
General Adaptive Replacement Policies

Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
yannis@cc.gatech.edu

ABSTRACT
We propose a general scheme for creating adaptive replace-
ment policies with good performance and strong theoret-
ical guarantees. Specifically, we show how to combine any
two existing replacement policies so that the resulting policy
provably can never perform worse than either of the orig-
inal policies by more than a small factor. To show that
our scheme performs very well with real application data,
we derive a virtual memory replacement policy that adapts
between LRU, loop detection, LFU, and MRU-like replace-
ment. The resulting policy often performs better than all of
the policies it adapts over, as well as two other hand-tuned
adaptive policies from the recent literature.

1. INTRODUCTION
Replacement policies play an important role in memory
management. Caching mechanisms at every level of a stor-
age hierarchy (processor cache, VM and file system cache,
web cache, etc.) are of primary importance for high per-
formance, and the choice of replacement policy can make a
significant difference in the cache efficiency. Unfortunately,
most replacement policies in use have well-known failure sce-
narios. For instance, a recency-based policy, like LRU, fails
badly for loops slightly larger than memory. A frequency-
based policy, like LFU, does badly when different parts of
memory have different and time-variant usage patterns.

In this paper we formulate and evaluate the idea of general
adaptive replacement policies. We propose that it is easy to
fix any particular replacement policy, by combining it with
a different policy and adaptively switching between the two.
Although many past replacement policies try to adapt to
current behavior, in this paper we offer a general adaptivity
scheme (one may prefer to call it meta-adaptivity) with both
good theoretical properties and good performance with real
program data.

Specifically, given two replacement policies A and B, we can
derive an adaptive policy AB that will never incur more than

ISMM’04, October 24–25, 2004, Vancouver, British Columbia, Canada.

a small multiplicative constant (e.g., 2 times) as many faults
as either A or B. (The scheme can be straightforwardly
generalized to more than 2 policies by adapting between
AB and a third policy C, etc.) Although a 2x bound may
seem unimpressive at first, it is quite low as far as worst-
case guarantees are concerned, and for real program data
the behavior is significantly better. The worst-case bound
holds even though A and B can differ drastically. That is,
there can be inputs for which policy A will incur many times
(up to the memory size M , which can be from many tens
of thousands to a million for real systems) as many faults
as B and vice versa. Nonetheless, the adaptive policy AB

will never be much worse than either A or B, essentially
adopting the good characteristics of both.

The practical benefit of this result is as a powerful weapon
in the replacement policy designer’s arsenal. It is very hard
to design good replacement policies, even when the work-
load locality characteristics are well-known. For example, it
is hard to design a good replacement policy that a) behaves
comparably to LRU in replacing pages that were not recently
accessed; b) eagerly replaces pages that are accessed only
once, similarly to LFU; and c) behaves optimally for large
linear loops. In contrast, it is easy to find simple policies
(LRU, LFU, loop detection) that capture a single locality
characteristic each (recency, frequency, or optimal behavior
for linear loops). Our approach gives an effective and gen-
eral way to combine such simple, special-purpose policies
to create a good general-purpose policy. Furthermore, our
result can be viewed as a generalization of existing adap-
tive approaches: policies such as EELRU [17] can be seen as
specific instantiations of our general adaptivity scheme.

The idea (and theory) of general adaptive replacement poli-
cies makes no restrictive assumptions about the policies A

and B or the domain. Therefore, our adaptivity scheme can
be used in any cache management domain, subject to tech-
nology constraints. In this paper, we specifically evaluate
adaptive policies in the context of virtual memory page re-
placement by performing simulations with a large number
of traces from previous studies. We show that our adap-
tive policy performs very well with real program data, of-
ten outperforming LRU (as well as all the other policies it
adapts over) by more than 40%. Compared to recently pro-
posed, hand-tuned adaptive algorithms, such as SEQ [6] and
EELRU [17], our general adaptive approach commonly per-
forms better while being much simpler, both conceptually
and in terms of the tuning effort required.

2. PRINCIPLES OF ADAPTIVE POLICIES

2.1 Background, Motivation and Impact
The main limit result in the area of replacement policies
was shown by Sleator and Tarjan [16]. They proved that
any deterministic on-line replacement policy performs ar-
bitrarily worse in the worst case than the optimal off-line
replacement policy (OPT). More specifically, for every on-
line replacement policy A, there are reference sequences such
that A incurs at least M (the memory size in blocks) times
as many faults as OPT does for the same amount of mem-
ory. Such results created the area of competitive analysis of
algorithms.

The LRU (Least Recently Used) replacement policy is con-
sidered the standard benchmark for replacement because of
its good performance in practice. In terms of competitive
analysis, LRU is optimal: it incurs at most M times as many
faults as OPT for any sequence, matching the above lower
bound. That is, no policy can perform better than LRU
relative to OPT (although many can match it, in terms of
competitive analysis). Additionally, a second result estab-
lishes that LRU with twice as much memory available will
perform at most twice as badly as OPT.

We next use competitive analysis techniques to derive a gen-
eral adaptivity scheme: given two replacement policies A

and B, we derive a policy AB that never incurs more than
two (or a small constant, in the general case) times as many
faults as either A or B. This result can be viewed as a way
to combine two policies and get the best elements of both.
An alternative way to see our scheme, however, is as a gen-
eral way to improve a given policy A for arbitrarily many
cases. That is, for a given policy A, we can specify an ad
hoc policy B that recognizes some of the bad cases for A

and performs well in these cases (and arbitrarily badly in
all other cases). Then, by creating an adaptive policy com-
bining A and B, we get a policy that, from the perspective
of competitive analysis, is at least as good as A in all cases,
and much better in the cases covered by B. Thus, although
we can never approach the performance of OPT for all in-
puts, we can get close for arbitrarily many inputs. This is
an important complement to the competitive analysis results
discussed above.

2.2 Adaptive Replacement Scheme
In this section we will use standard replacement policies ter-
minology. The replacement algorithm is managing a buffer
(a.k.a. a memory) that holds a finite number of equal-sized
blocks (a.k.a. pages). A reference to a block not in the buffer
is a fault (a.k.a. a miss) and causes the referenced element
to be added to the buffer. If the buffer is full, an existing
block must be evicted/replaced to make room for the new
one. A reference to an element in the buffer is a hit. We
call the input to a replacement policy a reference sequence.
Let M be the size in blocks of the memory being managed.
When we compare algorithms, we implicitly assume they are
all acting on memories of the same size.

