
Structure-Sensitive Points-To
Analysis for C and C++

George Balatsouras and Yannis Smaragdakis

Department of Informatics, University of Athens
Athens, 15784, Greece,

{gbalats, smaragd}@di.uoa.gr

Abstract. We present a points-to analysis for C/C++ that recovers
much of the available high-level structure information of types and ob-
jects, by applying two key techniques: (1) It records the type of each
abstract object and, in cases when the type is not readily available,
the analysis uses an allocation-site plus type abstraction to create mul-
tiple abstract objects per allocation site, so that each one is associated
with a single type. (2) It creates separate abstract objects that represent
(a) the fields of objects of either struct or class type, and (b) the (stat-
ically present) constant indices of arrays, resulting in a limited form of
array-sensitivity.
We apply our approach to the full LLVM bitcode intermediate language
and show that it yields much higher precision than past analyses, al-
lowing accurate distinctions between subobjects, v-table entries, array
components, and more. Especially for C++ programs, this precision is
invaluable for a realistic analysis. Compared to the state-of-the-art past
approach, our techniques exhibit substantially better precision along
multiple metrics and realistic benchmarks (e.g., 40+% more variables
with a single points-to target).

1 Introduction

Points-to analysis computes an abstract model of the memory that is used to
answer the following query: What can a pointer variable point-to, i.e., what can
its value be when dereferenced during program execution? This query serves as
the cornerstone of many other static analyses aiming to enhance program un-
derstanding or assist in bug discovery (e.g., deadlock detection), by computing
higher-level relations that derive from the computed points-to sets. In the lit-
erature, one can find a multitude of points-to analyses with varying degrees of
precision and speed.

One of the most popular families of pointer analysis algorithms, inclusion-
based analyses (or Andersen-style analyses [1]), originally targeted the C lan-
guage, but has been extended over time and successfully applied to higher-level
object-oriented languages, such as Java [3, 4, 17, 22, 24]. Surprisingly, precision-
enhancing features that are common practice in the analysis of Java programs,
such as field-sensitivity or online call-graph construction are absent in many
analyses of C/C++ [5,7, 8, 11,12,25].
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In the case of field-sensitivity, the reason behind its frequent omission when
analyzing C is that it is much harder to implement correctly than in Java. As
noted by Pearce et al. [21], the crucial difference is that, in C/C++, it is possible
to have the address of a field taken, stored to some pointer, and then dereferenced
later, at an arbitrarily distant program point. In contrast, Java does not permit
taking the address of a field; one can only load or store to some field directly.
Hence, load/store instructions in Java bytecode (or any equivalent IR) need
an extra field specifier, whereas in C/C++ intermediate representations (e.g.,
LLVM bitcode) load/store requires only a single address operand. The precise
field affected is not explicit, but only possibly computed by the analysis itself.

The effect of such difference in the underlying IRs, as far as pointer analysis
is concerned, is far from trivial. In C, the computed points-to sets have an
expanded domain, since now the analysis must be able to express that a variable
p at some offset i may point-to another variable q at some offset j, with these
offsets corresponding to either field components or array elements.

The best-documented approach on how to incorporate field-sensitivity in a
C/C++ points-to analysis is that of Pearce et al. [20, 21]. The authors extend
the constraint-graph of the analysis by adding (positive) weights to edges; the
weights correspond to the respective field indices. For instance, the instruction
“q = &(p->fi)” would be encoded as a constraint q ⊇ p + i. However, this
approach does not take types into account. In fact, types are not even statically
available at all allocation sites, since most standard C allocation routines are
type-agnostic and return byte arrays that are cast to the correct type at a later
point (e.g., malloc(), realloc(), calloc()). Thus, field i is represented with
no regard to the type of its base object, even when this base object abstracts a
number of concrete objects of different types. As we shall see, the lack of type
information for abstract objects is a great source of imprecision, since it results
in a prohibitive number of spurious points-to inferences.

We argue that type information is an essential part in increasing analysis
precision, even when it is not readily available. The abstract object types should
be rigorously recorded in all cases, especially when indexing fields, and used to
filter the points-to sets. In this spirit, we present a structure-sensitive analysis
for C/C++ that employs a number of techniques in this direction, aiming to
retrieve high-level structure information for abstract objects in order to increase
analysis precision:

1. First, the analysis records the type of an abstract object when this type is
available at the allocation site. This is the case with stack allocations, global
variables, and calls to C++’s new() heap allocation routine.

2. In cases where the type is not available (as in a call to malloc()), the analysis
deviates from the allocation-site abstraction and creates multiple abstract
objects per allocation site: one for every type that the object could have.
Thus, each abstract object of type T now represents the set of all concrete
objects of type T allocated at this site. To determine the possible types
for a given allocation site, the analysis creates a special type-less object and
records the cast instructions it flows to (i.e., the types it is cast to), using the
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existing points-to analysis. This is similar to the use-based back-propagation
technique used in past work [15, 16, 23], in a completely different context—
handling Java reflection.

3. The field components of abstract objects are represented as abstract objects
themselves, as long as their type can be determined. That is, an abstract
object SO of struct type S will trigger the creation of abstract object SO.fi,
for each field fi in S. (The aforementioned special objects trigger no such field
component creation, since they are typeless.) Thus, the recursive creation
of subobjects is bounded by the type system, which does not allow the
declaration of types of infinite size.

4. Finally, the analysis treats array elements similarly to field components (i.e.,
by representing them as distinct abstract objects, if we can determine their
type), as long as their respective indices statically appear in the source code.
That is, an abstract object AO of array type [T×N] will trigger the creation of
abstract object AO[c], if the constant c is used to index into type [T×N]. The
object AO[*] is also created, to account for indexing at unknown (variable)
indices.

