
77

Elipmoc: Advanced Decompilation of Ethereum Smart
Contracts
NEVILLE GRECH, University of Malta, Malta and Dedaub Ltd
SIFIS LAGOUVARDOS, University of Athens, Greece and Dedaub Ltd
ILIAS TSATIRIS, University of Athens, Greece and Dedaub Ltd
YANNIS SMARAGDAKIS, University of Athens, Greece and Dedaub Ltd

Smart contracts on the Ethereum blockchain greatly benefit from cutting-edge analysis techniques and pose
significant challenges. A primary challenge is the extremely low-level representation of deployed contracts.
We present Elipmoc, a decompiler for the next generation of smart contract analyses. Elipmoc is an evolution
of Gigahorse, the top research decompiler, dramatically improving over it and over other state-of-the-art tools,
by employing several high-precision techniques and making them scalable. Among these techniques are a new
kind of context sensitivity (termed “transactional sensitivity”) that provides a more effective static abstraction
of distinct dynamic executions; a path-sensitive (yet scalable, through path merging) algorithm for inference
of function arguments and returns; and a fully context sensitive private function reconstruction process. As a
result, smart contract security analyses and reverse-engineering tools built on top of Elipmoc achieve high
scalability, precision and completeness.

Elipmoc improves over all notable past decompilers, including its predecessor, Gigahorse, and the state-
of-the-art industrial tool, Panoramix, integrated into the primary Ethereum blockchain explorer, Etherscan.
Elipmoc produces decompiled contracts with fully resolved operands at a rate of 99.5% (compared to 62.8% for
Gigahorse), and achieves much higher completeness in code decompilation than Panoramix—e.g., up to 67%
more coverage of external call statements—while being over 5x faster. Elipmoc has been the enabler for recent
(independent) discoveries of several exploitable vulnerabilities on popular protocols, over funds in the many
millions of dollars.

Additional Key Words and Phrases: Program Analysis, Smart Contracts, Decompilation, Datalog, Security,
Ethereum, Blockchain

1 INTRODUCTION
Decentralized financial applications, built using smart contracts running on programmable
blockchains (most notably Ethereum), are starting to rival traditional financial systems. Therefore
coding or logical errors in smart contracts can have large financial implications. This makes smart
contracts primary targets for automated analysis and verification tasks.

More specifically, the analysis of smart contracts as-deployed, i.e., by taking their binary form as
input, is attractive for several reasons. First, it offers significant generality: many deployed smart
contracts have no publicly released source code. Security analysts routinely need to inspect such
contracts (e.g., bots) to determine their functionality. Second, analyzing contracts at the bytecode
level offers a uniform platform for analysis, not distinguishing between source languages and
source language versions. This is a major factor, given that (the dominant Ethereum language)

Authors’ addresses: Neville Grech, University of Malta, Malta and Dedaub Ltd, me@nevillegrech.com; Sifis Lagouvardos,
University of Athens, Greece and Dedaub Ltd, sifis.lag@di.uoa.gr; Ilias Tsatiris, University of Athens, Greece and Dedaub
Ltd, i.tsatiris@di.uoa.gr; Yannis Smaragdakis, University of Athens, Greece and Dedaub Ltd, smaragd@di.uoa.gr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/4-ART77
https://doi.org/10.1145/3527321

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

https://doi.org/10.1145/3527321

77:2 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

Solidity does not maintain source compatibility across versions. Source-level tools very quickly
become obsolete. Bytecode decompilation offers by far the most general substrate for automated
smart contract analyses.
Decompilation of the Ethereum Virtual Machine (EVM) bytecode is an open problem for the

security community. Existing approaches lack in completeness, precision, or scalability. For in-
stance, the most-used decompiler in practice, etherscan.io’s Panoramix [Kolinko and Palkeo 2020],
decompiles complex contracts only partially, with much of the low-level code often not reflected in
the decompiled version. Past academic research tools, such as the Gigahorse decompiler [Grech et al.
2019a], sacrifice precision and occasionally even scalabily. Lower precision results in low-quality
decompilation, for instance, operations with unknown operands, or jumps with many infeasible
targets. To illustrate such shortcomings, our experiments show that these leading past decompilers
manage to decompile under 20% (Panoramix: 18.2%, Gigahorse: 19.8%) of Ethereum contracts of
large size (over 20KB).
Technically, the low-level nature of the EVM poses a challenge for any decompilation effort.

The EVM uses a single stack for calls and local operations, without any guarantees about its
well-formedness. The only control flow operators are unstructured jumps. All calls, returns, loops,
and conditionals are implemented as jumps to whichever address is currently at the top of the stack.
Compilers producing EVM bytecode often perform aggressive optimization, since instructions have
a monetary cost to execute. A major obfuscating factor, for instance, is the aggressive merging of
identical instruction sequences belonging to different internal, a.k.a. private, functions. Control and
data flow are, as a result, very hard to discern without sophisticated modeling techniques.

In this paper, we introduce Elipmoc (“compile”, backwards), a decompiler for Ethereum smart con-
tracts. Elipmoc advances the state of the art in EVM bytecode decompilation, offering significantly
increased precision and completeness. Elipmoc is the substrate of a successful analysis framework
that has flagged numerous exploitable vulnerabilities on contracts with or without source (but with
millions of dollars in locked value). All analyses operate over the three-address code exported by
Elipmoc. We have made several vulnerability disclosures, some of which resulted in major rescue
efforts [Dedaub 2021b,c,d,f; Michales, Jonah 2021; Primitive Finance 2021]. In addition, the Elipmoc
team has been commissioned to perform three separate studies for the Ethereum Foundation, for
the assessment of the impact of Ethereum Improvement Proposals EIP-1884, EIP-3074, and a future
EIP that proposes a rearchitecting of storage gas cost metering. The Elipmoc decompiler allows
answering questions such as “what will be the impact of change-X on the entire set of currently
deployed contracts?” and is becoming a crucial tool for the evolution of the Ethereum blockchain
and many of its applications.

