferent
operations can accesdigrent parts of the tree without conflicts) and can benefit from

increased concurrency.



Splay trees, on the other hand, are pathologically bad f@ementations that
emphasize concurrency (such as TM) since every update td affthe tree needs to
change the root, which becomes a point of contention. Tlmgsinteresting question
for splay trees is how to incur less overhead, rather thantb@ain more concurrency.
We use a single-lock splay tree in our experiments.

We experimented with two fixed-size hash table implememtati one with coarse-
grained locking (single lock per entire table) and one wittefgrained locking (one
lock per table bucket). Naturally, there is ndfdrence in the performance of TM in
the two implementations, but mutex locks perform bettehanlatter.

For each data structure we used a relatively high-contentimrkload with 50%
lookup operations, 25% inserts and 25% deletes. Each tiperdorms 100,000 oper-
ations total. Hash tables have 1024 buckets and the showlaekl trees have 1000
different keys. Our results are shown in Figure 3—note that testhroughput plots,
so higher numbers are better. As can be seen, none of therharichscales perfectly
to 64 threads, largely because of the small size of the datéh@resulting contention.

Adaptive locks succeed in closely tracking the performanitke better of the two
component mechanisms for each benchmark. This means thativaellocks soundly
outperform either of the component mechanisms on its owatis8tally, over all mi-
crobenchmarks and all thread configurations, adaptiveslack on average 47% faster
than mutexes (min: -16%, max: 433%) and 176% faster thasactions (min: -26%,
max: 837%). (This should only be viewed as a summary of thedigiata, as the
average does not map to a real-world quantity.) For redklitees and coarse-grained
hash tables, adaptive locks imitate a mutex lock for low degrof parallelism (1-2
threads) and a TM for more threads, outperforming the mbtesed implementation.
For splay trees, adaptive locks precisely match the pedoom of a plain mutex lock,
outperforming the STM implementation. For fine-grainedhtbles, adaptive locks
emulate mutexes, yielding better performance than TM far tfereads and identical
performance for more threads. The stress-testing revesllt averheads in our adap-
tive locks, compared to a plain STM approach (see tlkerdince between TM and
adaptive locks in the red-black tree plot). This is due todh&t of the adaptivity logic,

as discussed in Section 3.2. We observed such overheads atitgss-testing scenar-
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ios but notin more realistic settings, so we have not empgkdsemoving the last bit of
overhead. Compared to mutex locks, our adaptive locks haveeasurable overhead,

as seen in the splay tree benchmark.

Sensitivity Analysisln Section 3.3 we mentioned that our current implementation
seems scalable enough for our hardware and compiler seliengrtheless, this does
not negate the general observation that adaptive lockslave lavel mechanism whose
performance depends very crucially on careful, often &echire-specific, implemen-
tation. Our code in Figure 2ffers a good example. The code has the following general

structure:

int acquire(al_t* lock) {
int spins = 0;
while (TRUE) {
. // try to acquire, break if successful
if (spins == 0) INC(lock->thdsBlocked);
if (spin_thrld < ++spins) Yield();
}
if (0 < spins) DEC(lock->thdsBlocked);
}

(Recall that capitalized functions denote atomic operatipThe above code only
performs ariNc andDEC operation after a thread starts to spin. That is, the thieadti
accounted for in thendsBlocked variable until it is delayed in acquiring the lock. This
allows a slightly longer window of inaccuracy in the statist The alternative would
be to try to update the counter as eagerly as pos8ible:
int acquire(al_t* lock) {

int spins = 0; ...
INC(lock->thdsBlocked) ;
while (TRUE) {
. // try to acquire, break if successful
if (spin_thrld < ++spins) Yield();

}
DEC(lock->thdsBlocked) ;

This, however, introduces two atomic operations in théaaditpath of an uncon-

tested lock acquisition: there are atomic instruction®i®énd after spinning. These

8This counter has higher accuracy requirements than thg) caanters of transaction tries and commits,
because it pertains to the current state of the lock onljeausof being cumulative (and thus tolerating more
noise).



can interfere unnecessarily with other threads trying tpuae the lock. Furthermore,
in the case of execution in transaction mode, these ingingfare a no-op for all
threads: All threads do an atomic increment, attempt to isedhbe lock, succeed in
acquiring it in transaction mode, and immediately perfomatmic decrement.