The goal of an adaptive policy is to adaptively (on-line)
switch between policies A and B so that it uses B whenever
recent behavior indicates that B would outperform A. We
will prove that an adaptive replacement policy AB will never

perform more than a constant multiplicative factor worse
than either A or B. We call this property robustness.

Definition 1. Robustness: A replacement policy R1 is c-
robust with respect to replacement policy R2 if R1 can never
incur more than c times as many faults as R2 for any input
and memory size.

There are multiple ways to define an adaptive policy—we
will next present a very simple definition that results in a
straightforward proof, but is not ideal for actual implemen-
tations. Later, we will add more logic to the definition,
without sacrificing our proof guarantees.

For any two replacement policies A and B, we define an
adaptive replacement policy AB. AB simulates both A and
B in memory. AB can tell at any point in time what the
state and behavior of A and B would be—i.e., what blocks
policies A and B would hold in memory, whether a reference
would be a hit or a miss, and what block they would replace.
(In the following, we use the present tense for the actions
that A/B would perform at the same point in the input
sequence, e.g., we write “a reference is a fault for A”, instead
of “a reference would be a fault for A”.) AB then picks to
imitate the behavior of either A or B:

Definition 2. Adaptive Replacement Policy AB: At ev-
ery fault, replace blocks as follows.

• if the reference is a fault for A but not for B, evict
one of the memory blocks that are not in B’s memory.
(There have to be such blocks, or the reference would
have been a fault for B since the memories of AB and
B have the same size.)

(We call this case “AB is in ’B’ mode”.)

• otherwise

– if the memory contains blocks that are not in A’s
memory, then evict one of those blocks.

– otherwise evict whichever block A evicts.

(We call this case “AB is in ’A’ mode”.)

To prove the robustness of the adaptive policy AB with
respect to A and B, we first need a simple lemma:

Lemma 1. Consider the same reference sequence pro-
cessed by replacement policies A, B and AB. If at a certain
point a block is both in the buffer managed by A and in the
buffer managed by B then it is also in the buffer managed
by AB.

Proof : The property holds initially and if it holds up to a
point in the reference sequence, then consider the next fault
for either policy A or B. If it is not a fault for AB, then the
property will hold after the replacement (because the new
block is already in AB’s memory). If it is also a fault for
policy AB, then there are 3 cases in the AB eviction logic:

• AB evicts a block not in B’s memory.

• AB evicts a block not in A’s memory.

• AB evicts the same block as A

In each of the above cases, the block evicted by AB could
not have belonged in both A’s and B’s buffer before the
eviction or will be evicted from one of them at the same
time. Thus, if the property held before the current fault, it
will hold after the eviction. 2

The lemma effectively says that the set of blocks held in
AB’s buffer is a superset of the intersection of the sets of
blocks in A’s and B’s buffers at all points in time.

We can now prove the main theorem for adaptive replace-
ment.

Theorem 1. The adaptive replacement policy AB is 2-
robust with respect to both A and B. That is, AB, as defined
above, never incurs more than twice as many faults as either
A or B.

Proof : We define two “potential” quantities and examine
how their values change on every fault for either policy A or
B.

Let dA be the number of blocks currently in AB’s buffer that
are not in A’s buffer at the same point in the execution.

Let dB be the number of blocks currently in AB’s buffer that
are not in B’s buffer at the same point in the execution. The
above values of dA, and dB change as follows on every fault
(we denote the new values d′

A, and d′

B):

(Note that according to Lemma 1 a hit for both A and B

implies a hit for AB and none of the potentials changes.)

1. fault for B, hit for A, hit for AB: d′

A = dA, d′

B ≤ dB

2. fault for B, hit for A, fault for AB: d′

A < dA, d′

B ≤

dB + 1

3. fault for B, fault for A, fault for AB: d′

A ≤ dA, d′

B ≤

dB + 1

4. fault for B, fault for A, hit for AB: d′

A ≤ dA, d′

B ≤ dB

5. hit for B, fault for A, hit for AB: d′

A ≤ dA, d′

B = dB

6. hit for B, fault for A, fault for AB: d′

A ≤ dA + 1,
d′

B < dB

We do not show all the case-by-case reasoning needed to
derive the above values since the derivation is tedious but
straightforward. As a single example, consider case 2. In
this case, there is a fault for B and AB but a hit for A. Thus
AB is in “A” mode and furthermore AB’s buffer contains
blocks not in A’s buffer (otherwise A would have suffered a
fault as well). Then, the newly referenced block is already

in A’s buffer and AB will replace a block not in A’s buffer.
Thus, the difference of the two buffers will strictly decrease:
d′

A < dA. At the same time, AB and B will fault-in the same
block, but they may pick two different blocks to evict and
these blocks could have been common to both their buffers
before. Thus dB (the number of blocks in AB’s buffer that
are not in B’s buffer) may increase but at most by one (hence
the d′

B ≤ dB + 1).

Now we are ready to show the first part of our result. AB

is 2-robust relative to A. To see this, consider that for each
fault of AB that is not a fault of A (case 2) dA is strictly
decreasing (by 1). But dA is originally 0, has to stay non-
negative, and increases only in the case where both A and
AB incur a fault (case 6). Thus, for every fault of AB that
is not a fault of A, A and AB must have suffered a common
fault earlier. That is, AB can only incur up to twice as
many faults as A.

Similarly, we can show that AB is 2-robust with respect to
B. If AB suffers a fault that is not a fault of B (case 6)
then dB is strictly decreasing. But dB is originally 0, has
to stay non-negative, and increases only in cases 2 and 3,
where both B and AB incur faults. Thus, for every fault of
AB that is not a fault of B, B and AB must have suffered
a common fault earlier. That is, AB can only incur up to
twice as many faults as B. 2

The interesting aspect of the above theorem is not its sophis-
tication but its simplicity. As our adaptive scheme shows,
it is really easy to produce an adaptive policy that satis-
fies the desired theoretical guarantees. (Nevertheless, we
queried multiple experts and none were aware of the above
result.)

An adaptive scheme can be used recursively. We can, for
instance, adapt between a regular replacement policy, such
as LRU, and another adaptive replacement policy, such as
an MRU-LFU combination. In this way, we can implement
adaptivity among an arbitrary number of existing policies.
Nevertheless, the order and structure of the composition
matter, both in terms of practical performance and in terms
of theoretical guarantees. For instance, if we want to adapt
among three policies A, B and C, we get different properties
by composing them as (AB)C (i.e., adapting between A and
B and then adapting between the resulting policy and C)
than by composing them as A(BC). Based on Theorem 1,
the latter algorithm is 2-robust relative to A, while the for-
mer is only guaranteed to be 4-robust. (We believe that it is
possible to derive tighter bounds for adapting among more
than two policies, however.)