As we shall see, the last point offers some form of array-sensitivity as well and is
crucial for analyzing C++ code, lowered to an intermediate representation such
as LLVM bitcode, in which all the object-oriented features have been translated
away. To be able to resolve virtual calls, an analysis must precisely reason about
the exact v-table index that a variable may point to, and the method that such
an index may itself point-to. That is, a precise analysis should not merge the
points-to sets of distinct indices of v-tables.

In summary, our work makes the following contributions:

– It presents a structure-sensitive pointer analysis that employs key techniques,
essential in retrieving high-level structure information of heap objects, thus
significantly increasing the precision of the analysis.

– The analysis is implemented and evaluated in cclyzer1, a new pointer anal-
ysis framework that operates on LLVM Bitcode. The pointer analysis is
expressed in a fully declarative manner, using Datalog.

– We evaluate the precision of our structure-sensitive analysis by comparing
to a re-implementation of the Pearce et al. [20, 21] analysis, also operating
over the full LLVM bitcode language. We show that our techniques provide
a major precision enhancement for realistic programs.

2 Background and Motivation

We next discuss essential aspects of precise pointer analysis for C and C++, as
well as the key features of the LLVM bitcode intermediate language.

1 cclyzer is publicly available at https://github.com/plast-lab/cclyzer
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2.1 C/C++ Intricacies and Issues

Research on pointer analysis in the last decade has shifted much of its focus from
the low-level C language to higher-level object-oriented (OO) languages, such as
Java [3, 4, 17, 22, 24]. To a large extent, the industry’s paradigm shift to object
oriented programming and Java’s rising popularity naturally ignited a similar
interest shift in the research community.

In points-to analysis, however, one could argue that object-oriented languages
in general, and Java, in particular, are better targets than C, for a number of
reasons. First, the points-to abstraction [6] is more suited to OO programming,
where dynamic object allocations are more common. Furthermore, Java offers a
clear distinction: only variable references are allocated on the stack, whereas the
allocated objects themselves are stored on the heap. Also, class fields can only
contain references to other objects, not entire subobjects. Thus, variables point
to (heap) objects and objects can only point to each other through their fields.
This leads to a clear memory abstraction as well, where objects are commonly
represented by their allocation site. A points-to analysis in Java has to compute
two sets of edges: (i) a set of unlabeled edges from variables to abstract heap
objects, and (ii) a set of field-labeled edges between abstract objects.

This is not the case for C/C++, where:
1. Objects can be allocated both on the stack and on the heap.
2. An object can contain another subobject as a field component. In fact, a field

may even contain a fixed-size array of subobjects.
3. Any such subobject can have its address taken and stored to some variable,

which can be dereferenced later (as can any normal pointer variable) to
return the subobject’s exact address (i.e., the address of the base object
plus the relative byte offset of the given subobject).

Figure 1 illustrates the above points. The Outer struct type contains a 3-element
array of Inner subobjects via its field in. Unlike in Java, all these subobjects are
stored inside the Outer instance’s allocation; no dereference is needed to access
them. On Figure 1b, variable ptr will hold the address of some subobject of
variable (or stack-allocated object) obj of the Outer type. Variable ptr is then
used later to store to this field of obj. (Note that the two instructions, the store
instruction at line 4 and the instruction that returns the field address at line 3,
can even reside in different functions.) In a precise analysis, this should establish
that the in[1].x field of abstract object ô1 (representing the stack allocation for
obj at line 1), may point to abstract object ô2 (representing the heap allocation
of line 2).

In contrast, a field-insensitive approach (which is common among C/C++
analyses [5, 7, 8, 11, 12,25]) is to not record offsets at all. This affords simplicity,
at the expense of significant loss of precision. A field-insensitive analysis would
disregard any offsets of any field or array accesses it encounters and simply
compute that ô1 points-to (somewhere inside) ô2. Any subsequent instruction
that accesses any field of ô1 would have to consider ô2 as a possible target. In
the case of line 5, the field-insensitive analysis would (over-)conservatively infer
that variable q may point to ô2.
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1 typedef struct Inner {

2 int **x;

3 int *y;

4 } Inner;

5

6 typedef struct Outer {

7 void *x;

8 Inner in[3];

9 } Outer;

(a) Nested struct declaration

1 Outer obj; // alloc: ô1
2 int *g = malloc(...); // alloc: ô2
3 int ***ptr = &(obj.in[1].x); ...

4 *ptr = &g;

5 void *q = obj.x;

(b) Complex Field Access

1 Inner i;

2 Inner *ip = &i;

3 ip = (Inner *) &ip->y;

(c) Positive Weight Cycles

Fig. 1: C example with nested struct types

The line of work by Pearce et al. [20,21] introduces a form of field-sensitivity,
such that the analysis differentiates between different fields of an object by rep-
resenting them with distinct symbolic offsets. For instance, the i-th field of p

is encoded as p + i. Thus, the effect of an address-of-field instruction such as
“q = &(p->fi)”— fi being the name of the i-th field of p—would add the edge
(p, q) labeled with i to a constraint graph, to encode that q ⊇ p+ i: the points-to
set of variable q is a superset of that of the i-th field of any object pointed-to by
p.

There are several issues with this approach:

1. First, it is not clear how the approach generalizes to nested structures, as in
Figure 1a. Had a heap allocation ô (of unknown type) flowed to the points-to
set of variable p, how could an expression like p+ i differentiate between the
i-th field of ô and the i-th field of ô ’s first subobject? (Note that the two
fields could be of entirely incompatible types.)