The dfect of this change is far from negligible. The performancaddptive locks
drops drastically, as the counter of spinning threads besabottleneck even when
in transaction mode. The result is shown in Figure 4 for tltebiack tree and hash
table benchmark. Comparing with Figure 3 makes evident #hgevof the optimized
code. This also underscores thgeetiveness of our adaptive locks: The challenge
that our implementation meets is to provide a mechanismistsiphisticated enough
to closely emulate the behavior of either mutexes or traiwas; without allowing
the adaptive reasoning to impose undue overhead over thesievel, performance-

critical mechanisms.
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tions: Adaptive locks would be unscalable in transactiordeadCompare to Figure 3H{gher is bette)

4.2. Macrobenchmarks

For larger benchmarks of adaptive locks, we used the STAM&{&rd Transac-
tional Applications for Multi-Processing) benchmark syi28], version 0.9.7. Subse-
quently, a new version of the STAMP benchmarks has beenseseand we ported

the three new benchmark applications of STAMP 0.9.10 to aisk with adaptive




locks (while keeping the slightly fierent library interface of STAMP 0.9.7, which
was already rewritten for adaptive locks). STAMP compr8egpplicationsbayes(a
bayesian network learning progranggnome(a gene sequencing progranmtruder
(a network intrusion detectorkmeans(an implementation of K-means clustering),
labyrinth (a maze routing progranmdsca2(a graph analysis compute-intensive bench-
mark),vacation(a clienfserver travel reservation system), aratla(an implementa-
tion of Delaunay mesh refinement). All STAMP applications aritten to employ
a TM system explicitly. That is, the code contains expliciiMs primitives (of the
TL2 STM) for beginning a transaction, transactionally rieggdvriting a word fromto
shared memory, committing a transaction, etc. As discuss&ection 3, our adap-
tive lock compiler supports a higher-level programmingiface: all shared memory
operations become implicitly transactional logtisres when executing in transaction
mode. Therefore, the STAMP applications needed carefuliadanodification to en-
sure that the output of our compiler reflects the originaldiamitten code, and to in-
troduce locking annotations in the code. Our goal was to adigdvery coarse-grained
locking, equivalent to what a programmer would be able towitld minimal &fort and
sophistication. Indeed, for seven out of the eight STAMPchemarks (bayes, genome,
intruder, labyrinth, ssca2, vacation, yada) we only intreet trivial locking: a single
global lock for the entire application. For kmeans, 3 sefedi@cks were introduced,
with a localized code change (the critical sections for &ticks are in a single file and
in adjacent routines).

The performance of adaptive locks for the STAMP benchmaskifiuistrated in
Figure 5. (Unless noted, we use the recommended optionsghrdontention non-
simulator runs.) The graphs plot execution times, so lowdyeitter. For a statistical
summary, over all STAMP benchmarks and all thread configpmat adaptive locks
are on average 103% faster than mutexes (min: -27%, max:%pamhd 76% faster
than TM (min: -35%, max: 660%).

Adaptive locks track very closely, and even outperform tbdy of the two com-
ponent mechanisms over all applications. We should notewkahave low confi-
dence in the results for yada: we have already fixed a numbperdérmance and