In technical terms, Elipmoc makes the following contributions:

● Transactional Context Sensitivity. Elipmoc proposes an effective form of context sensitivity
for smart contract execution. Context sensitivity offers a way to condense actual executions
into short static signatures. Devising good signatures is crucial for both precision and scalability
throughout the decompiler. Elipmoc’s transactional context sensitivity is based on insights about
EVM low-level control flow (esp. continuation-based optimizations) and overall execution.
● Scalable, context & path-sensitive function reconstruction. Since compilers tend to reuse
EVM bytecode sequences for the benefit of multiple functions, a direct inference of private
functions is not straightforward. Additionally, high-level control flow is compiled away to the
point of near-irreversibility, using continuation-passing-style patterns. We address such issues
with a static analysis maintaining the current contents of a continuation stack, and a path-sensitive
analysis to determine with high precision the maximum number of stack elements consumed, i.e.,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

https://{etherscan.io}

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:3

the likely number of function arguments. To make such algorithms scalable, we employ various
techniques to reduce complexity, such as merging paths into unordered sets of basic blocks.
● Experimental benefit over state-of-the-art.We thoroughly compare Elipmoc to its predeces-
sor, the leading EVM research decompiler, Gigahorse [Grech et al. 2019a] and the best-known,
most-used industrial decompiler, Panoramix [Kolinko and Palkeo 2020]. Elipmoc exhibits much
higher precision than Gigahorse—e.g., dropping the percentage of contracts with unresolved
operands for some operation from 37.4% to 0.5%. It is also much more complete than Panoramix—
e.g., mapping 40% more CALL instructions in the input into decompiled statements—as well
as significantly more scalable—with a 5x speedup and timeouts for under 5% of contracts, to
Panoramix’s 17.8%.

Generally, Elipmoc showcases how core programming language implementation techniques
contribute to a cutting-edge domain, outperforming the leading past research and industrial tools.

Brief Illustration.
It is useful to start by defining the purpose of decompilation (a.k.a. binary lifting) in our intended
use of the term. In our setting, decompilation is defined as the recovery of a structured inter-
mediate representation (three-address code) from very low-level bytecode.

This representation enables advanced automatic processing of the contract code, by downstream
tools. An easy-to-appreciate tool (but not the primary goal of our decompilation) is a source unparser,
producing a human-readable version of the code. Figure 1 showcases improvements of Elipmoc’s
source-like output over that of Gigahorse—the leading past research decompiler.

The decompiled code is for the transfer function of an ERC20 token contract. Differences include
the more complete inference of high-level calls (Gigahorse fails to recognize the private, compiled-
away _SafeAdd) and the much less noisy function argument inference (Gigahorse infers a function
call to a non-existing 6 argument function). These techniques are described in detail in Sections 5.2
and 5.3. The structure (both control- and data-flow) of the Elipmoc output is much closer to that of
a human-written source program. One could claim that the intent of the code is understandable in
the Elipmoc version, yet obscured due to noise (decompilation imprecision errors) or omissions
(decompilation incompleteness) in the Gigahorse version. Arguably, an important factor is the
introduction of human-readable names (e.g., “_SafeAdd”), which is orthogonal to the decompilation
itself, yet this orthogonal inference is not even possible if the decompilation does not correctly
recover the limits and arguments of functions.

2 BACKGROUND
We proceed to describe the context within which Elipmoc exists—analysis of Ethereum smart
contracts.

2.1 Smart Contracts
Ethereum is the largest programmable blockchain, on virtually any metric. The programming
platform at the core of Ethereum, the EVM, is also used in other smart contract platforms, such as
Binance Smart Chain (BSC), Polygon (previously Matic), JP Morgan Chase’s Quorum [Chase 2020],
Tron, Solana, Fantom and Cardano (via KEVM). The EVM is therefore the defacto standard smart
contracts platform, akin to the JVM for enterprise applications. The semantics of the EVM are
detailed in the Ethereum yellowpaper [Wood 2014] and the rest of the paper assumes knowledge of
this execution model, including knowledge of the EVM stack, control flow instructions, etc.

Smart contracts are predominantly written using the high-level language Solidity [Various 2018].
Solidity is used in over 99% of the deployed contracts that publish source. (The second most-used

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:4 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

function transfer(address varg0, uint256 varg1) public {
require(!msg.value);
require(!(0xff & _addEther >> 160));
require(varg0 != 0);
require(varg1 <= _balanceOf[msg.sender]);
if (varg0 != address(_rubusOrangeAddress)) {
v0 = _SafeSub(varg1, _balanceOf[msg.sender]);
_balanceOf[msg.sender] = v0;
v1 = _SafeAdd(varg1, _balanceOf[varg0]);
_balanceOf[varg0] = v1;
emit Transfer(msg.sender, varg0, varg1);
emit MoreData(0, _ethPerToken);
v2 = 1;

} else { ... } ... }

function transfer(address varg0, uint256 varg1) public {
require(!msg.value);
require(!(0xff & stor___fun_selector__ >> 160));
require(varg0 != 0x0);
v232a = msg.sender;
v232f = 0x20;
require((varg1 <= owner_2[v232a][0]));
if (varg0 != address(storage_3 >> 0))) {
v265a = msg.sender;
v265f = 0x20;
v2676_0 = 0xdcf(varg1, owner_2[v265a][0]);
v26a8 = msg.sender;
v26ad = 0x20;
owner_2[v26a8] = v2676_0;
v26ef = varg0;
v26f4 = 0x20;
0xdb1(varg1, owner_2[v26ef][0], 0x270c, 0x0, 0x0, varg1);

} else { ... } ... }

Fig. 1. Elipmoc (top) vs. Gigahorse (bottom) output. Slight simplification (names, casts) for space.

language is Vyper [Various 2017], which statistically lags far behind in adoption yet has some
prominent uses.) Contracts are compiled to a low-level bytecode representation that is executed
on the EVM. This bytecode is deployed to the blockchain where it is persisted at an address. It is
then publicly accessible for anyone to interact with. A deployed contract instance is identified with
its address, which also holds persistent storage (for maintaining the contract’s internal state) and
cryptocurrencies. The native cryptocurrency of Ethereum, Ether, is used as a store of value, as a
means of payment for executing smart contracts on the blockchain, and as a reward for the miners
that maintain the security of the Ethereum network.
The execution of a smart contract is transactional in nature. The execution starts at the first

instruction until an instruction is encountered that halts or reverts the execution. Ethereum smart
contracts follow a standard application binary interface (ABI), where each external call to a contract
needs to select an entry. Therefore each transaction has a single entry point into the contract: a
public function.1 The selection of this entry point is explicitly relayed by the caller by prepending
the function signature to the payload message. This payload message is parsed by the smart contract
and the appropriate code is executed. This public entry point will become an important component
of our approach to context sensitivity in Section 4.