2. As Pearce et al. note, imprecision in the analysis may introduce positive
weight cycles that lead to infinite derivations, if no other action is taken. For
instance, in Figure 1c:

i. Due to the instruction “ip = &i;”, the points-to set of ip should include
at least i: ip ⊇ {i}.

ii. Due to instruction “ip = (Inner *) &ip->y;”, the corresponding con-
straint, ip ⊇ ip + 1, would induce: ip ⊇ {i, i.y, i.y.y, i.y.y.y, . . .}. Of
course, an object like i.y.y would make no sense given that no such field
exists.

As a way to overcome this, Pearce et al. assign unique indices to all (local)
program variables and their fields, and also record their symbolic ranges
(that is, the index where the enclosing lexical scope of each variable ends).
Then, they ensure that field accesses only reference memory locations within
the same enclosing scope. However, this does not prohibit all redundant
derivations: ip + 1 may still add to the points-to set irrelevant variables or
fields that happen to be in the same enclosing scope.
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Also, this does not work well for heap allocations, since their type, and hence
the number of their fields, is unknown. Instead, they are assumed to define
as many fields as the largest struct in the program, which will also lead to
many redundant derivations.

3. This approach greatly decreases the analysis precision in the presence of
factory methods or wrapper functions for allocation routines. Consider the
xmalloc() function of GNU Coreutils in Figure 2, which is consistently
used instead of malloc() to check if the allocation succeeded and abort the
program otherwise. The allocation site it contains will represent the union of
all struct types, dynamically allocated via xmalloc(), by the same abstract
object. The i-th field of this abstract object will then represent the i-th field
of this union type, losing essential type information by merging unrelated
fields (whose types we statically know to be completely different).

1 /* Allocate N bytes of memory dynamically, with error checking. */

2 void * xmalloc (size_t n) {

3 void *p = malloc (n);

4 if (!p && n != 0) xalloc_die ();

5 return p;

6 }

Fig. 2: Generic malloc() wrapper with error checking that aborts the program
when allocation fails

The common denominator of all these limitations is that they lose any as-
sociation between abstract objects and their types, due to cases in which type
information is not readily available (as in heap allocations). What we propose
instead is that the analysis strictly record types for all abstract objects (any
abstract object must have a single type) and use this type information to filter
redundant derivations that arise from analysis imprecision. For heap allocations
specifically, where a single allocation site could be used to allocate objects of
many different types, we propose a deviation from the standard allocation-site
abstraction that creates multiple abstract objects per allocation site (one for
each different type allocated there).

2.2 The LLVM IR

Our analysis targets C/C++ programs translated to LLVM bitcode. LLVM bit-
code is a low-level intermediate representation, similar to an abstract assembly
language, and forms the core of the LLVM umbrella project. It defines an ex-
tensive strongly-typed RISC instruction set, and has the following distinguishing
features:

– Instead of a fixed set of registers, it uses an infinite set of temporaries, called
virtual registers. At the register allocation phase, some of the virtual registers
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will be replaced by physical registers while the rest will be spilled to memory.
All virtual registers are kept in SSA form.

– Program variables are divided into two categories:
i. variables whose address is taken and can be referenced by pointers

ii. variables that can never be referenced by pointers.
The latter are converted to SSA, whereas the former are kept in memory
by using: (i) alloca instructions to allocate the required space on stack,
and (ii) load/store instructions to access or update, respectively, the variable
contents, at any point (hence escaping SSA form). This technique has been
termed “partial SSA” [10].

– Like address-taken variables, global variables are also kept in memory and
are always represented by a pointer to their “content” type. However, their
space is allocated using a global initializer instead of an alloca instruction.

The example of Figure 3 illustrates these points regarding the LLVM trans-
lation. Figure 3a shows the original source code, while Figure 3b shows the
corresponding LLVM bitcode. Local variable p is stored in memory (since its
address is taken) and virtual register %p holds its address. %p’s value can be
updated multiple times, using store instructions. Likewise, global variable gv

(of type int*) is also kept in memory and pointer @gv (of type int**) is used to
access it. As will be clear later, our analysis follows the variable representation
conventions of LLVM and decouples memory allocations from virtual registers
(or global variable references). Figure 3c depicts the relevant points-to relation-
ships, which capture that gv points to p. Dashed edges are used to represent
variable points-to edges (whose source is a virtual register), while solid edges are
dereference edges between abstract objects.

int *gv;

void f()

{

int p = 3;

gv = &p;

}

(a) C source

i32** @gv = global i32* null

define void @f() {

i32* %p = alloca i32

store i32 3, i32* %p

store %p, i32** @gv

}

(b) LLVM translation

Variables %p

i32* %p = alloca i32

@gv

i32** @gv = global i32* null

Abstract Objects

(c) Points-to graph

Fig. 3: Partial SSA Example

3 Approach

Our analysis approach adds more detail to object abstractions, which serve both
as sources and as targets of points-to edges, allowing a more detailed represen-
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tation of the heap. Although our approach is applicable to C/C++ analysis in
general, it is best to see it in conjunction with the LLVM bitcode intermediate
language. Just as LLVM bitcode is a strongly-typed intermediate language, we
assign types and offsets to every abstract object value and its points-to rela-
tionships. The challenge is that, unlike in the LLVM bitcode type system, such
information is not readily available by local inspection of the code—it needs to
be propagated by the analysis reasoning itself.

We next discuss the various abstractions of our analysis, in representing its
input and output relations. Then, we express the main aspects of our analysis
as a set of inference rules.