correctness bugs in the application (independent of agafiitks) and the measure-
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ments shown were taken after performing an overly consee/&@&TM-disadvantaging
rewrite (turned many local operations into transactiomeds) to avoid crashes. (More
study and a deeper understanding of the yada semanticsnalitiubtedly address this
problem.) For labyrinth, adaptive locks imitate TM behavaémd vastly outperform
mutex locks for all thread configurations. For kmeans, adapacks imitate mutexes
and outperform the TL2 STM for all thread configurations. Debavior of bayes is
unstable by its nature (the STAMP documentation reads “foltithreaded runs, the
running time can vary depending on the insertion order okstichence performance
is dependent on the scheduling order of threads) but agalatbks consistently per-
form well for 4 or more threads. More interesting behavian ba seen for genome,
ssca2, and vacation, where adaptive locks emulate mutexes$t performance with
a low number of threads, while executing in transactionadenand perfectly matching
or beating the performance of plain TL2 for higher numberthofads. Occasionally,
adaptivity is profitable even in the course of the same eiatutFor instance, for
most of the intruder data points, as well as for genome in atelad configuration,
the adaptive lock version of the program profitably switcheslesduring execution,
outperforming both mutexes and transactions alone.

Overall, the performance of adaptive locks for STAMP benatis validates the
approach very well. Our use of only coarse-grained adafiing illustrates the in-
tended usage mode of the mechanism. Adaptive locks sintpifynulti-threaded pro-
gramming model, by allowing the programmer to write coagezined annotations and
achieve easy multi-threaded correctness. The conven@mes without sacrificing
concurrent performance: The adaptivity mechanism canctiatken coarse-grained
locking is too conservative and recover concurrency (asiifgifine-grained locks) by

executing in transaction mode.

Sensitivity Analysis Adaptive locks may be most useful in settings where trainsaeait

mechanisms are pessimal. It is hard or impossible to sligtidescern when such
cases may arise. For instance, a single transactional ingpitation of a data struc-
ture may be included in a program and tested to perform weallsoexpected platform

and program inputs. When, however, the platform or progmgmuts vary (e.g., be-



cause other cores on the machine are occupied, or becaugsgtiheauses contention
or long-running transactions) performance can be severdlyoptimal. As discussed
earlier, transactional memory mechanisms in software afiarssery high overheads.
Adaptive locks are an automatic way to protect against sackaton in setting. Our
benchmarking revealed such cases. For example, Figurewssshe performance of
the STAMP vacation benchmark for a very high contention {tlghest of the “rec-
ommended”) setting and a large size (outside the range meemed for “simulator”
execution but still smaller than the non-simulator rangd)e benchmark consists of a
number of agents performing queries on a database residargin-memory red-black
tree. The vast majority of the program’s running time is $peithin several heavy-
weight (long) critical sections. The STM’s memory accessrbead is crippling in this
scenario. The benchmark is orders of magnitude faster witkslthan it is with trans-
actional memory. At the same time, this setting makes caanay yield no benefit for
the benchmark. This is not the intended deployment domaindoation, but it is a
perfectly valid input and within the STAMP input recommeddeange. The large dis-
crepancy in performance, together with the precise inoitetif mutex locks, showcase

why adaptive locks can be highly desirable compared to a-badeéd implementation

choice.
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5. Semantic Discussion

It is interesting to note that the transaction and mutex marfeadaptive locks
are not always equivalent. The topic of the semantifedénces between locks and
transactions has been covered in significant detail in ptesviiterature [11, 14, 16—
18, 29], and we next discuss how thé&fdiences fiect adaptive locks.

Although both transactions and mutex locks enforce ismiatmutex locks also
have barrier semantics for both lock acquisition and re&leassuring that all preceding
memory operations are visible to all threads. This can preduwuirprising results if the
programmer uses adaptive locks with the expectation ofngetihe exact behavior of
mutex locks. The cases of interest can be broadly class#ipdvatizationpublication
patterng[14, 29, 30] andock nesting

We should note that the our adaptivity ideas are orthogaenalith semantic dif-
ferences. For instance, adaptive locks can employ a traasabmemory system en-
forcing strong atomicity [14, 31] or single-global-lockmsantics [17], which would
avoid all semantic dierences with privatizatigpublication patterns. Nevertheless,
implementations of adaptive locks may opt to emphasizeopmidnce at the expense
of mutex-like semantics, therefore the discussion of teaisn is highly pertinent. In
particular, our current implementation of adaptive lockesia TM that does exhibit

semantic diferences from mutex locks.