The mechanisms employed for transfering control between functions is what sets it apart from
other low level bytecode languages. In EVM bytecode, all control-flow transfer mechanisms are
dynamic. This is not the case of low-level languages such as JVM bytecode. This dynamicity is
further challenged by the fact that the EVM does not enforce statically balanced stacks so the depth

1Recursive calls are possible, but each would live within its own “internal transaction”, thus in a separate EVM instance.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:5

of the stack at any point in the program can be different according to which path the program has
taken. It is noteworthy that even x86 assembly may be easier to analyze in this context—unlike x86,
the EVM has no method invocation and return instructions. Instead, private function calls within
a contract are translated to dynamic jumps. Hence, all functions in a contract are fused into one
stream of instructions, with dynamic jumps as the only means to transfer control.
The challenge of EVM bytecode analysis lies in the low-level nature and unconventionality

of its design. We shall see several aspects of the EVM in Sections 4 and 5. Here we only note
that EVM bytecode is, in many ways, a lower-level language than even typical microprocessor
(e.g., x86) assembly—it has no calls, only dynamic jumps, and a single mixed stack for instruction
addresses, function arguments, return values, and local operands. The proliferation of high-value
smart contracts compiled for the Ethereum Virtual Machine (EVM) virtually guarantees that this
computing platform will remain relevant.

2.2 Smart Contract Analysis
Analysis and verification of smart contracts is now commonplace and a standard part of the software
engineering process. The importance of this process is usually appreciated by all the system’s
stakeholders as software defects in smart contracts can cripple entire crypto-economic systems.
Smart contract security audits are generally conducted by external organizations, with access to
smart contract analysis and verification tools.
Analysis or verification of smart contracts can be conducted either at the source code or at the

bytecode level. Analysis at the bytecode level requires a lifter, like Elipmoc. Most major Ethereum
smart contract protocols—e.g., Decentranized Finance (DeFi) applications—publish sources. The
majority of deployed contracts, however, do not: the deployers are not inviting interaction with
parties outside their trusted user base. In this highly security- and privacy-conscious space, being
able to inspect and automatically analyze all contracts is invaluable.
Even when source code is available, automated analysis at the bytecode level is beneficial, or

even essential. Most contract sources also incorporate inline assembly for critical functionality. At
submission time, 78% of substantial contracts (over 1000 LoC) published on Etherescan.io contain
inline assembly. Assembly use is rife in popular libraries—e.g., [Various 2018a]. Typical routines that
use assembly are used to interact with external contracts in a dynamic manner or for cryptographic
functions. Decompilation is therefore essential for recovering the high-level semantics of modern
smart contracts, uniformly integrating both their high-level and assembly-level parts.

More importantly, bytecode-level analysis guarantees that a tool stays relevant across different
source languages and source-language versions. Source-level tools in the Ethereum space are highly
fragile and language-version-dependent, since the Solidity language changes very frequently in
syntactically incompatible ways. Many automated analysis tools that work at the source level (i.e.,
eschew decompilation from bytecode) quickly become irrelevant in practice because of the rapid
advancement of (incompatible) Solidity versions. For instance, a recent study [Brent et al. 2020]
reports that the Securify2 tool, which operates at the source code level applies to under 3% of
deployed contracts. Additionally, although source analysis tools are generally easier to engineer
and use, bytecode analysis tools are more faithful to the run-time semantics.

3 STRUCTURE OF ELIPMOC
A bird’s-eye view of Elipmoc is shown in Figure 2. This figure depicts the various technical
contributions in solid-line boxes, together with how these fit within existing technologies.

After the bytecode is parsed, a straightforward process, local analyses on this bytecode summarize
the effects of each basic block. These local analyses also compute direct edges between basic blocks.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:6 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

Local
Analyses

Control Flow
Normalization

Elipmoc

Whole-Contract
Analysis

Function
Boundary
Inference

RTL
TranslationTransactional

Sensitivity Function
Argument
Inference

“Function
reconstruction”

Fig. 2. High-level architecture of Elipmoc, noting the new elements (solid lines). Dashed elements are reused
from the Gigahorse framework [Grech et al. 2019a] that Elipmoc builds on.

Similar to past decompilers, the transformed code is now analyzed with the whole contract
as a single monolithic function, with dynamic jumps to transfer control flow between internal
function callers and callees, and vice-versa. Unfortunately, an analysis of this kind can quickly lead
to imprecision, as the same snippet of code can be used in many different parts of the program
under different contexts. Elipmoc addresses this issue using an appropriate novel form of context
sensitivity called transactional context sensitivity, which is detailed in Section 4. Transactional
context sensitivity can retain precision, while maintaining scalability. The global analysis yields
a global control-flow graph, with all data flows between stack locations for each point of the
program resolved. This information takes a highly-precise form—e.g., “the value at location 𝑙 of the
stack upon entry to block 𝐵 may have been pushed at instruction 𝑖”. The precision is essential for
recovering the high-level form of the code.

The information gleaned from the whole-contract analysis is used to produce a new intermediate
representation, tailored to subsequent analysis phases. Subsequently, the private function recon-
struction starts. This starts by identifying the function boundaries (Section 5.2). The algorithms
here are concerned with assigning each basic block to a single function. Normally, this also requires
control-flow normalization. Briefly, a new normalized intermediate representation is produced.
In this IR, basic blocks that are reused between different functions are inlined (i.e., also cloned
as necessary), reversing global code-reuse optimizations performed by the high-level language
compiler. This greatly facilitates the final step: function argument inference. In this step, function
arguments are inferred using another precise (and potentially very costly) path-sensitive algorithm.
The algorithm is optimized to retain scalability, merging paths into sets of basic blocks, instead of
sequences of (artificially bounded) length. This algorithm is presented in Section 5.3.

Finally, a register-transfer-language representation can be emitted, which is used by subsequent
security analyses or applications, including the higher-level decompilation.
After function reconstruction, the output of the decompiler is suitable for performing client

analyses. However, the same cannot be said about its human readability. The reverse-engineering
client in the Elipmoc toolchain addresses this issue, outputting source-like code, intended for human
consumption. This performs various high-level feature reconstruction analyses such as detecting
structured programming constructs. Internally, the reverse-engineering client constructs an AST,
by inlining expressions whenever possible, up to a depth threshold. A series of AST transformations
are then performed that aim to optimize human readability, before finally serializing the resulting

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:7

AST into text form. Source-level idioms (e.g., require and assert statements for dynamic checks,
emit statements for events) are introduced. Human-readable signatures for functions and events
are shown when available.