3.1 Abstractions

Figure 4 presents the input and output domains of our analysis. We represent
functions as a subset of global entities. Thus, G contains all symbols referenc-
ing global entities—everything starting with symbol “@” in LLVM bitcode. Set
V holds temporaries only (i.e., virtual registers), and not global variables. We
represent the union of these two sets with P , which stands for pointer variables
(i.e., any entity whose value may hold some memory address). Our analysis only
introduces the set of abstract objects O, that correspond to memory locations.

T set of program types
L set of instruction labels
C program (integer) constants
V set of virtual registers
G set of global variables
F ⊆ G program functions
P = V ∪G pointer variables

O set of abstract objects

Fig. 4: Analysis Domains

The LLVM IR defines an extensive instruction set. However, only a small
subset is relevant for the purposes of pointer analysis. Figure 5 presents a sim-
plified version of these relevant instructions. The first two instructions are used
to allocate memory on the stack and on the heap, respectively. As previously
discussed, alloca instructions are used for address-taken variables. They ac-
cept an extra type argument (absent in malloc instructions), which specifies
the exact type of the allocation (virtual registers are strongly typed), and the
allocation size is a constant. Next, we have cast instructions, used solely to sat-
isfy LLVM’s type checker since they do not change any memory contents, and
phi instructions that choose a value depending on the instruction’s predecessor.
Apart from the standard load/store instructions, we have two more instruc-
tions that, given a memory address operand, return a new address by adding a
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relative offset that corresponds to either a field or an array element. (Only load

instructions dereference memory, however.) Finally, we have call and return in-
structions. Call instructions may also accept a variable (function pointer), as
their first argument.

LLVM Instruction Operand Types Description

p = alloca T, nbytes V ×T×C Stack Allocations
p = malloc nbytes V ×(V ∪ C) Heap Allocations
p = (T ) q V ×T×(P ∪ C) (No-op) Casts
p = phi(l1 : a1, l2 : a2) V ×(L 7→ (P ∪ C))2 SSA Phi Node
p = ∗ q V ×P Load from Address
∗ p = q P×(P ∪ C) Store to Address
p = &q->f V ×P×C Address-of-field
p = &q [idx] V ×P×(V ∪ C) Address-of-array-index
p = a0(a1, a2, . . . , an) V ×(F ∪ V )×(P ∪ C)n Function Call
return p P ∪ C Function Return

Fig. 5: LLVM IR Instruction Set. We also prepend a label l ∈ L to each in-
struction (that we omit in this figure). Each such label can be used to uniquely
identify its instruction.

Abstract Objects. Our analysis defines several different kinds of abstract objects
that express the exact nature of the allocation. Any abstract object must fall
into one of the following categories:

– ôi A stack or heap allocation for instruction (allocation site) i ∈ L.

– ôi,T A (heap) allocation for instruction i ∈ L, specialized for type T ∈ T .

– ôg A global allocation for global variable or function g ∈ G.

– ô.f ld A field subobject that corresponds to field “fld ” of base object ô ∈ O.

– ô[c] An array subobject that corresponds to the element at constant index
c ∈ C of base object ô ∈ O.

– ô[∗] An array subobject that corresponds to any elements at unknown
indices of base object ô ∈ O.

When not using any special notation, we shall refer to a generic abstract object
that could be of any of the above forms.

By representing field and array subobjects as separate abstract objects them-
selves, the handling of instructions that return addresses anywhere but at the
beginning of some allocation becomes straightforward. As we shall see at Sec-
tion 3.2, all our analysis has to do is return the relevant abstract object that
represents the given subobject of its base allocation. This abstract subobject will
have its own distinct points-to set, which will be tracked separately from that of
its base allocation or any of the rest of its fields. Thus, it will allow the analysis
to retain a certain degree of precision that would be otherwise impossible.
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Our analysis computes four main relations:

Variable points-to edges. Edge p 7→ ô ∈ P ×O records that pointer variable
(either virtual register or global variable) p may point to abstract object ô.
Note that virtual registers that correspond to source variables will always
point to a single object: the corresponding stack allocation. Temporaries
introduced by LLVM bitcode, though, may point to many abstract objects.

Dereference edges. Edge p̂o ; ô ∈ O × O records that abstract object p̂o
may point to abstract object ô. Any object that has a non-empty points-to
set (i.e., the object has outgoing dereference edges) may represent a pointer.
Dereference edges can only be established by store instructions.

Abstract object types. The partial function type : O 9 T records the type
of an abstract object. An abstract object can be associated with one type at
most, or none at all. Since our analysis uses types to filter redundant deriva-
tions, the more types it establishes for abstract objects, the more points-to
edges it will compute.

Call-graph edges. Edge i
calls−−−→ f ∈ L × F records that invocation site i

may call function f . This also accounts for indirect calls that use function
pointers.

3.2 Techniques - Rules

Figure 6 presents the main aspects of the analysis as a set of inference rules. The
first two rules handle stack and heap allocation instructions. All they do is create
a new abstract object representing the given allocation site, and assign it to the
target variable. In the case of stack allocation, we also record the type of the
object, since it is available at the allocation site. The next pair of rules handle
global allocations for global variables and functions, respectively, in a similar
way. In contrast to the previous rules, we create abstract objects for all global
entities, regardless of any instructions (since their allocation in LLVM bitcode
is implicit), and record their types.

For cast instructions, we copy any object that flows in the points-to set
of the source variable to the points-to set of the target variable. Phi instruc-
tions are treated similarly, but we have to consider both of the instruction’s
operands, regardless of their corresponding labels, since our result must be an
over-approximation.