5.1. PrivatizatiofPublication patterns

Consider the following privatization example, adaptedhfrfl4]. (The case of
publication [29] is analogous and our statements applyadt ft is even harder for an
efficient STM to be publication-safe.)



Thread 1 Thread 2

Item *item; atomic (listlock) f{

atomic (listlock) { if (!isEmpty(list)) {
item = Item *item =
removeFirst (list); getFirst(list);

} item->vall++;
int rl = item->vall; item->val2++;
int r2 = item->val2; }

//Canr1 1= r2? }

Assume that the program wants to maintain the invariatdm->vall ==
item—>val2 throughout the execution. If the critical sections are exeg in mutex
mode, the above code is correctly synchronized, with no cacelitions, and the in-
variant is kept. The two accesses to the item values in thtem@ safe because the
item has been removed from the shared data structure (tizét) and therefore can-
not be accessed by other threads—there is no way to obs¢evemadiate states with a
changedral1 but notval2. This is not, however, necessarily the case when the dritica
sections are executed in transaction mode. For instanosjdar our current imple-
mentation of adaptive locks, which uses TL2 [26] as its ulyiteg TM system. TL2
uses a “deferred update” approach, where writes to memerstared in a log. A trans-
action commits by first locking all the memory words writtenthe transaction, then
validating all memory words read (by checking their “versitumbers”) and finally
copying the updated values from the log to the written wondshiared memory. In this
example, the two transactions do not write to the same wdtdstefore, transaction 2
can commit “first” (i.e., validate its read of the first dateusture item before transac-
tion 1 updates it) yet, while it writes to shared memory tharges td tem->val1 and
item->val2, transaction 1 can commit, removitigem from the data structure while it
is being updated.

One way to view the problem is that TL2 guarantees the seaiaility of transac-
tions only for direct read-write and write-write conflicemd not for indirect conflicts.

In this example, the transactional system has no way of kmpwhat the writes to



item->vall anditem->val2 can conflict with the read actions of Thread 1, since these
are outside all transactions. In other cases, such conflimtéd be races even in the
mutex mode of execution of an adaptive lock. Neverthele$gatiration is a special
case, as it makes the data structure element invisible totey thread.

This observation leads to a simple (though perhaps tod)striterion for the equiv-
alence of mutex mode and transaction mode execution of iaddptks: For each
shared memory location there should be a lock, such thatyeseress to the shared
memory location occurs with the lock held@his is a form of astatic-separatiorcri-
terion for partitioning shared data according to their extpe accesses. Indeed, this is
the standardbckset[32] well-formedness criterion for multi-threaded progna The
lockset heuristic has been used (in its pure form or withotagirefinements) as the ba-
sis of some of the best known race detectors and multi-tetadrrectness checkers
[32—35]. We can check that a program respects the locksetatoess condition using
any of these static or dynamic analyses. Note that this tiondiisallows our priva-
tization example. If the program does respect the lockstriom, then all possible
(low-level) races are prevented by the TM system, as shatdade always accessed
while holding an adaptive lock (i.e., inside a transactiwhen in transaction mode).
This guarantees the safety of transactional execution iErumnode execution is safe.
Still, as explained in the next section, this is not a fullregtness guarantee.

Other, more permissive, programming models for transastizith weak atomicity
have been recently proposed and can be similarly adaptad &etting. For instance,
dynamic separatiof20] requires that data be explicitly “released” at rundimvhen
they go from being accessed inside transactions to beireggaed outside transactions.
This can be again used to make the transactional memory misohhandle privatiza-
tion and publication correctly, without imposing undue khaad to regular transaction

execution.