4 TRANSACTIONAL CONTEXT SENSITIVITY
Elipmoc is built on the declarative (Datalog) framework introduced by the Gigahorse decompiler
[Grech et al. 2019a], inheriting the vocabulary and input/output form andmechanisms, but replacing
nearly all of the complex decompilation core. Gigahorse uses as its backbone a context-sensitive
analysis of possible stack contents per program point. Due to the design of later stages in the
decompilation process, this stage in Elipmoc can be an order of magnitude more efficient, by only
modelling stack locations that may contain possible jump targets. This added efficiency encourages
the development of more detailed context sensitivity. The primary relation modeling the global
stack is of the form StackContents(ctx, insn, index, var), denoting that, under abstract execution
context ctx, at instruction insn, stack position index holds the value originally assigned to variable
var. (The intermediate representation is in static single assignment (SSA) form, so the variable has
a unique assignment.)

Modeling the contents of the stack context-sensitively, in turn, yields a context-sensitive low-level
control-flow graph, since all control flow is just jumps to the address held in the topmost element of
the stack. In general, all inferences of the decompiler, even at a much higher level, depend crucially
on the precision of the context-sensitivity model. For instance, in Figure 6 (Section 5) we will see the
function reconstruction algorithm appeal to the context-sensitivity model to test if a path between
a likely call site and a call continuation is realizable.
It is, therefore, crucial, for both precision and scalability, to define an appropriate context-

sensitivity model. Maintaining full precision (e.g., all actual dynamic context of an execution—a
super-exponential state space) is prohibitive for static analysis. Context-sensitive static analysis
aims to define a compact abstract context that summarizes dynamic execution conditions in a way
that executions with the same information (e.g., stack contents) have the same context (to avoid
replication of effort), yet executions with interesting differences are not confused.

The context policy of Elipmoc, which we dub transactional context sensitivity, is a major element
of its increased precision. Transactional context sensitivity is designed for the execution model of
smart contracts and differs significantly from context sensitivities designed for functional [Shivers
1991], or imperative and object-oriented programs [Milanova et al. 2005]. Transactional context
sensitivity is unique in that it retains part of the transaction payload (the public function signature)
while analyzing the smart contract, and also adjusts local context heuristically. Before discussing
transactional context sensitivity in detail (Section 4.2) we describe a useful pre-analysis.

4.1 Classifying Jump Instructions
The low-level execution flow of smart contracts is characterized by a series of low-level jump
instructions. All these jumps are dynamic, i.e., to targets not directly apparent in the (bytecode)
program text—the jump target is merely the address held at the top of the stack. Precision is essential
for recovering valid code sequences: a basic block may be preceded by many and followed by many
others, but very few combinations of predecessors and successors are realizable.
The input form can be viewed as a continuation-passing-style (CPS) representation: function

returns and calls are both treated as mere jumps, i.e., can be thought of as forward calls. Providing
a return address at a function call site (i.e., at a jump instruction that implements a high-level call)
is no different from providing an extra argument: the continuation, to be jumped-to at the end of
the called code. However, in addition to calls and returns, the same jumps also implement all local,
intra-function control flow, such as if statements or loops.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:8 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

Dynamic Jump*

JUMP

Locally
Unresolved

private

return

or call/cc

Locally
Resolved

Caller also pushes
escaping jump dest.

private call

Unique
Target

intra-proc.

jump

JUMPI

intra-proc.

jump

* Excludes jumps to public functions

Fig. 3. How jumps in a smart contract are classified in terms of the kinds of control flow changes these are
normally associated with.

Past approaches [Brent et al. 2018; Grech et al. 2019a] have utilized various kinds of context
sensitivity to recover precise control flow. Traditional call-site sensitivity2 over CPS input [Shivers
1991] can be precise for very deep contexts: paths of length over 10 jump sites (or basic blocks).
Unfortunately this does not scale well. Many of the dynamic jumps (around 90%), however, can
be statically resolved by a fast local pre-analysis, which can yield some structure to the program
at an early stage. Such an analysis is very scalable as it is local, however it also needs to perform
constant folding.3
The output of this analysis, in conjunction with other transformations to standardize the con-

trol flow patterns (e.g. translating a conditional public function jump into simpler control flow
operations), can be used to classify jumps as depicted in Figure 3.

The JUMP instruction can be used for many applications. The fact that a JUMP instruction’s address
can be locally resolved (i.e., the address was pushed to the stack in the same basic block as the
instruction), however implies that the control-flow transfer was known to the caller. Therefore, we
can immediately conclude that the instruction is either an intra-procedural jump or a direct call to
another function. On the other hand, if the target of JUMP instructions is unresolved, it is likely a
return from a private function, or a call to a continuation passed by the caller. These targets would
have been passed on the stack multiple basic blocks prior in the execution.
Elipmoc can distinguish between simple intraprocedural jumps and direct function calls in an

overapproximate, manner by finding (potentially folded) constants that are pushed onto the stack
that are (i) valid jump targets that, (ii) escape (in dataflow terms) from that basic block. When these
two conditions hold, that basic block is most likely calling a private function. The intuition behind
this algorithm is that when compiling function calls, return label addresses need to be pushed prior
to the call of a private function.

2In this case, call-site sensitivity might be better named “jump-site sensitivity”, but we choose to keep the conventional
name.
3Note that jump targets may even be calculated at run-time (i.e., can be computed results of arithmetic and not merely
different constants pushed along different execution paths). This aspect is mostly a function of the compiler used and its
level of optimization. Note also that constant folding needs to implement the EVM’s 256-bit arithmetic operations.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:9

call ∈ 𝐼 : set of instructions (jump sites)
𝑃𝐶 : set of private contexts, PC ≅ 𝐼𝑛
ctx ∈ 𝐶: set of contexts, C ≅ I × PC

Initially, ctx = [Null, [Null, Null]]

Merge(ctx, call) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(︀pub, Second(ctx)⌋︀,
if PublicCall(call,pub)

(︀pub, (︀call, First𝑛−1(Second(ctx))⌋︀⌋︀,
if PrivateCall(call)
or PrivateReturn(call)

ctx, otherwise

Fig. 4. Context constructor for transactional context sensitivity. Returns the context for the callee function
given the current context, ctx, of the caller and the specific call instruction in the caller. For ease of exposition
of the spirit of the definition, we use nested tuples to distinguish the public part of the context (single element)
from the private part (of 𝑛 elements), instead of merging both in a flat tuple of 𝑛 + 1 elements.