Store instructions are the only way in which the analysis establishes derefer-
ence edges. For a store instruction, ∗ p = q, we have to perform the following:

1. First, find the corresponding abstract objects that the two instruction operands
point to, by following their outgoing variable points-to edges. Namely: (i) the
memory allocation of the value to be stored (abstract object ô), and (ii) the
memory allocation that ô is going to be stored into (abstract object p̂o).

2. Then, establish a dereference edge between any two such abstract objects
returned, expressing that object p̂o may point to object ô.
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Stack
i : p = alloca T, nbytes

p 7→ ôi type(ôi) = T
Heap

i : p = malloc nbytes

p 7→ ôi

Global
f ∈ F

f 7→ ôf type(ôf ) = type(f)

g ∈ (G \ F )

g 7→ ôg type(ôg) = type(g)

Cast
i : p = (T ) q q 7→ ô

p 7→ ô
Phi

i : p = phi(l1 : a1, l2 : a2)

∀j : aj 7→ ô ⇒ p 7→ ô

Load
i : p = ∗ q q 7→ p̂o p̂o ; ô

p 7→ ô
Store

i : ∗ p = q p 7→ p̂o q 7→ ô

p̂o ; ô

Field
i : p = &q->f q 7→ ô type(ô) = S type(q) = S

p 7→ ô.f type(ô.f) = type(S.f)

Array – Const
i : p = &q [c] q 7→ ô type(ô) = [T] type(q) = [T]

p 7→ ô[c] type(ô[c]) = T

Array – Var
i : p = &q [j] q 7→ ô type(ô) = [T] type(q) = [T]

p 7→ ô[∗] type(ô[∗]) = T

Call
i : p = a0(a1, a2, . . . , an) a0 7→ ôf

i
calls−−−→ f(p1, p2, . . . , pn) ∀j : aj 7→ ô ⇒ pj 7→ ô

Ret
i : p = a0(. . .) i

calls−−−→ f(. . .) j : return q j ∈ body(f) q 7→ ô

p 7→ ô

Heap-bp
i : p = malloc nbytes j : w = (T ) q q 7→ ôi

p 7→ ôi,T type(ôi,T) = T

Fig. 6: Inference Rules

The first step simply bypasses the indirection introduced by LLVM bitcode,
where operands are represented as virtual registers that point to memory loca-
tions. Load instructions perform the opposite operation, and thus are treated
symmetrically. For instruction p = ∗ q, we first (i) find the corresponding ab-
stract object that the address operand may point to (abstract object p̂o), (ii) then
follow any outgoing dereference edge of object p̂o to get any memory location p̂o
may point to (object ô), and finally (iii) establish a new variable points-to edge
for target variable p, recording that p may now also point to object ô.

The next three rules (Field, Array–Const, Array–Var) model field-
sensitivity. The rule handling field accesses, such as p = &q->f , finds any object

ô that base variable q may point to, and returns ô ’s relevant field subobject ô.f .
However, a key element is that ô is only considered as a base object if its type
matches the declared (struct) type of g (recall that LLVM bitcode is strongly
typed). This precludes any untyped heap allocations as possible base objects.
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Otherwise, the analysis would end up creating untyped field subobjects too,
further fueling imprecision. Thus, we are able to maintain an important invariant
of our structure-sensitive analysis: only create field (or array) subobjects whose
types we are able to determine. Effectively, LLVM bitcode imposes strong typing
on variables, while our analysis extends the treatment to abstract objects.

Array element accesses are treated similarly and they, too, maintain this
invariant. However, we distinguish array accesses using a constant index from
those using a variable (i.e., unknown) index. In the former case, we return the

array subobject ô[c], which represents the subobject at index c. In the latter case,

we return ô[∗], which represents the unknown index. Essentially, this treatment
allows our analysis to track independently the points-to sets of array indices that
are statically known to be different, yielding a form of array-sensitivity.

Call and return instructions as modeled as assignments: (i) from any actual
argument aj to its respective formal parameter fj , and (ii) from any returned
value q to the target variable of the call instruction p. Like cast instructions,
they simply copy the points-to sets from the assignment’s source to its target.
However, the rule that handles call instructions also records call-graph edges.
When the function operand a0 may point to abstract object of , representing
function f , we record an edge from the given call site to function f . This handles
both direct and indirect calls (i.e., via function pointers).

How to produce type information for unknown objects. Our analysis only allows
taking the address of fields of objects whose type is known. This prevents loading
and storing from/to fields of objects without types. Such objects can only be used
as identity markers. Yet C and C++ allow the creation of untyped objects. Their
handling is a key element of the analysis.

The Heap-bp rule implements the use-based back-propagation technique [15,
16, 23], which creates multiple abstract objects per (untyped) allocation site.
The rule states that when an (untyped) heap object ôi (allocated at instruction
i) flows to some cast instruction j, where it is cast to type T, we augment the
points-to set of i’s target variable p with a new abstract object ôi,T, specialized
for the given type. The insight behind this rule is that, even when the program
performs an allocation via a type-agnostic routine like malloc(), the allocation
will be later cast to its intended type before being used. By using this technique,
the original untyped allocation will be prevented from creating any untyped
subobjects, but as soon as the possible type of the allocation is discovered, the
new abstract typed object will succeed where the untyped one has failed. Note
that instructions i and j could occur in distant parts of the program, as long as
the analysis can establish that the object allocated at instruction i flows to j.