5.2. Lock Nesting

We view nesting as the complementary problem of privatiratand weaker atom-
icity models, more generally) in the semantid¢féiences between transactions and

locks. Nesting concerrogressproperties while atomicity models concesafety



Nesting causes problems when programmers expect thatfféeseof a shared
memory operation become accessible to other threads abihisop a lock-release. In-
deed, most concurrent memory models guarantee that a ébelise operation acts as a
memory barrier, resulting in the flushing of writeffers. When transactions are nested,
however, their results do not become visible until the otremsaction commits—this
is the standardlosed-nestedemantics of transactions. In this case, implementing the
outer critical section as a transaction is incorrect. Totheeproblem, consider the
following example. Functiomarrier implements a simple barrier by spinning until
all threads reach the same point.

void barrier() {
atomic (11) { n++; }

bool done = false;
do {
atomic (11) {
if (n == allThreads) done = true;

else sleep();
}

} while (!dome);
}
The problem begins when tlharrier routine happens to be used inside fietent
critical section, possibly protecting completely distidata.

atomic (12) { ... barrier(); ... }

If this code executes in mutex mode, the barrier is corrdgctdwever, the code
executes in transaction mode, then the execution of theeeatiter transaction (on
adaptive locki2) happens in an all-or-nothing way. That is, the incrementcan
never be visible to other threads until the outer transaat@mmits, which will never
happen, as the thread needs to seentheactions of all other threads prior to exiting
the barrier.

This semantic dference between mutex and transaction mode is a much less se-
rious problem than that of privatization, as it only arises lbw-level mechanisms
that rely on noticing updates to shared data and reactirfgeto twhile holding locks.
Doing so, however, requires repeated sampling of the stdatd—i.e., spinning. In
practice, most programs will implement shared-data comication using some high-

level mechanism, such as condition variables. Past st(i8&s37] have also found



lock nesting to be rare in existing multi-threaded appi@a (although other studies
disagree for the domain of kernel synchronization [38])sjpite the low practical inter-
est, however, it is worthwhile to discuss this case for catgless: It is an interesting
question whether we can ensure the full equivalence of maneitransaction modes,
even for low-level coding patterns.

Note that the lockset criterion of Section 5.1 does not tatis against this se-
mantic issue. For instance, the barrier example does repetockset heuristic, as
every shared memory word is accessed withheld. Nevertheless, there is a sim-
ple additional condition that prevents such problemfishe set of held locks (i.e., all
surrounding locks) is the same for every thread that triegnter a critical section
protected by lock I, then transaction mode and mutex modeuére are equivalent.
This condition does not require a separate analysis of itgram. It can be checked at
run-time, when a thread acquires adaptive Ibakd the adaptivity mechanism decides
to execute the critical section in transaction mode. In¢hise, the set of already held
locks is compared against the set of held locks by other dlsréeat also holdl. If the
two sets difer, then the original critical section needs to be abortelrastarted in mu-
tex mode. Our current adaptive locks implementation doesungport this mechanism
for reasons of engineering and because of its questionadd¢iqgal impact.

Why is this condition sfficient for preventing semanticsftérences, however? The
reason is that for the semantididirence to become apparent, a thread needs to be able
to observe the féects of an inner critical section, without needing to hold game
outer lock (or else it would be prevented from entering thiplock even in mutex
mode). Consider our barrier example. The essence of thégonab that thevarrier
routine can be called whilometimesolding lock12 and sometimes not. If all threads
consistently calletdbarrier while holding12, then the result would ster from the
lack-of-progress error, but the error would also exist integrumode. Only when a
thread is allowed to catbarrier without holding12 is the mutex mode execution
correct, while the transaction mode one is incorrect.

To summarize, we have shown that although the semantics t#xmmode and
transaction mode are not identical, théfelience is confined to limited cases. The

most important one in practice is the case of privatizatiot publication, which can



be detected using standard multi-threaded correctnegssana

6. Related Work

We discussed directly related work throughout the prevémesions. Here we out-
line some work that is less directly related, yéeos context for our work, or explores
closely related directions in fierent settings.