2.3 More Sophisticated Adaptation
We can add several elements to the above basic adaptivity
scheme without affecting the robustness result. Notably, AB

can remember the last k faults of either A or B and imitate
the policy with the fewest recent faults. Also, the adaptive
policy can remember either all recent faults or just faults for
either A or B but not for both. Specifically, an interesting
general adaptation scheme is the following:

Definition 3. Adaptive Replacement Policy AB(k):

Let k be a constant parameter to the policy. Let s be the
number of faults for policy A among the k latest faults for
either A or B but not both.

On every fault, AB(k) replaces blocks as follows:

• if s > k

2
(“AB(k) is in ’B’ mode”)

– if B also suffers a fault on this reference and it
evicts a block that is currently in AB’s memory,
then evict the block that B evicts

– otherwise, evict one of the memory blocks that are
not in B’s memory.

• if s ≤ k

2
(“AB(k) is in ’A’ mode”)

– if A also suffers a fault and it evicts a block that
is currently in AB’s memory, then evict the block
that A evicts.

– otherwise, evict one of the memory blocks that are
not in A’s memory.

That is, just as before, the adaptive policy simulates both A

and B in memory and picks to imitate the behavior of one
of them—in this case the one with the fewest faults among
the k most recent ones. We can prove an adapted version
of Theorem 1 for the more complex adaptive policy AB(k).
Specifically, we can show that AB(k) is 3-robust relative to
either A or B. (The 3 bound is probably not tight, and for
many specific instances of A and B it can be shown that
AB(k) is 2-robust relative to both.) We do not show the
proof of this theorem, as it is significantly more convoluted
than the proof of Theorem 1 and the insights it offers are
low-level (i.e., only useful to readers who attempt to prove
similar theorems). The complication is in the potential func-
tions, which now also need to model the “memory” of past
events.

This sophisticated version of adaptivity is the one we use
later in our experiments. Thus, when we talk about adaptive
policy AB in the rest of this paper, we really refer to the
general form AB(k).

2.4 From Policy to Algorithm to Mechanism
One of the prime contributions of Computer Systems re-
search has been the distinction of the concepts of policy, al-
gorithm, and mechanism. So far in this paper, we have only
talked about replacement policies, but we have not discussed
how these can be reified in algorithms and implemented (ex-
actly or approximately) in systems mechanisms. We address
this topic next.

There are three elements of the adaptive algorithm that add
space overhead: first, algorithm AB needs to maintain data
structures that represent the contents of the memories of
both A and B at the same point in the execution. (Of course,
these are not the full contents of the memories of A and B

but just data structures containing the identifiers of blocks
in memory.) Second, algorithm AB needs to keep whatever
information A or B would keep in order to simulate these

algorithms. Third, AB needs to have a memory of the last
k faults for either A or B but not both. The third overhead
is minimal. For k = M , for instance, the algorithm only
needs to maintain a bit vector of size M bits, two counter
variables (to keep the current sums of zero and one bits) plus
a pointer (to show the vector’s current end). The second
overhead (maintaining the data kept by either A or B) can
often be eliminated if A and B keep the same information
(e.g., recency or frequency) for their replacement decisions
and just use this information differently. Similarly, the first
overhead can often be minimized in practice. In the worst
case, it may seem that AB needs to maintain three times
as much information: the memory contents of A, those of B

and those of AB. Nevertheless, since the memories of A, B,
and AB typically have a high content overlap, we get space
savings by only keeping a single data structure of all blocks
that are in one of the three memories.

Of course, an adaptive replacement policy AB has some
time overhead, as it needs to simulate both policies A and
B. Nevertheless, in practice, the time cost of executing a
replacement algorithm is either small or unbearable! The
distinction is linked to when the algorithm needs to perform
work. The standard rule of thumb is that an algorithm is
realizable if it only performs work on very infrequent events
(like memory misses) instead of on every reference. Thus,
for instance, policies such as LRU and LFU are not realiz-
able for processor caches or virtual memory systems because
they require information to be updated on every reference
(and not just on every fault). Instead, LRU and LFU are
typically approximated by realizable algorithms that ignore
some high frequency information—e.g., as in the case of a
CLOCK algorithm. An excellent property of our adaptivity
scheme is that if replacement policies A and B are realizable,
replacement policy AB is also realizable. Specifically, the
adaptivity mechanism only needs to perform actions when
a fault is suffered either by the adaptive algorithm or by A

or by B. These events are very rare.

In terms of specific applications, adaptive replacement al-
gorithms look particularly promising at the level of virtual
memory page replacement and file system caching. One of
the reasons is that current virtual memory mechanisms place
a high premium on “thrashing avoidance”. That is, we want
a good replacement algorithm to avoid its worst-case behav-
ior and not cause system thrashing for common memory ac-
cess patterns. This is hard to do when a single policy is used
for all applications and memory sizes. Nevertheless, adap-
tivity can help the replacement algorithms behave gracefully
in a much larger set of circumstances.

3. RELATED WORK AND DISCUSSION
OF THE AREA

Having finished the description of our adaptivity scheme, we
now discuss its relation to previous work in the literature.
There is a huge volume of work on replacement algorithms,
so our presentation needs to be selective. We concentrate
on adaptive replacement algorithms for RAM (file system or
virtual memory caching) and on recent work with good lists
of further references.

Adaptive replacement is certainly not a new idea—even
some of the oldest results in replacement (e.g., the Atlas

loop detector [2]) can be thought of as policies that adapt
to the current behavior of the system. Several policies have
been explicitly called “adaptive”. These include SEQ [6],
EELRU [17, 18], DEAR [3], LRFU [11, 10], FBR [15], LIRS
[7], ARC [13], and more. Our work is different from all of
the above in that it tries to offer very general adaptation
techniques with both good theoretical properties and good
practical behavior. As a general rule, past policies offered
no guarantees of worst-case behavior relative to the policies
they adapted over. (An exception is EELRU, for which it
is shown [18] that it is 3-robust relative to LRU—i.e., it
will never incur more than 3 times the faults of LRU.) Fur-
thermore, the adaptivity of past schemes was limited to a
very specific policy, as opposed to being applicable to any
replacement policy.