4.2 Context Sensitivity
A defining feature of transactional context sensitivity is that it retains the public function (i.e.,
the transaction’s entry point) throughout the analysis. This means that code reachable from the
same public end-points (exported by the contract) will be analyzed separately per such end-point.
To form the full analysis context, this “sticky” context information is combined with a transient
context part, which also benefits from the classification of jump instructions of the previous section.
Per past work [Jeong et al. 2017; Smaragdakis et al. 2011; Thiessen and Lhoták 2017], context

sensitivity can be defined precisely by a constructor Merge, which produces a new context for a
callee taking as input the information (context and call instruction) at the call site. The definition
of Merge for transactional context sensitivity is shown in Figure 4. The context is made up of
two components: the public function context, and the private function context. The public function
context keeps the function signature of the currently executing public function, which is initially
Null. The private function context keeps context information about the currently executing private
functions. This part of the context retains the 𝑛 most recent likely private function call sites or
return sites found while jump instructions are being processed. A jump instruction that does not
correspond to a call or return does not change the context. Figure 5 illustrates: Two execution
paths are shown and their static abstraction is highlighted. The bold arrows show the essence of
transactional context sensitivity: the execution context modeled statically only retains the source
block of the very first edge of an execution path (i.e., the public function entry point) and the
source block of the most recent “important” edges. All other, intermediate execution points are not
modeled statically, i.e., paths that only differ in those will be staticaly treated as one.

Keeping the top-level (i.e., public function) transaction entry point is one part of the novelty of
transactional context sensitivity. The other part concerns the private context. By definition, call-site
sensitivity over CPS input [Shivers 1991] treats every call site (in our case, jump instruction) as a
point of context update. Transactional context sensitivity updates the context only at a subset of
these jumps: those earlier classified as likely private function calls or returns.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:10 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

Basic Blocks Legend

public function entry

private function entry

return block

other basic block

transaction start

Fig. 5. Two sample execution paths (left and right of basic blocks) and their static abstractions (consisting of
the blocks from which bold arrows originate), under transactional context sensitivity of depth 2 for the private
context. The two examples illustrate transactional context sensitivity: execution paths are distinguished by
keeping the source of the very first edge (the public entry point) and that of the most recent few edges (2 in
this case) that are likely to be private function calls or returns.

Retaining a return-site context distinguishes return targets (i.e., continuations) depending on
which previous block reaches them. This decision is beneficial for precision given the tail-call and
other continuation-passing optimizations (see Section 5) employed by the high-level language
compilers: “return” sites may actually not return to the caller but to the caller’s caller or the next
function being called.

These subtle insights contribute to the unique performance characteristics of transactional context
sensitivity. In general, the combination of jump instruction classification and the transactional
context sensitivity policy provides an excellent heuristic for high-value context elements to maintain
for both scalability and precision.

5 (PRIVATE) FUNCTION RECONSTRUCTION
Function reconstruction is a major part of Elipmoc. This is a hard problem, only solvable in empirical
terms. However, better function reconstruction directly affects the bottom line of a decompiler: the
quality/precision of decompilation, along multiple metrics, improves significantly.

5.1 The Private Function Reconstruction Problem
To detect (private) functions, Elipmoc uses computationally-demanding algorithms that require the
global dataflow information, together with the global CFG, constructed during the whole-contract
analysis phase. Although all (or most) stack locations have been resolved to global definitions
throughout the smart contract, the resulting program does not contain functions: these have been
compiled away in EVM bytecode.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:11

The function reconstruction problem concerns identifying private high-level functions (likely
present in the original source program) from a compiled smart contract in EVM bytecode.4

For a systematic definition, function reconstruction aims to identify private functions consisting
of groups of basic blocks, used in a function-like manner:
● the function is reached via jumps from multiple call sites;
● the data- and control-flow patterns at these jumps match high-level calls:
- (a consistent, across call sites, number of) arguments are passed on the stack before the jump
that purportedly implements the function call;

- a return address is similarly passed to the function;
- the called function returns (a consistent number of) return values—the EVM allows functions
with multiple return values;
- the called function returns by jumping to the return address pushed by the caller.
The above properties seem easily checkable via static analysis. However, the compilation process

introduces many exceptions to high-level function patterns, mostly because of global optimizations
performed during compilation to EVM bytecode. Even worse, most of the properties that one
typically associates with high-level functions are violated.
● Basic blocks are aggressively merged, so that a coincidentally identical basic block is shared across
several different functions. With the EVM being a stack machine (without named temporaries,
only stack locations) identical basic blocks (i.e., sequences of 3-8 instructions) are very common
even accidentally. Furthermore, many of these common blocks implement standard snippets of
code (e.g., bounds checking routines, memcopy routines, etc.).
● Functions do not always return to their high-level callers: the supplied return address could well
be the continuation of the call, which could be the caller’s caller (i.e., the call is a tail call) or the
caller’s next callee (i.e., the call is chained with another).
● The return block could be pushed on the stack long before the actual call. (E.g., before an
intervening call that computes one of the second call’s arguments.) The compiler only has an
obligation to keep the stack values in the right order, and is motivated to avoid superfluous
instructions to reorder values on the stack.
● Functions do not always return: they can also abort or successfully exit the transaction, in which
case the stack can be left in any state. Arguments on the stack could be left unconsumed and
return values may be partially pushed.
● Basic blocks may be calling a function (or returning from a function) under one path of execution,
and do something completely different under another.
The above points constitute significant challenges for tools attempting to recover private func-

tions. Failing to recover function calls and their boundaries can result in having the “merged” basic
blocks used in many different ways inside the same caller-function. This can be observed in Figure
1, where failing to recognize calls results in unstructed control-flow, greatly affecting the precision
of any tools running on top of the decompiler. In addition, incorrectly inferring function boundaries
or a function’s number of arguments can affect the completeness of the decompilation output
in two different ways. If the number of arguments of a private function is inferred incorrectly, a
statement can attempt to use a stack variable that would correspond to an argument (set outside
the function) and be unable to resolve it. In addition, if a block is falsely inferred to be part of a

4In contrast to private functions, public functions are relatively easy to infer: they have well-known entry points and often
published signatures. In fact, most existing decompilers [eth 2018; Brent et al. 2018; Grech et al. 2019a; Kolinko and Palkeo
2020] can identify public functions. To our knowledge the Gigahorse decompiler [Grech et al. 2019a] is the only other to try
to infer private functions.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:12 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

private function it may attempt to use stack variables that are neither pushed inside the function
nor are arguments, resulting, again, in an unresolved operand.
To face these complexities, Elipmoc uses two separate clusters of algorithms, one for detecting

functions and one for inferring their arguments and returns. The next sections examine them.