Transactions originated in the databases research literf89] before they transi-
tioned to general-purpose programming in the form of tratisaal memory [40]. Al-
though the principles are similar, the challenges in thedanmains are quite distinct.
For instance, TM has to allow for arbitrary memory accessek thus, cannot gener-
ally predict all locks that need to be acquired. Furthermibregranularity of access is
finer in TM, creating very dferent trade-fiis for high-performance implementations.

In the database world, our adaptive locks might be descabedmnechanism adapt-
ing betweeroptimistic concurrency contr@ndpessimistic concurrency control he
term “optimistic” refers to allowing transactions to preckin the hope that they will
not conflict, while installing mechanisms to detect suchfliicts. The term “pes-
simistic” refers to acquiring locks up front, so that anyngactions that have the
possibility of conflict end up serializing. Database reskars have explored com-
binations of optimistic and pessimistic concurrency colnind so have researchers in
automatic parallelization [21, 41]. The options are some# said to be akin to “apol-
0gizing versus asking permission” [42]. The mutex mode afamaptive locks is an
ultra-pessimistic mechanism, as it forces all transasttorfask permission” up front.
Receiving permission means that the transaction can picoedis guaranteed to not
roll back: it has “reserved” the right to perform its memopeoations.

The PhTM [43] system is related to our work in that it descsibemechanism for
dynamically switching synchronization mechanisms. N#éhaless, our work advances
the PhTM ideas in several ways. First, PhTM introduces ongjngle global lock
instead of individual locks. Second, although the PhTMgi&~TiaL-Noasort” mode
supports switching to lock-based execution, the PhTM pypdoes not support such
switching. In fact, the PhTM authors speculate, “we canlyikeprove performance

in most cases by monitoring progress of transactions, ctfaairt rates, status of



transactions with respect to the current mode, etc.” andlade that “[fluture work
includes ... mechanisms for deciding when to switch to whaded Our work directly
addresses these topics. Other researchers have recentjyraposed mechanisms for
replacing locks with software transactions [44], agairhwaiit a cost-benefit adaptivity
model to guide a run-time mode switch.

Several other recent research projects have either aéermeetween pessimistic
and optimistic TM implementations or provided support foevocablgsingle-mutex-
mode transactions [45, 46]. Additionally, the issue of emtibn management [47-49]
is closely related to adaptive mode switching. A contentilenager decides on a
policy for favoring transactions in the case of contentjpossibly radically switching
the performance characteristics of the system. A closévelaf adaptive locks in this
space is the work of Ni et al. [48], which describes a reallvimplementation of
transactional constructs for C and-€. Their approach includes multiple mechanisms
that are related to switching implementation policy, imihg transactions that can
perform irrevocable operations, transactions that pubtiér transactions on hold,
and switching a transaction between optimistic and pessitntoncurrency control.
Nevertheless, neither the Ni et al. work, nor other work eeviocable transactions
or contention managemenffer a clear cost-benefit model for dynamically deciding
concurrency vs. exclusion for best performance. Spedifiaabne of the above work
seems to collect statistics on nominal contention per lockn transactional execution
overhead, although taking the number of transaction (res)into account is common.

Our exploration of adaptive locks is in the context of a pw#vgare implementa-
tion. An important trend is to provide hardware support fidt [50—61]. With hard-
ware support, the performance tradésachange—e.g., the transactional overhead of
loads and stores may be virtually eliminated. Yet the ideadafptive locks should be
quite applicable to hardware TMs: even with no overhead dréixecution, it will
be beneficial to adaptively detect when transactions hayte &ctual contention and
mutual exclusion would be profitable. (In practice it is kgl that TM execution will
incur truly no overhead, i.e., that the factowill be 1. Failed transactions can generate
bus trdfic that will slow down successful transactions. Additiopathe system may

prefer to delay transactions and retry a memory operatasher than aborting, possi-



bly also for energy reasons. Overall, it is likely that allet factor®, a, andc of our
cost-benefit analysis will play a role, even in hardware enpéntations.) Furthermore,
most hardware support for TM employs a hybrid software-varé approach—e.g.,
transactions that access a lot of shared data need to benaipled in software, making
our approach perfectly applicable. Finally, many of themisdity ideas of this paper
(e.g., keeping track of the number of transaction tries ocked threads and deciding
the execution mode based on those) can be employed in hardvesthanisms such as
speculative lock elision [9] or optimistic thread concuntg [61].