There are two main patterns emerging from the long list
of adaptive replacement algorithms in the recent literature.
The first is loop detection and the second is mixing frequency
and recency. Many algorithms combine both patterns to
some extent. Loop detection for replacement purposes has
been proposed several times in order to address the short-
comings of LRU for large scale looping patterns. The well-
known Atlas loop detector [2] is commonly cited as the pre-
decessor of more recent loop detection work (e.g., [14, 6]).
Plain loop detection is not usually done in any modern sys-
tem and is generally considered an artifact of the past, when
large, linear array manipulations dominated the space of ex-
pensive computations. A different “fashion” has emerged in
the last decade: often motivated by large multimedia pro-
cessing tasks that only touch the blocks of a stream once,
many replacement algorithms try to differentiate between
regularly accessed blocks and single-use blocks that should
be evicted very soon. Much of the replacement work in the
Linux kernel has originated from such concerns. The easi-
est way to get this differentiation of pages is by combining
recency and frequency information for blocks. Although the
idea of combining recency and frequency is much older (e.g.,
FBR [15]) it is a common thread in algorithms like DEAR
[3], LRFU [11, 10], LIRS [7], and ARC [13].

It is interesting to classify replacement algorithms depend-
ing on whether they are applied to the file system cache
(i.e., the portion of RAM that stores pages from files other
than the swap file), to the disk controller cache, or to virtual
memory page caching. Algorithms like SEQ [6] and EELRU
[17] primarily target virtual memory management, while al-
gorithms such as DEAR [3], LRFU [11, 10], FBR [15], LIRS
[7], and ARC [13] are more targeted towards file system
data caching, either at the OS or the disk controller level.
The distinction is very important for two reasons. First,
the patterns of access for the two kinds of blocks are differ-
ent. For instance, explicit file system traffic often exhibits
more regularity (spatial locality) but lower temporal local-
ity than virtual memory accesses. This means that LRU is
harder to “beat” in virtual memory applications (for rep-
resentative workloads) than for file system caching. Even
more importantly, however, file system caching studies of-
ten do experimental evaluation at the level of the traffic that
the disk controller sees, and not at the level of all accesses
to blocks. This means that a lot of the information is dis-
carded and what is being evaluated is not the policy at hand
but the combination (in a filtered or segmented queue [20]

way) of whatever replacement algorithm already exists in
lower-level caches together with the policy at hand. For ex-
ample, the virtual memory traces used in the SEQ [6] and
EELRU studies [18] are 30-1000 times the size of the file ac-
cess traces used in the LIRS [7] and LRFU [11] studies! (This
is true even though the former traces are already reduced
to filter out high-frequency references and the two kinds of
traces have similar footprints—i.e., the number of distinct
pages touched is usually the same or lower.) We believe
that virtual memory traces are much better suited to evalu-
ating replacement policies than file system traces. Once the
right policy is found, then the reification of this policy for
a given hardware configuration and OS limitations should
take place. File system traces are acceptable for evaluating
policies at the “external” level, if most of the OS memory
management mechanisms are considered a given.

Much work on replacement algorithms has concentrated on
providing replacement guarantees under some mathemati-
cal modeling assumptions regarding block references. For
instance, Markov modeling has often been used as the ba-
sis for replacement work [4, 5] and optimal online replace-
ment algorithms under Markovian assumptions can be de-
rived [9]. A 0-th order Markov model in the address domain
corresponds to the well-known independent reference model
[1], while in the recency domain it corresponds to the LRU
stack model [19]. In practice, mathematical modeling has
not proven to be very promising for producing good on-
line replacement algorithms. Our adaptivity scheme offers
worst-case guarantees, while making no assumption about
either the memory reference behavior or the replacement
algorithms that it adapts over.

4. EXPERIMENTAL MEASUREMENTS

4.1 Simulated Workloads and Settings
To evaluate our adaptivity scheme experimentally, we used
the extensive set of traces previously used in the EELRU
study [18] and simulated them for the same memory ranges
as that study. Eight of these traces were also used in the
study of the SEQ algorithm [6]. Five of the rest are traces of
SPEC95 benchmark applications from the Etch traces col-
lection [12]. The final six traces are small-scale programs
that mostly serve as sanity-checkers since they were not in-
tended to exercise VM functionality. The EELRU study
discusses the locality characteristics of all traces and argues
that they are a good set for virtual memory experiments.
We will not describe here the traces in detail, but briefly:

• the eight traces from the SEQ study are for “applu” (a
PDE solver), “gnuplot” (a postscript graph generator),
“ijpeg” (an image conversion utility), “m88ksim” (a
microprocessor simulator), “murphi” (a protocol veri-
fier), “perl” (a scripting language), “trygtsl” (a matrix
calculation program), and “wave5” (a plasma simula-
tion)

• the five Etch traces are for “go” (an AI program for
the game of Go), “CC1” (the gcc compiler core), “com-
press” (a compression utility), “perl” (same applica-
tion as before but with a different input), and “vortex”
(a database program)

• the six small-scale traces are of “espresso” (a circuit
simulator), “gcc” (the C compiler), “ghostscript” (a
PostScript engine), “grobner” (a formula rewriter),
“lindsay” (a communications simulator for a hyper-
cube) and “p2c” (a Pascal to C compiler)

• the Etch trace collection also contains more traces for
Windows applications (Word, Powerpoint, Netscape,
Photoshop, Acrobat Reader). These are older ver-
sions of the applications and the inputs are not such as
to exercise large-scale memory consumption (the Etch
traces are mostly intended for processor cache studies).
Nevertheless, we simulated these traces, as well, to en-
sure that our adaptive scheme does not underperform
LRU in any case.

In our experiments, we selected several policies that capture
distinct locality characteristics and simulated an adaptive
algorithm over all of them. Adapting over many policies
is a good experiment because it tests whether the resulting
algorithm adapts quickly enough to capture the benefit of
all individual policies, yet is stable enough to not be fooled
by their pathological cases. Our algorithm adapts among 8
different policies: 5 different MRU-LRU combinations (i.e.,
policies that evict the c-th MRU page, for 5 different values
of c, spaced equally from the minimum size permissible by
the traces to the memory size), LRU, a loop detector (LD),
and LFU. The 5 different MRU-LRU combinations are in-
tended to emulate the “early eviction” capability of a policy
like EELRU. The rest of the policies (LFU, LRU, LD) cap-
ture distinct locality characteristics. (Our loop detector is
a simple heuristic that observes a constant number (10 in
our case) of references to consecutive blocks and does MRU
replacement on the least recently accessed sequence.) As
mentioned previously, the exact way of composition (e.g., or-
der) affects the behavior of the adaptive algorithm, since our
general scheme adapts over two policies, and then we adapt
over the resulting policy and a third one, etc. The com-
position we tried was linear in the above order (MRU[0..4],
LRU, loop detector, LFU). Nevertheless, we also tried two
other permutations that yielded almost identical results.