5.2 Function Boundary Inference
The only function reconstruction algorithm for EVM bytecode in past literature [Grech et al. 2019a,
Section IV.C] is rather simplistic: a function needs to be called from multiple call sites, and a call
site needs to push a return address and arguments. This approach works for simple cases, such as
the one below, which calls function foo with argument 0xFF.

PUSH ret // set return address
PUSH 0xFF // set argument
PUSH foo // set function address
JUMP // jump to (call) 'foo'

ret: ...
foo: ...

JUMP // jump to 'ret' (return)

This function pattern, however, is inadequate for the complications of optimized EVM bytecode
mentioned earlier: it produces functions that share basic blocks, it does not detect return addresses
pushed long before the call site, and it gets confused with inconsistent use of function arguments
or returns (e.g., due to transaction termination).

Elipmoc offers a four-step approach yielding both better precision and completeness.

(1) Find instructions that push addresses and then jump to code that will eventually jump back to
the pushed addresses. This is the root inference pattern, identifying likely return instructions.
Although the return is identified with high confidence, the call is not identified. Every jump,
from the original block that sets the return address, up until the return jump, is a potential
matching call that leads to the return.

(2) For each such potential call site, find all addresses on the stack at the time of the jump, ranked
by stack depth. The call site at which the return address is at rank 1 (i.e., at the top of the
stack after the call) is a possible matching call site, provided context-sensitive reachability
conditions are satisfied. This information is maintained recursively across calls, handling the
pattern of pushing return addresses well before a call (due to other intervening calls).

(3) The above produces an over-approximation of possible call- and return-site pairings. These
are filtered for well-formedness. The main filter ensures that a jump classified as a return is
to a block that is not also a target of a jump classified as a call. Functions are inferred with
high confidence when no conflicting call-return classification exists and the entry block (i.e.,
target of a call) is called multiple times.

(4) In all cases of blocks reachable from multiple function entries, inline them (by cloning) in
all functions that can reach them. This control-flow normalization phase addresses the basic
block merging that occurred during compilation. The invariant guaranteed by inlining is that
a function “owns” all the basic blocks that it is made of. In other words, any basic block in
one function should not be reachable from the body of another function.

All of the above steps reveal important design choices. However, the algorithm of Step 2 is the
most involved, and also has an important effect, worth illustrating.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:13

ReturnAddressRank(setter,retFrom,retTo,rank)

setter pushes the address retTo on the stack, and it is the 𝑛-th such address
it pushes (𝑛 dubbed the“rank”). retFrom eventually jumps to the retTo address.

FnCallReturn(caller, retFrom, retTo)

caller is inferred to call a function with return block retFrom, returning to retTo.

// If the callee function returns to the very first address (rank 1) on the stack
// that the caller supplied , this is a likely return from the callee to the caller
FnCallReturn(caller , retFrom , retTo) :-

ReturnAddressRank(caller , retFrom , retTo , 1),
FeasiblePath ([caller , retFrom , retTo]).

// We have found a possible call -return pattern , propagate to the return block
// the extra pushed return values of the earlier caller , with rank
// adjusted based on the return block 's other pushed addresses.
ReturnAddressRank(caller , retFrom , retTo , n') :-

FnCallReturn(setter , _, caller),
ReturnAddressRank(setter , retFrom , retTo , n),
offset = max(rank: ReturnAddressRank(caller , _, _, rank)),
FeasiblePath ([setter , caller , retFrom , retTo]),
n > 1, n' = n+offset -1.

Fig. 6. Recursive inference of potential call-return pairs (FnCallReturn) and rank of return address among
others on the stack (ReturnAddressRank). The presentation uses syntactic shorthands for computing the max-
imum matching entry in a relation and for context-sensitive reachability through any number of intermediate
nodes.

To motivate Step 2, consider the following (simplified) pattern in compiled EVM bytecode.5

PUSH ret3
PUSH 0x3
PUSH ret2
PUSH 0x2
PUSH ret1
PUSH 0x1
PUSH foo
JUMP // jump to (call) 'foo', returns to ret1

ret1:
PUSH bar
JUMP // jump to (call) 'bar', returns to ret2

ret2:
PUSH baz
JUMP // jump to (call) 'baz', returns to ret3

ret3: ...

This pattern implements the chained high-level calls
baz(bar(foo(0x1), 0x2), 0x3). The complication is that the return addresses of bar and baz

are pushed on the stack well before the jump instructions that implement the respective calls,
separated by any number of instructions, both statically, in the program text, and dynamically, in
the execution.

5Although the pattern is not uncommon, for a concrete example one can see the Rubus token contract,
0x876a11639ce3d2bba1712fc9f47bd6faee575ad4, basic block 0x1cc, using any contract code explorer (e.g., etherscan.io).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

https://etherscan.io

77:14 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

Figure 6 illustrates the heart of the algorithm of Step 2, in pseudo-rules that closely capture
the actual structure of the computation. Relation ReturnAddressRank has initial contents computed
locally (not shown in Figure 6), i.e., from addresses pushed on the stack in the same basic block
as setter. (The stack serves both as an activation and as an operand stack, so it will also have
arbitrary other contents: arguments, local temporaries, etc. Only return addresses are kept and
ranked in ReturnAddressRank.)

The contents of ReturnAddressRank are then enriched, as shown in the figure, in mutual recursion
with the eventual output of Step 2, relation FnCallReturn. The latter relation identifies matching
call-return pairs, based on the top-most address on the stack (rank 1) that the caller pushes and the
return jumps to. Every such call-return pair matched allows the further propagation (from before
the call to after the return) of other return addresses on the stack.

In our EVM code example, once the call-return pattern for foo is recognized (as a FnCallReturn),
the JUMP instruction for bar acquires (via the second rule) a ReturnAddressRank of rank 1 for retTo
being ret2. This, in turn, allows recognizing the call to bar and its return to ret2 as a FnCallReturn.
Finally, the same pattern applies to resolve the call to baz.