This treatment successfully deals with generic allocation wrappers or factory
methods. In this case, the wrapped allocation will flow to multiple cast instruc-
tions, and thus create multiple typed variations of the original object. However,
in each case, only the object with the correct matching type will be used as a
base for any subsequent address-of-field instructions. The rest of the objects will
be filtered, since they are indeed irrelevant.
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3.3 Partial Order of Abstract Objects

As the observant reader may have noticed, the rules of Figure 6 about accesses
or array elements are not sound. Consider the example of Figure 7. Variable p

points to a heap allocation. Three different store instructions take place: (i) one
that stores &i to index 1, (ii) one that stores &j to index 3, and (iii) one that
stores &k to some variable index. When loading from index 1, the analysis has
to return both &i and &k (since the value of variable idx may be equal to 1),
but not &j, which is stored to a different index. Conversely, when loading from
a variable index, the analysis has to return all three addresses, since the index
could be equal to any constant.

int i, j, k, idx;

...

int **p = malloc(...);

p[1] = &i;

p[3] = &j;

p[idx] = &k;

int *x = p[1]; // yields { i, k }
int *y = p[2]; // yields { k }
int *z = p[j]; // yields { i, j, k }

Fig. 7: Accessing array elements.

Using our array-sensitive approach, we ensure that indices 1, 3, and “∗”
(unknown) are associated with separate points-to sets that are not merged. To
handle loads correctly, though, we have to be able to reason about implicit
associations of abstract objects, due to possible index aliases. Thus, we say that

object ô[∗] “generalizes” object ô[c] (for the same base object ô), since loading

from ô[∗] must always return a superset of the objects returned by loading from

ô[c], for any constant c. This concept extends even to deeply nested subobjects.

For instance, an object ̂o.f1[∗][2].f2[∗] generalizes object ̂o.f1[4][2].f2[∗].
We can think of this binary relation between abstract objects as a partial

order over domain O and define it appropriately.

Definition 1 Abstract Object Generalization Order. An abstract object ŷ ∈ O
generalizes an abstract object x̂, denoted x̂ v ŷ, if and only if:

x̂ = ŷ

∨

( x̂ = p̂[∗] ∨ x̂ = p̂[c] ) ∧ ŷ = q̂[∗] ∧ p̂ v q̂

∨

(x̂ = p̂.f ∧ ŷ = q̂.f ∧ p̂ v q̂) ∨ (x̂ = p̂[c] ∧ ŷ = q̂[c] ∧ p̂ v q̂)
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Intuitively, ô1 v ô2 holds when ô1 can be turned to ô2 by substituting any of
its constant array indices with “∗”. Figure 8 gives an example of such ordering.
The direction of the edges is from the less to the more general object.

x[0][3].f[*];

x[0][*].f[*];

x[0][*].f[4];

x[0][3].f[6]; x[0][3].f[4]; x[0][2].f[4];

x[*][*].f[*];

Fig. 8: Abstract Object Ordering – Example: Nodes are abstract objects. An
edge ( ŝ, t̂ ) denotes that object ŝ is generalized by object t̂ (i.e., ŝ v t̂ ).

Given this partial order, it suffices to add the two rules of Figure 9 to account
for possible index aliases. The first rule states that the points-to set of a (less

general) object, such as ô[c], is a superset of the points-to set of any object

that generalizes it, such as ô[∗]. The second rule modifies the treatment of load
instructions, so that they may return anything in the points-to set of not just the
object we load from (such as ô[∗]), but also of objects that it generalizes (such as

ô[c]). In this way, the general and specific points-to sets are kept distinct, while
their subset relationship is maintained.

3.4 Soundness

As stated by Avots et al. [2]: “A C pointer alias analysis cannot be strictly
sound, or else it would conclude that most locations in memory may point to any
memory location.” As in the PCP points-to analysis [2], our approach tries to
maintain precision at all times, even if this means that the analysis is not sound
in some cases. Instead of trying to be as conservative as possible, we choose to opt
for precision and increase soundness by selectively supporting well-established
code patterns or idioms (such as using malloc() to allocate many objects of
different types).
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Match
ô1 v ô2 ô2 ; ô

ô1 ; ô
Load II

i : p = ∗ q q 7→ ô2 ô1 v ô2 ô1 ; ô

p 7→ ô

Fig. 9: Associating array subobjects via their partial order.

The soundness assumptions of our analysis are that: (i) objects are allocated
in separate memory spaces [2], and (ii) every (concrete) object has a single type
throughout its lifetime. Hence, our analysis would be unsound when a union type
is used to modify the same concrete object using two different types, since this
violates the second assumption. However, our analysis would be a good fit for
programs that use discriminated unions (e.g., unions that depend on a separate
tag field to determine the exact type of the object), since it would create a
different abstract object for every type of the union, so that each such abstract
object would represent the subset of concrete objects with the same tag value.

In general, the single-type-per-lifetime assumption is reasonable for most
objects, but would be prohibitive in some cases—especially so when the code
relies on low-level assumptions about the byte layout of the objects. For instance,
our base approach would not be able to meaningfully analyze code that uses a
custom memory allocator. Instead, the analysis would need to be extended so
that it models calls to the allocator by creating new abstract objects.

Finally, the analysis must be able to discover all associated types for any
given object, to retain its soundness. For simplicity, we have only considered
cast instructions as places where the analysis discovers new types, but it is easy
to supply additional type hints by considering more candidates. For instance, an
exception object of unknown type may be allocated and then thrown, by calling
the cxa::throw() function in the C++ exception handling ABI, without any
intervening cast. However, we can use the accompanying typeinfo object (always
supplied as the second argument to cxa::throw()) to recover its true type and
hence create a typed abstract exception object. To the best of our knowledge,
such special treatment is needed only in rare cases, and the analysis can be easily
extended to handle them.

4 Analyzing C++

LLVM bitcode is a representation well-suited for C. However, for OO languages
such as C++, high-level features are translated to low-level constructs. A classic
example is dynamic dispatch, through virtual methods. Virtual-tables are rep-
resented as constant arrays of function pointers, and virtual calls are, in turn,
translated to a series of indirect access instructions.