We should note that our LFU and loop detector are not
fully faithful to what their descriptions suggest. The traces
used in our simulations were already reduced with the OLR
algorithm [8], to make their size manageable. This means
that the traces provide for fully accurate LRU simulations
(for the memory sizes shown), but in order to simulate any
other policy accurately, the policy has to keep the m most
recently accessed pages in memory (m is a constant fixed
for each trace) and ignore accesses to them. This means, for
instance, that our LFU simulation is really a simulation of
a policy just like LFU, but not for the few most recently ac-
cessed pages. In essence, our “LFU” is handicapped (since
it receives less information than what true LFU would) but
closer to what would be implemented in practice (since re-
alizable replacement algorithms ignore accesses to recently
used pages anyway).

The simulation framework we used follows established ex-
perimental practices in the virtual memory management lit-
erature. Specifically:

• The simulation is for a single program trace at a time.
This allows us to see whether the replacement pol-
icy captures the locality features of the program. Al-
though real systems execute multiple programs to-
gether, there are standard arguments why the effects
of process scheduling should not be integrated in a re-
placement policy simulation. First, the results are very
specific to the process scheduling being simulated and
almost never reflective of reality: page replacement is
not independent of process scheduling—instead it of-
ten completely dictates it (i.e., a new process starts ex-
ecuting only when a fault is incurred). Second, the re-
placement problem for multi-process workloads can be
decomposed into a problem of assigning (and dynam-
ically adjusting) space to each process and then per-
forming replacement within the process space. Third,
in many of the interesting practical scenarios where
paging is an issue, a single process consumes the vast
majority of virtual memory.

• The simulated memories range from very small to very
large sizes. At the low end, the memory size is such
that the program would spend most of its time pag-
ing. At the high end, the program does not page at all.
This choice often seems strange to readers unfamiliar
with simulation experiments in virtual memory man-
agement: after all, most programs would not even be
started if they were to spend most of their time pag-
ing. Nevertheless, it is commonly accepted that a good
replacement algorithm is one that behaves fairly well
for any amount of available memory. In practice, the
available memory ranges dramatically due to hardware
configuration (the same OS can be used on machines
that have from a few MB to many GB of RAM) and
other programs running.

• The simulated policies are the idealized policies (e.g.,
LRU) and not their realizable versions (e.g., CLOCK,
or a FIFO-LRU segmented queue). In this way, it
is the policy itself that is being evaluated relative to
its ability to capture the locality characteristics of the
workload. Subsequently, appropriate approximations
of the policy can be derived. Typically these approxi-
mations are fairly accurate and efficient, although their
derivation may require significant engineering effort.

Finally, it is worth pointing out that our simulations were
performed with extremely low amounts of tuning. The re-
sults we show are practically the very first we got. The only
parameter of our adaptivity is the number k of recent faults
remembered and we set this to be equal to the memory size,
M . Since our main argument is that of easy adaptivity, we
believe that it is an important goal to achieve good adap-
tive behavior with low tuning effort. We later contrast this
to the multitude of parameters for the SEQ and EELRU
algorithms.

4.2 Simulation Results: Adaptive vs. Compo-
nent Policies

Our first results compare the performance of our adaptive
policy relative to the policies it adapts over. Specifically,
Figures 1 and 2 show the behavior (faults incurred) of our

 20000

 40000

 60000

 80000

 100000

 120000

 1500 2000 2500 3000 3500 4000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

applu

Adaptive
MRU
LFU

LD
LRU

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

gnuplot

Adaptive
MRU
LFU

LD
LRU

 50000

 100000

 150000

 200000

 250000

 300000

 600 800 1000 1200 1400 1600 1800 2000 2200

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

ijpeg

Adaptive
MRU
LFU

LD
LRU

,

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

m88ksim

Adaptive
MRU
LFU

LD
LRU

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

murphi

Adaptive
MRU
LFU

LD
LRU

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 6000 6500 7000 7500 8000 8500 9000 9500 10000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

perl

Adaptive
MRU
LFU

LD
LRU

,

 20000

 30000

 40000

 50000

 60000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

trygtsl

Adaptive
MRU
LFU

LD
LRU

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

wave5

Adaptive
MRU
LFU

LD
LRU

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 250 255 260 265 270 275 280

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

compress95

Adaptive
MRU
LFU

LD
LRU

Figure 1: Comparison of adaptive scheme with the policies it adapts over for the 8 traces from the SEQ study

and the trace for compress95.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 250 300 350 400 450 500 550 600

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

cc1

Adaptive
MRU
LFU

LD
LRU

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 125 130 135 140 145 150 155 160 165 170 175

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

go

Adaptive
MRU
LFU

LD
LRU

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

perl-etch

Adaptive
MRU
LFU

LD
LRU

,

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

vortex

Adaptive
MRU
LFU

LD
LRU

 0

 50000

 100000

 150000

 200000

 10 20 30 40 50 60 70 80

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

espresso

Adaptive
MRU
LFU

LD
LRU

 2000

 4000

 6000

 8000

 10000

 12000

 30 35 40 45 50 55 60 65

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

grobner

Adaptive
MRU
LFU

LD
LRU

,

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 100 200 300 400 500 600

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

gs3.33

Adaptive
MRU
LFU

LD
LRU

 0

 50000

 100000

 150000

 200000

 0 50 100 150 200 250 300 350 400 450 500

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

gcc-2.7.2

Adaptive
MRU
LFU

LD
LRU

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 40 50 60 70 80 90 100 110 120 130 140

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

p2c

Adaptive
MRU
LFU

LD
LRU

Figure 2: Comparison of adaptive scheme with the policies it adapts over for the 4 SPEC95 traces and the

5 small-scale traces.

adaptive policy compared to LRU, “MRU” (the most ag-
gressive of the 5 MRU-like policies we use), “LFU”, and
our loop-detection (LD) policy. Results for the off-line opti-
mal replacement algorithm, OPT, on the same programs are
shown in later figures to keep the plots from becoming too
cluttered. (Despite our best efforts, the plots require some
effort to follow, due to the amount of information they con-
tain, but the Adaptive policy (solid line) and the LRU policy
should be easy to distinguish from the rest.) We show the
results for the 8 traces from the SEQ study, the 5 SPEC95
Etch traces, and 5 of the small-scale traces (we omit lind-
say, which is the least interesting and our policy performs
identically to LRU for it). The curves for MRU and LD are
sometimes not visible in the plots since their values exceed
the shown range. (These algorithms would never be used
alone in a realistic setting, as they are easily fooled to pro-
duce very bad results. Therefore we do not adjust the scale
of our figures based on them.)