Using such precise modeling of stack contents and gradually combining it with function recon-
struction, Elipmoc manages to revert the vast majority of control-flow tangling resulting from
optimizing decompilation. The techniques are likely applicable beyond EVM bytecode, in other
CPS settings, although this is just an informal assessment—a full claim can only be ascertained
experimentally, in future work.

Adding context sensitivity. In order to simplify presentation, the algorithms in this section have
been described in a context-insensitive manner. It should be noted however that the Elipmoc
implementation of function reconstruction is fully context-sensitive: the relations shown are
enhanced with context elements so that infeasible combinations (e.g., values of retFrom and retTo

in ReturnAddressRank that will never arise in the same execution) are pruned away.

5.3 Function Argument Inference
The final step in the function reconstruction process is the inference of function arguments. Similar
to other problems, notions of function arguments have been erased from the program. Instead,
arguments are passed over the stack by the caller and the callee returns its values over the stack.
The main intuition behind function argument inference is that the number of arguments of a
function is the high-watermark number of elements that the function will pop from the stack.
The number of return arguments is the difference in number of elements that will have been
pushed on the stack at function exit, after popping the arguments. This computation is far from
straightforward because the number of arguments that are popped from the stack may change
depending on runtime conditions.

For instance, if the function foo, shown in Figure 7, follows the path of the error checking logic,
it will not pop the actual arguments from the stack. This means that in order to correctly determine
the number of arguments, all possible paths need to be followed. Unfortunately, the EVM does not
enforce stack balancing across branches, which means that different stack heights can be achieved
depending on the path taken to reach a basic block. This can have even worse consequences if
cycles emerge in the CFG, either explicitly, or due to imprecision.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:15

foo: va = SLOAD 0x5
vc = LT 0x1 va
JUMPI vc <error>
... // use two arguments

error:
REVERT

Fig. 7. Simple error handing logic (shown in Elipmoc’s three-address IR) asserting that the value held in
storage location 0x5 is greater than 0x1.

PotentialCycleEntry(block)

Basic block “block” may be the entry of
a cycle in a path.

FnPopAndΔ(func, to, path, maxPop, Δ)

A path, from function entry block func to node to

has in its course a maximum number of elements
(high watermark) maxPop popped from the stack and
leaves the stack at difference Δ relative to its level
at function entry.

PotentialCycleEntry(block) :-
LocalBlockEdge(prev , block),
LocalBlockEdge(prev2 , block),
prev ≠ prev2.

FnPopAndΔ(entry , entry , entry , 0, 0) :-
FnEntry(entry).

FnPopAndΔ(func , to, path ', maxPop ', Δ') :-
FnPopAndΔ(func , from , path , maxPop , Δ),
LocalBlockEdge(from , to), to ∉ path ,
BlockMaxPop(from , blockMaxPop),
BlockΔ(from , blockΔ),
maxPop ' = max(blockMaxPop - Δ, maxPop),
Δ' = blockΔ + Δ,
(PotentialCycleEntry(to), path '= path ∪ {to}
∨
¬PotentialCycleEntry(to), path ' = path).

Fig. 8. Path-Sensitive Algorithm computing the number of stack elements popped and shifted by a function.
For clarity, logical operators (¬, ∨, ≠) are used instead of their Datalog syntax counterparts. Set operators (∪,
{}, ∉) are syntactic shorthands for calls to our Datalog-extending path functors.

The algorithm is selectively path-sensitive6 one and is defined in Figure 8. This core algorithm
finds all the possible number of elements that can be popped by the function under any acyclic
path taken within the function.

In order to scale this algorithm, Elipmoc uses a number of optimizations:
6“Path-sensitive” is an overloaded term in static analysis. We use it in a “meet-over-all-paths” sense, to mean that different
program paths, of length not bound a priori, are examined separately before their results are merged. The algorithm does
not take into account the logical (branch) conditions needed for following a certain path.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:16 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

(1) A new Datalog type Path and associated functors are developed. This allows efficient abstrac-
tion of paths within a single Datalog relation. The functionality is implemented as a C++
extension (functor) for the Souffle Datalog engine.

(2) Paths are maintained as unordered sets, not as ordered sequences. Since the stack effects of a
basic block are independent of how it is reached, this does not affect precision.

(3) The possible number of stack elements that can be popped or shifted are calculated in tandem,
within a single relation. This makes the implementation more efficient as the Path needs only
to be manifested once.

(4) The Path element is an overapproximation of the true path taken by the program. Only blocks
that could have potentially acted as a “gateway” to a new cycle (PotentialCycleEntry) in the
execution are tracked. In a function with a single entry, these would be blocks with more
than one predecessor.

The path-sensitive algorithm significantly enhances the precision of function argument inference
and is key for raising the level of abstraction in decompiled code.

Comparison with Gigahorse. At a high-level, the description of the argument inference algorithm
of Elipmoc is similar to that in Gigahorse. For instance, per the Gigahorse paper [Grech et al.
2019a][IV.D]

Gigahorse infers the number of function arguments by computing the number of caller-
supplied elements that the entire function pops from the stack throughout its execution.

That is, both decompilers try to compute themaximum number of elements popped from the stack
(high watermark) during a function’s execution. However, the crucial difference is in the precision
of the path-sensitive approach of Elipmoc. Gigahorse employs a polynomial (non-path-sensitive)
algorithm: the relevant program predicate computes FnPopAndΔ (using Figure 8’s terminology)
summarized up to an instruction. This collapses together all the paths that may be used to reach
that instruction, by considering the maximum among predecessors.

In contrast, as seen in Figure 8, Elipmoc maintains the paths separately, resulting in a worst-case
exponential algorithm. The use of an exponential algorithm, in turn, requires support for this
computation outside the Datalog language (which captures the PTIME complexity class), using
a C++ functor. To keep the complexity bounded, Elipmoc utilizes the approximations described
earlier: paths are sets, not sequences, and are cut off at key points.