Dice et al. [62] present a survey of tests on the Rock mukipoocessor’s hardware
transactional memory feature. The feature is describedlzstdfort HTM. It can
fail for any number of reasons and, when it does, it reliesaftware to handle the
aborted transaction. In addition, a register is set to Hétai cause of the failure.
Causes include coherence violations, branch mispreditio the simple filling of the
hardware bffer that holds changes prior to commit. The experiments leghélaborts
by either retrying, backingf@ switching to an STM or switching to a lock. A simple
notion of adaptivity is employed, since the switches onlgwafter a certain amount
of aborts and, in some scenariodfelient causes for aborts are weightetiedtently.

The TxLinux work [38] provides synchronization primitivés allow transaction-
and mutex-based synchronization to co-exist. The mechmaigomatically detects
I/O and restarts the running transaction in mutex mode. TxLisiimplemented using
special primitives fered by its HTM that adopts eager conflict detection and atel
updates, and some special features of its processor to gufpaletection. No adap-
tivity between transaction and mutex is explored for pemiance.

Volos et al. [63] introduce xCalls: wrapper functions ardwome system calls
that provide transaction-friendly semantics. xCalls wiayldeferring side #ects until
commit or executing immediately and reverting at commitetinxCalls do not have
wrappers for system calls that cannot be dealt with on thersest A number of the
calls use user-level OS locks on system resources to pretiegtthreads from seeing
changes from in-flight transactions. It would be interegtio integrate xCalls with
adaptive locks, in order to expand the space of code that xacute in transaction

mode (by including also code that performs sop@edalls). Nevertheless, the integra-



tion would require significant work, because of the positybdf “undone” dfects of
past system calls existing when we switch from transactioderto lock mode. For
instance, on a pipe read call, xCalls keeps fidy.of destroyed data, to be used in case
of a transaction abort and retry. Switching to mutex modeldoesult in calling the

unwrapped system call and missing these data.

7. Conclusions

We presented the idea afdaptive locksas a concurrency control construct for
multi-threaded programming. A major contribution of ournkds in identifying the
statistics needed for arffective cost-benefit adaptivity analysis and in developing
mechanisms for maintaining such statistics highficeently. Overall, we believe that
our work establishes adaptive locks as an excellent catedidainclusion in industrial-
strength systems.

The dficiency of our adaptivity approach suggests several otherduapplica-
tions. One promising possibility is adaptive switchingvbe¢n a pessimistic and an
optimistic TM implementation—i.e., rolling back on deadlovs. rolling back on ac-
tual contention. Although both pessimistic and optimidtld approaches perform
best when there is no actual contention on the data, pessirigl approaches re-
duce the probability of roll-back at the expense of someathreaiting for locks to
become available. Adaptivity can help determine when thaidd-df is profitable. An-
other potential application of adaptivity is in changing thcking granularity of a TM
system: an adaptive TM can start with associating lock wéuded internally by the
TM implementation) at a coarse granularity. Then, as nohtoatention is encoun-
tered, the system can switch to a finer granularity, and physisack, if the overhead of
fine-grained locking appears heavy and unwarranted. Sactutarity switching is ap-
plicable to practically all TM systems we are aware of, batkgimistic and optimistic.
Our adaptive locks can be seen as an extreme case of botHagiynswitching and
pessimistic-optimistic switching at the same time.

Generally, we believe that the idea of adaptive concurrennyrol holds significant
promise and that adaptive locks, as analyzed in this papegraexcellent representa-

tive of the possibilities.
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