The first observation about these figures is that LFU, LD,
and MRU seem to often perform better than LRU for
the simulated workloads (although they also often perform
catastrophically). One reason for this counterintuitive re-
sult is that, as explained earlier, our MRU, LD, and LFU
are really compositions of the above algorithms with an LRU
policy: the m most recently accessed blocks are guaranteed
to be in memory, to ensure that the simulation is valid (val-
ues of m vary per trace, but typically reach up to 30% of
the smallest simulated memory for the trace). Hence, much
of the benefit of LRU in exploiting temporal locality is al-
ready obtained for the “LFU”, “LD”, and “MRU” versions
plotted in the figures. Another reason that these algorithms
often perform well is that several of the tested programs
(e.g., gnuplot or trygtsl) have large linear loops, for which
LRU performs pessimally.

As can be seen in Figures 1 and 2, our Adaptive policy is al-
most always the bottom-most curve (or very close to it), in-
curring the fewest faults. Specifically, compared to LRU, the
adaptive policy performs noticeably worse only for the perl
trace and then only for small memories. In most other cases,
the Adaptive curve is far below the LRU curve by signifi-
cant amounts (e.g., for applu, gnuplot, ijpeg, m88ksim and
large memories, perl and medium-range memories, trygtsl,
wave5, compress95, go, perl-etch, and grobner). Compared
to MRU, LFU, and LD, our adaptive policy is clearly far
superior—these policies are easily tricked into extremely bad
behavior (e.g., for m88ksim, murphi, perl, cc1, perl-etch,
vortex, and all of the small-scale traces). In a few cases,
our adaptive policy is not just imitating the best one of the
other policies, but is better than all of them (e.g., see the
end range of the m88ksim plot, the medium range of the
perl plot, the compress95 plot, the perl-etch plot, and the
grobner plot). This suggests that the application changes
behavior during its runtime so that different replacement
policies are best for different execution phases, and that our
policy adapts successfully to the phase behavior changes.

4.3 Simulation Results: Adaptive vs. EELRU,
SEQ

Our next comparison is between our adaptive policy and
ad hoc adaptive policies like SEQ and EELRU. Recall that
our adaptivity scheme has very low tuning requirements.

Additionally, our adaptivity is much simpler conceptually
than either SEQ or EELRU, without being heavier-weight
in terms of implementation. Both EELRU and SEQ are
hand-optimized algorithms with many tuning parameters
and non-negligible space or time complexities. Specifically,
SEQ tracks up to 200 sequences of faults to consecutive
blocks, managed as an LRU queue. Then the algorithm
picks to evict the H-th page from the head of the sequence
with the most recent F -th fault, provided it has length more
than L. Parameters H, F and L affect the behavior of the
algorithm significantly and require careful tuning for good
performance. The SEQ study [6] has a section discussing
how the values of these parameters affect the performance
of the traces under study, based on low-level characteristics
of these traces (like the number of linear sequences in a trace
and their length).

Similarly, EELRU tracks accesses not only to blocks in mem-
ory, but also blocks recently evicted. In the experiments of
the latest EELRU study [18], the EELRU data structures
had entries for 2.5 times as many blocks as the memory
size. EELRU then picks among many possible eviction de-
cisions (40 in the cited study) by maintaining histograms
of recent references in equal-length segments of the recency
space. (This is analogous to having our adaptivity scheme
adapt among 40 different MRU-LRU combinations! Indeed,
one can derive EELRU from our general adaptivity scheme,
specialized for LRU and 40 different MRU-like policies and
optimized for space using the suggestions of Section 2.4.)
Other tunable parameters include settings that determine
how quickly the EELRU statistics get “decayed”, as well
as a setting that affects how the “virtual time” (used to
distinguish recent references from older ones) is affected by
references to not-recently-accessed pages. All of these pa-
rameters need to be carefully tuned to obtain the results
of the EELRU study. In contrast, our adaptation scheme
is very simple, its important events are only faults for one
of the adapted-over policies, and the “decaying” of data is
done simply by remembering the last k faults.

Despite its simplicity, our adaptation scheme performs very
competitively to hand-tuned policies like EELRU and SEQ.
Figures 3 and 4 plot the faults incurred by each policy for
the traces under study. (Since we have not re-implemented
the SEQ policy, we only have results for its performance on
the 8 traces from the SEQ study. The SEQ implementation
is tied to the trace format used in that study and running
the code on different traces appears quite complex.) The
figures also show the faults incurred by the off-line optimal
replacement policy (OPT) for comparison purposes. As can
be seen in the figures, our Adaptive scheme performs bet-
ter than SEQ for four traces (applu, ijpeg, murphi, perl)
and only slightly worse (and not for all memory ranges)
for m88ksim, trygtsl, and wave5. Similarly, our Adaptive
policy is quite competitive to EELRU, mostly outperform-
ing it for applu, gnuplot, ijpeg, trygtsl, and go, and being
outperformed for perl, compress95, cc1 (only briefly), and
perl-etch. (Note that the differences in behavior for the com-
press95 plot seem abrupt but this is largely due to the low
absolute numbers of faults for all policies involved and to the
normalization of the scale. Compare to Figure 1 to see the
same behavior in a plot that also includes the much higher
LRU fault values.)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1500 2000 2500 3000 3500 4000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

applu

OPT
EELRU

Adaptive
SEQ

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

gnuplot

OPT
EELRU

Adaptive
SEQ

 0

 50000

 100000

 150000

 200000

 250000

 300000

 600 800 1000 1200 1400 1600 1800 2000 2200

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

ijpeg

OPT
EELRU

Adaptive
SEQ

,

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

m88ksim

OPT
EELRU

Adaptive
SEQ

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

murphi

OPT
EELRU

Adaptive
SEQ

 0

 20000

 40000

 60000

 80000

 100000

 120000

 6000 6500 7000 7500 8000 8500 9000 9500 10000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

perl

OPT
EELRU

Adaptive
SEQ

,

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

trygtsl

OPT
EELRU

Adaptive
SEQ

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

wave5

OPT
EELRU

Adaptive
SEQ

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 250 255 260 265 270 275 280