Figure 10a presents (a simplified version of) the LLVM bitcode for such a
translation. A virtual call has to (i) load the v-pointer of the class instance (at
offset 0), (ii) index into the returned v-table (at the corresponding offset of the
function being called), (iii) then load the returned function pointer to get the
exact address of the function, and (iv) finally call the function. By employing
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%class.B = type { i32 (...)**, ...}

;; translation of bp->foo(), for

;; B *bp;

%1=bitcast %bp to i32 (%class.B*)***

%2=load i32 (%class.B*)** %1

%3=getelementptr i32 (%class.B*)** %2, 1

%4=load i32 (%class.B*)* %3

call i32 %4 (%class.B* %bp)

(a) C++ virtual call compiled to LLVM bit-
code

%bp

B b;

%1

int (...)** 
b.vptr;

B::foo()

B::VTable

B::VTable[1]

%2

%3

%4

(b) Points-to graph

Fig. 10: C++ Virtual Call Example

the techniques we have described so far, our structure-sensitive analysis is well-
equipped to deal with such an involved pattern, and precisely resolve the function
to be called.

Figure 10b shows what our analysis computes (assuming %bp points to vari-
able b). Only a minor addition is required: anything that points to an object
should also point to its first field (at byte offset 0). Hence, both %bp and %1 (after

the cast) will point both to (stack-allocated) object b̂, and to its v-pointer field

subobject b̂.vptr. The first load instruction will return the v-table. Indexing into
the v-table will return the corresponding array element subobject, which will
maintain its own independent (singleton) points-to set, due to array-sensitivity.
Finally, the second load instruction will return the exact function that the v-table
points to, at the given offset.

5 Evaluation

We compare our structure-sensitive analysis to a re-implementation of the Pearce
et al. [20,21] analysis in cclyzer, that also operates over the full LLVM bitcode
language. We will refer to this analysis as Pearcec. Both analyses were imple-
mented using Datalog, and include many enhancements to deal with various
features (such as memcpy instructions, hidden copies of struct instances due to
pass-by-value semantics, type compatibility rules, etc.) that arise in practice.

For our benchmark suite, we use the 8 largest programs (in terms of bitcode
size) in GNU Coreutils,2 and 14 executables from PostgreSQL. We use a 64-
bit machine with two octa-core Intel Xeon E5-2667 (v2) CPUs at 3.30GHz and
256GB of RAM. The analysis is single-threaded and occupies a small portion of
the RAM. We use the LogicBlox Datalog engine (v.3.10.14) and LLVM v.3.7.0.

2 Our original selection included the 10 largest coreutils, but dir and vdir turned out
to be identical to ls and are maintained mostly for backwards-compatibility reasons.
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Structure-sensitive Pearcec

Benchmark Size
call-graph abstract running abstract running

edges objects time objects time

cp 720K 3205 68166 29.25s 3380 13.62s
df 456K 1812 38919 20.68s 2236 11.09s
du 608K 2424 49592 29.77s 3008 21.96s
ginstall 692K 3185 59893 25.12s 3207 14.32s
ls 604K 2654 66469 22.43s 2783 13.35s
mkdir 384K 1466 21900 17.35s 1641 11.43s
mv 648K 2932 55619 25.50s 3015 12.20s
sort 608K 2480 75360 34.25s 2955 21.40s

clusterdb 528K 1390 167605 33.90s 4461 11.89s
createdb 528K 1412 168068 30.58s 4480 11.07s
createlang 572K 1928 133869 25.67s 4275 12.68s
createuser 532K 1435 171115 31.07s 4569 9.31s
dropdb 524K 1361 165966 31.26s 4399 12.72s
droplang 572K 1936 133912 24.38s 4278 12.55s
dropuser 524K 1356 165615 30.45s 4386 12.15s
ecpg 1.2M 5713 59252 38.47s 5219 29.11s
pg-ctl 488K 1615 118689 23.36s 3655 9.14s
pg-dumpall 572K 2110 184276 32.18s 5153 11.95s
pg-isready 464K 1302 108622 21.54s 3343 11.25s
pg-rewind 556K 1943 136915 25.56s 4301 11.48s
pg-upgrade 604K 2501 151967 26.49s 4965 11.80s
psql 1.4M 5925 460522 67.76s 14025 25.28s

Fig. 11: Input and Output Metrics. The first column is benchmark bitcode size
(in bytes). The second column is the number of call-graph edges (as computed
by our analysis). The third (resp. fifth) column is the number of abstract objects
created. The fourth (resp. sixth) column is the analysis running time.

Figure 11 presents some general metrics on the input and output of each
analysis: (i) number of call-graph edges (allocation site to function), (ii) number
of abstract objects created by the analysis, and (iii) running time (excluding
constant overhead that bootstrap both analyses).

Figure 12 compares the two analyses in terms of the degree of resolving
variable points-to targets. The first column of each analysis lists the percentage
of fully resolved variables (virtual registers): how many point to a single abstract
object. This is the main metric of interest for most analysis clients. The next two
columns list the percentage of variables that point to two/three objects.