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

compress95

OPT
EELRU

Adaptive

Figure 3: Comparison of adaptive scheme with SEQ and EELRU for the 8 traces from the SEQ study and

the trace for compress95. SEQ is plotted for the first 8 traces only.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 250 300 350 400 450 500 550 600

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

cc1

OPT
EELRU

Adaptive

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 125 130 135 140 145 150 155 160 165 170 175

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

go

OPT
EELRU

Adaptive

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

perl-etch

OPT
EELRU

Adaptive

,

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

vortex

OPT
EELRU

Adaptive

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 10 20 30 40 50 60 70 80

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

espresso

OPT
EELRU

Adaptive

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 30 35 40 45 50 55 60 65

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

grobner

OPT
EELRU

Adaptive

,

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 100 200 300 400 500 600

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

gs3.33

OPT
EELRU

Adaptive

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50 100 150 200 250 300 350 400 450 500

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

gcc-2.7.2

OPT
EELRU

Adaptive

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 40 50 60 70 80 90 100 110 120 130 140

N
u
m
b
e
r

o
f

p
a
g
e

f
a
u
l
t
s

Memory size (4 KB pages)

p2c

OPT
EELRU

Adaptive

Figure 4: Comparison of adaptive scheme with EELRU for the 4 SPEC95 traces and the 5 small-scale traces.

In summary, the performance of our adaptivity scheme is
remarkable, given its simplicity, generality, and lack of need
for tuning. The results shown were obtained by just putting
together what seemed like a reasonable set of policies to
adapt over and applying our general adaptation scheme to
them with virtually no tuning.

5. CONCLUSIONS
In this paper, we presented the idea of adaptive replace-
ment policies using a very general adaptation scheme, and
supported this idea with theoretical results and experimen-
tal measurements. There are many possibilities for improve-
ment of our basic adaptation scheme, and we hope that they
can inspire other researchers to continue along this direction.
Although several open problems remain (e.g., can we prove
low robustness bounds for an algorithm that adapts among
multiple policies and not just two at a time?) we believe that
our work shows convincingly that general adaptivity is easy
and that it has significant advantages at the policy level. At
the algorithm level, our approach is also usually quite feasi-
ble, although its time and space complexity depends on the
policies being adapted over. In practical terms, our results
show that it is possible to address the shortcomings of any
specific replacement policy, by composing it with others that
behave well for the desired scenarios. Thus, we hope that
the ideas presented here will prove interesting in the design
of future caching mechanisms.

6. ACKNOWLEDGMENTS
This research was supported by the NSF through grants
CCR-0238289 and CCR-0220248, and by the Georgia Elec-
tronic Design Center.

7. REFERENCES
[1] A. V. Aho, P. J. Denning, and J. D. Ullman.

Principles of optimal page replacement. J. ACM,
18(1):80–93, Jan. 1971.

[2] M. H. J. Baylis, D. G. Fletcher, and D. J. Howarth.
Paging studies made on the I.C.T. ATLAS computer.
Information Processing, IFIP Congress Booklet D,
1968.

[3] J. Choi, S. H. Noh, S. L. Min, E.-Y. Ha, and Y. Cho.
Design, implementation, and performance evaluation
of a detection-based adaptive block replacement
scheme. IEEE Transactions on Computers,
51(7):793–800, July 2002.

[4] P. J. Courtois and H. Vantilborgh. A decompsable
model of program paging behavior. Acta Informatica,
6:251–275, 1976.

[5] M. A. Franklin and R. K. Gupta. Computation of pf
probabilities from program transition diagrams.
Communications of the ACM, 17:186–191, 1974.

[6] G. Glass and P. Cao. Adaptive page replacement
based on memory reference behavior. In ACM
SIGMETRICS Conference on Measurement and
Modeling of computer systems, pages 115–126, 1997.

[7] S. Jiang and X. Zhang. LIRS: An efficient low
inter-reference recency set replacement policy to

improve buffer cache performance. In ACM
SIGMETRICS Conference on Measurement and
Modeling of computer systems, 2002.

[8] S. F. Kaplan, Y. Smaragdakis, and P. R. Wilson.
Trace reduction for virtual memory simulations. In
ACM SIGMETRICS Conference on Measurement and
Modeling of computer systems, pages 47–58, 1999.

[9] A. R. Karlin, S. J. Phillips, and P. Raghavan. Markov
paging. In IEEE Symposium on the Foundations of
Computer Science, pages 208–217. IEEE Computer
Society Press, 1992.

[10] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. On the existence of a
spectrum of policies that subsumes the least recently
used (LRU) and least frequently used (LFU) policies.
In ACM SIGMETRICS Conference on Measurement
and Modeling of computer systems, pages 134–143,
1999.

[11] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. LRFU: A spectrum of policies
that subsumes the least recently used and least
frequently used policies. IEEE Transactions on
Computers, 50(12):1352–1361, Dec. 2001.

[12] D. C. Lee, P. J. Crowley, J. L. Baer, T. E. Anderson,
and B. N. Bershad. Execution characteristics of
desktop applications on windows NT. In 25th Annual
International Symposium on Computer Architecture.
IEEE Computer Society Press, 1998.

[13] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In USENIX File and
Storage Technologies (FAST), Mar. 2003.

[14] H. Muramatsu and H. Negishi. Page replacement
algorithm for large-array manipulation. Software
Practice and Experience, 10:575–587, 1980.

[15] J. Robertson and M. Devarakonda. Data cache
management using frequency-based replacement. In
ACM SIGMETRICS Conference on Measurement and
Modeling of computer systems, 1990.

[16] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of
the ACM, 28(2):202–208, 1985.

[17] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson.
EELRU: Simple and efficient adaptive page
replacement. In ACM SIGMETRICS Conference on
Measurement and Modeling of computer systems,
pages 122–133, 1999.

[18] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson. The
EELRU adaptive replacement algorithm. Performance
Evaluation, 53(2):93–123, July 2003.

[19] J. R. Spirn. Distance string models for program
behavior. IEEE Computer, 9:14–20, 1976.

[20] R. Turner and H. Levy. Segmented FIFO page
replacement. In ACM SIGMETRICS Conference on
Measurement and Modeling of computer systems, 1981.

8. APPENDIX: PROOF OF ROBUSTNESS
OF AB(K)

We first need a lemma analogous to Lemma 1.

Lemma 2. Consider the same reference sequence pro-
cessed by replacement algorithms A, B and AB(k). If at
a certain point a block is both in the buffer managed by A

and in the buffer managed by B then it is also in the buffer
managed by AB(k).

Proof : Analogous to the proof of Lemma 1.2

For our main theorem we assume that k ≤ M . (If k > M

the robustness result needs to be adjusted by an additive
factor or the first k − M replacements need to be handled
specially in the definition of AB(k).)

Theorem 2. Adaptive replacement algorithm AB(k), for
k ≤ M , is robust with respect to both A and B. Specifically,
AB(k), as defined above, never incurs more than 3 times as
many faults as either A or B.

Proof : Define a function f :

f(i) =

�� � 1 if the i-th most recent fault for either A or B

was a fault for A

0 otherwise

If fewer than i faults have occurred so far, f(i) = 0. Note
also if the i-th most recent fault for either A or B was a fault
for both A and B, then f(i) = 1 per the above definition.
(This choice turns out to not affect our results.) Then the
number s computed in the course of execution of AB(k) (i.e.,
the number of faults for algorithm A among the k latest

faults for either A or B) is just

k�
i=1

f(i).

We define three “potential” quantities and examine how
their values change on every fault for either algorithm A

or B.

Let p =
k�

i=1

(k + 1 − i)f(i). The p quantity is a measure of

the potential for deviation from algorithm A such that more
recent data are favored linearly more.

Let dA be the number of blocks currently in AB(k)’s buffer
that are not in A’s buffer at the same point in the execution.

Let dB be the number of blocks currently in AB(k)’s buffer
that are not in B’s buffer at the same point in the execution.

We observe that 0 ≤ p ≤
k(k+1)

2
and 0 ≤ s ≤ k. The above

values of p, dA, and dB change as follows on every fault (we
denote the new values p′, d′

A, and d′

B):

(Note that according to Lemma 2 a hit for both A and B

implies a hit for AB(k) and none of the three potentials
changes.)

1. if s > k

2

(a) fault for B, hit for A, hit for AB(k): p′ = p − s,
d′

A = dA, d′

B ≤ dB

(b) fault for B, hit for A, fault for AB(k): p′ = p − s,
d′

A ≤ dA, d′

B ≤ dB

(c) fault for B, fault for A, fault for AB(k): p′ = p +
k − s, d′

A ≤ dA + 1, d′

B ≤ dB

(d) fault for B, fault for A, hit for AB(k): p′ = p+k−s,
d′

A ≤ dA, d′

B ≤ dB

(e) hit for B, fault for A, hit for AB(k): p′ = p+k−s,
d′

A ≤ dA, d′

B = dB

(f) hit for B, fault for A, fault for AB(k): p′ = p+k−s,
d′

A ≤ dA + 1, d′

B < dB

2. if s ≤
k

2

(a) fault for B, hit for A, hit for AB(k): p′ = p − s,
d′

A = dA, d′

B ≤ dB

(b) fault for B, hit for A, fault for AB(k): p′ = p − s,
d′

A < dA, d′

B ≤ dB + 1

(c) fault for B, fault for A, fault for AB(k): p′ = p +
k − s, d′

A ≤ dA, d′

B ≤ dB + 1

(d) fault for B, fault for A, hit for AB(k): p′ = p+k−s,
d′

A ≤ dA, d′

B ≤ dB

(e) hit for B, fault for A, hit for AB(k): p′ = p+k−s,
d′

A ≤ dA, d′

B = dB

(f) hit for B, fault for A, fault for AB(k): p′ = p+k−s,
d′

A ≤ dA, d′

B ≤ dB

We do not show all the case-by-case reasoning needed to
derive the above values. As a single example, consider, for
instance, case 1.c. In this case, there is a fault for A. Thus
the previous k faults for either A or B become “older” and
the quantity p is reduced by s (what was before f(i) is now
f(i + 1) and p is reduced by s: the total of non-zero f(i)s
in the k most recent faults). At the same time, the most
recent fault adds k to p (f(1) is 1). Thus, in total, p′ = p +
k−s. Since the fault is both for A and for AB(k), one extra
common page will exist in both buffers after this reference is
processed. At the same time, however, the AB(k) algorithm
is in B-mode (because s > k

2
), thus A and AB(k) may pick

two different pages to evict and these pages could have been
common to both their buffers before. Thus dA (the number
of pages in AB(k)’s buffer that are not in A’s buffer) may
increase but at most by one (hence the d′

A ≤ dA + 1). With
similar reasoning, dB may decrease or stay the same.

Now we are ready to show the first part of our result. Con-
sider the total potential function tA = p + dA

k

2
. We have

that tA ≥ 0. By t′A we denote the new value of tA after
a fault for either A or B. If AB(k) suffers a fault that is
not a fault for A (cases 1.b, 2.b) we have that t′A < tA − k

2

(either because p is reduced by s and s > k

2
or because dA is

reduced by one). tA can only grow in cases 1.c, 1.d, 1.e, 1.f,
2.c, 2.d, 2.e, and 2.f. In each of them, A suffers a fault and
t′A ≤ tA + k. Originally, tA = 0. Therefore, for each fault
of AB(k) that is not a fault of A the tA quantity decreases
by at least k

2
. It can only increase by at most k if A incurs

a fault and it has to stay non-negative. Hence, AB(k) can
suffer at most three times as many faults as A.

Similarly, define the total potential function tB = k(k+1)
2

−

p + dB
k

2
. We have that tB ≥ 0. By t′B we denote the new

value of tB after a fault for either A or B. If AB(k) suffers
a fault that is not a fault for B (cases 1.f, 2.f) we have that
t′B ≤ tB −

k

2
. tB can only grow in cases 1.a, 1.b, 2.a, and

2.b. In each of them, B suffers a fault and t′B ≤ tB + k.
Since k ≤ M , by the time the memory becomes full (i.e.,
at the initial point when M distinct pages have been ref-
erenced) dB = 0 (because no eviction has taken place) and

p = k(k+1)
2

(because all initial faults are also faults for al-
gorithm A). Thus, at this point tB = 0. By this point, all
three algorithms have incurred exactly M faults. From then
on, for each fault of AB(k) that is not a fault of B the tB

quantity decreases by at least k

2
. It can only increase by k

if B incurs a fault and it has to stay non-negative. Hence,
AB(k) can suffer at most three times as many faults as B. 2