It is evident that our structure-sensitive analysis fares consistently better in
fully resolving variable targets. Our analysis resolves many more variables than
Pearcec does, for any of the available benchmarks, with an average increase of
36% across all coreutil benchmarks and 58% in the PostgreSQL benchmarks.
This is despite using a finer-grained object abstraction than Pearcec: The “ab-
stract objects” column of Figure 11 shows that our analysis abstraction has one
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Structure-sensitive Pearcec

Benchmark (%) |pt(v)| → 1 2 3 (%) |pt(v)| → 1 2 3

cp 35.42 11.56 9.03 24.02 2.91 3.51
df 35.98 13.15 8.37 26.28 1.98 4.38
du 37.06 10.51 7.54 25.60 2.00 2.95
ginstall 36.31 14.24 8.28 27.15 7.44 3.14
ls 33.23 6.09 8.81 26.90 3.57 2.67
mkdir 36.11 8.43 9.65 23.02 2.00 4.35
mv 35.09 13.71 8.97 24.58 6.78 3.04
sort 29.20 5.25 9.65 22.37 1.47 2.53

average 34.49 9.51 8.79 25.37 3.53 3.19

clusterdb 40.86 8.42 7.93 24.46 2.79 3.85
createdb 40.82 9.11 7.95 24.54 2.83 4.31
createlang 42.72 8.87 11.89 25.62 4.10 4.78
createuser 40.33 8.85 8.75 24.07 3.18 4.44
dropdb 40.59 8.69 7.96 23.97 2.91 4.00
droplang 42.68 8.86 11.88 25.67 4.10 4.75
dropuser 40.36 8.72 8.01 23.86 2.86 4.02
ecpg 16.72 1.22 0.52 15.14 0.30 42.64
pg-ctl 41.31 8.46 8.50 25.31 3.31 4.05
pg-dumpall 40.52 7.10 7.21 27.74 3.10 4.61
pg-isready 39.89 8.12 7.87 23.59 2.92 4.03
pg-rewind 44.74 7.55 8.56 31.39 2.75 3.76
pg-upgrade 41.12 8.35 9.34 27.73 2.95 3.70
psql 38.62 5.81 9.33 25.61 2.31 3.20

average 39.38 7.72 4.55 24.91 2.89 6.87

Fig. 12: Variable points-to sets. Proportion of resolved variables (that point to
one abstract object), as well as variables with two or three points-to targets.

to two orders of magnitude more abstract objects than Pearcec. Yet it succeeds
at resolving many more variables to a single (and much finer-grained) abstract
object. (The only benchmark instance in which Pearcec somewhat benefits from
its coarse abstract object granularity is ecpg: a full 42.64% of variables point to
3, much coarser than ours, abstract objects.) Note also that the Pearcec anal-
ysis appears much better than it actually is for meaningful cases, due to large
amounts of low-hanging fruit—e.g., global or address-taken variables, which are
the single target of some virtual register, due to the SSA representation.

6 Related Work

We discussed some closely related work throughout the paper. Most C and C++
analyses in the past have focused on scalability, at the expense of precision. Sev-
eral (e.g., [7,14,25]) do not model more than a small fraction of the functionality
of modern intermediate languages.
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One important addition is the DSA work of Lattner et al. [13], which was
the original points-to analysis in LLVM. The analysis is no longer maintained, so
comparing experimentally is not possible. In terms of a qualitative comparison,
the DSA analysis is a sophisticated but ad hoc mix of techniques, some of which
add precision, while others sacrifice it for scalability. For instance, the analysis
is field-sensitive using byte offsets, at both the source and the target of points-
to edges. However, when a single abstract object is found to be used with two
different types, the analysis reverts to collapsing all its fields. (Our analysis would
instead create two abstract objects for the two different types.) Furthermore,
the DSA analysis is unification-based (a Steensgaard analysis), keeping coarser
abstract object sets and points-to sets than our inclusion-based analysis. Finally,
the DSA analysis uses deep context-sensitivity, yet discards it inside a strongly
connected component of methods.

The field-sensitive inclusion-based analysis of Avots et al. [2] uses type in-
formation to improve its precision. As in this work, they explicitly track the
types of objects and their fields, and filter out field accesses whose base ob-
ject has an incompatible type (which may arise due to analysis imprecision).
However, their approach is array-insensitive and does not employ any kind of
type back-propagation to create more (fine-grained) abstract objects for poly-
morphic allocation sites. Instead, they consider objects used with multiple types
as possible type violations. Finally, they extend type compatibility with a form
of structural equivalence to mark types with identical physical layouts as com-
patible. The implementation of cclyzer applies a more general form of type
compatibility, which has been omitted from this paper for space reasons.

Miné [18] presents a highly precise analysis, expressed in the abstract in-
terpretation framework, that translates any field and array accesses to pointer
arithmetic. By relying on an external numerical interval analysis, this technique
is able to handle arbitrary integer computations, and, thus, any kind of pointer
arithmetic. However, the precision comes with scalability and applicability lim-
itations: the technique can only analyze programs without dynamic memory
allocation or recursion.

There are similarly other C/C++-based analyses that claim field-sensitivity [9,
10], but it is unclear at what granularity this is implemented. Existing descrip-
tions in the literature do not match the precision of our structure-sensitive ap-
proach, which maintains maximal structure information (with typed abstract
objects and full distinction of subobjects), at both sources and targets of points-
to relationships. Nystrom et al. [19] have a fine-grained heap abstraction that
corresponds to standard use of “heap cloning” (a.k.a. ”context-sensitive heap”).

7 Conclusions

We presented a structure-sensitive points-to analysis for C and C++. The anal-
ysis attempts to always distinguish abstract objects and assign them a unique
type (even when none is known at the point of object creation) as well as to
discriminate between subobjects of a single object (array or structure instance).
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We describe the analysis in precise terms and show that its approach succeeds
in maintaining precision when analyzing realistic programs. In our experience,
the techniques we described are essential for analyzing C/C++ programs at the
same level of precision as programs in higher-level languages.
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