6 END-TO-END IMPACT
Although this does not constitute a systematic evaluation, Elipmoc has had significant end-to-
end impact, as the substrate of a large analysis and security inspection infrastructure. Research
tools built on top of it include the Ethainter [Brent et al. 2020] analyzer for composite taint
vulnerabilities, an EVM “memory” modeling analysis [Lagouvardos et al. 2020], and a symbolic
value-flow ("symvalic") analysis [Smaragdakis et al. 2021] combining concrete values and symbolic
expressions. This analysis machinery has recently yielded seven high-profile, critical vulnerabilities,
some of which resulted in major rescue efforts [Dedaub 2021b,c,d,f; Immunefi 2021; Michales, Jonah
2021; Primitive Finance 2021]. The vulnerable services include two of the largest DeFi services that
collectively hold over $1.5B in assets as of the time of writing. Three of the vulnerabilities [Dedaub
2021c,d; Immunefi 2021] are over contracts with no source code publicly available, therefore
decompilation was essential even for human inspection, and not just to produce input for analysis
tools.
Elipmoc has been the basis of three separate studies [Dedaub 2019, 2021a,e], commissioned

by the Ethereum Foundation, over the entire set of deployed contracts. These studies assessed
the impact of Ethereum Improvement Proposals EIP-1884, EIP-3074, and of a new architecture

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:17

of gas cost metering. Elipmoc allows the uniform treatment of deployed contracts regardless of
their provenance (i.e., which language and which version was used to produce them) and the
presence of source code. In this way, we could answer questions such as “what will be the impact
of change-X on the entire set of currently deployed contracts?” Furthermore, the largest insurer
of DeFi protocols has commissioned a watchdog service running on top of Elipmoc to constantly
monitor the security of protocols it underwrites. Elipmoc is available as an open source repository
7 on GitHub. (Elipmoc is essentially Gigahorse 2.0 and the public repo retains the name "Gigahorse".
However, the "Elipmoc" code name is one we use internally and is highly useful for purposes of
comparison in this paper.)

7 EVALUATION
We next compare Elipmoc in detail to the best-performing past research/applied tool (Gigahorse—
Section 7.1) and the most-used state-of-the-art industrial decompiler (Panoramix—Section 7.2).8
Further experiments that validate the design decisions of Elipmoc are presented in Section 7.3. Our
experimental evaluation aims to answer the following research questions.

RQ1: Precision. Does the decompiled code exhibit high precision, enabling a good match with
high-level semantics (e.g., structured control flow, split into functions, operators with the expected
inferred operands)?

RQ2: Completeness. How well does the decompiled code cover the bytecode’s full behavior?

RQ3: Scalability. Is Elipmoc and its design scalable, in terms of successfully decompiling realistic
smart contracts?

To speed up experiments, we run all tools using 40 concurrent processes on an idle Ubuntu 20.04
machine with two Intel Xeon Gold 6136 CPUs @ 3.00GHz (each with 12 cores w/SMT, for a total of
48 hardware threads) and 128GB of RAM. We use a cutoff of 120 seconds for each contract. We
use Souffle 2.0.2 and Python 3.8.2 where needed. The depth of the private context for transactional
context sensitivity is fixed at 8.

The dataset used for the experiments is a uniform random sample of 5000 unique contracts, first
deployed on the main Ethereum network between blocks 12300000 (April 24, 2021) and 13300000
(September 26, 2021). This dataset is obtained by syncing the official Go Ethereum client, dumping
its database of contracts and removing duplicates. This results in under 70000 unique contracts.
The 5000 contract sample is taken from this set. Note that the sample size is quite large, in relation
to the total population (under 70K). Even the weakest possible statistical measurement still has a
confidence interval of 1.76%, with 99% confidence.9

Decompilers for EVM bytecode may have different goals but generally aim to recover a structured
representation of the code for analysis and human understanding purposes, not for purposes

7https://github.com/nevillegrech/gigahorse-toolchain
8Other Ethereum decompilers, such as EtherVM [eth 2018], Porosity [Various 2018b], or Vandal [Brent et al. 2018], are
currently decidedly inferior or explicitly unmaintained—EtherVM is the most up-to-date of them, yet its last non-trivial code
commits are from Sep. 2018. We are not considering the JEB decompiler [Falliere 2019] and Trustlook SECaaS [TrustLook
2019] as they are closed-source tools that offer no way to perform large experimental evaluations in their free versions. The
recent EtherSolve tool [Contro et al. 2021] is not considered as it does not satisfy our definition of “decompilation” from
Section 1: it produces an IR containing low-level stack-altering opcodes (i.e. POP, DUP, SWAP), not a structured IR, such as
three-address code over variables.
9Specifically, for a uniform random sample of 5000 over a population of 70K, the measurement with the least confidence is
one at exactly 50%. (E.g., if we were to discover that exacty 50% of the contracts can be decompiled.) For that, there is a 1.76%
confidence interval (i.e., the real number will be between 48.24% and 51.76%) with 99% confidence. An online sample-size
calculator can be handy for confirmation—e.g., https://www.surveysystem.com/sscalc.htm.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

https://github.com/nevillegrech/gigahorse-toolchain
https://{https://www.surveysystem.com/sscalc.htm}

77:18 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

of maintaining the decompiled code as a development artifact. Therefore the output may be
significantly different from the original source language—for instance, Panoramix decompiles into
Python-esque syntax, Gigahorse primarily produces 3-address code. Comparing across dissimilar
representations is not trivial, therefore we try to introduce the right metrics per-case.

7.1 Comparison to Gigahorse
Gigahorse is the leading Ethereum decompiler in the research literature [Grech et al. 2019a], as well
as a publicly deployed tool—used in the contract-library.com Ethereum code-browsing and analysis
service. Gigahorse was extensively evaluated against other (now unmaintained) decompilers such
as Vandal [Brent et al. 2018] and Porosity [Various 2018b]. We compare Elipmoc directly to the
Gigahorse public artifact [Grech et al. 2019b], which is also the base upon which Elipmoc has
been built. Both decompilers share a similar architecture but have greatly dissimilar algorithms,
which yield different levels of precision, completeness, and scalability. Sharing the same technical
infrastructure allows us to normalize our experiments better and delve into deeper, fundamental
metrics. Both decompilers are designed primarily to enable precise and complete security analyses
on top of their IR.
Enabled by this architectural similarity, our first experiment takes a detailed look at individual

measurements at the decompilation level. In order to do so a second experiment was conducted,
recording the following metrics:

Unresolved Operand: Missing operands in the output.
Unstructured Control Flow: High-level control flow in the output that is not expressible using

structured programming constructs (e.g., high-level loops or conditionals).
Block in Multiple Functions: Basic blocks that belong to more than one function.
Polymorphic Jump Target: (intra-procedural) Jump instructions with targets not uniquely resolved

under the same context.
Timeout: Contracts that have not been decompiled due to timeouts.
Execution Time: Mean decompilation time in seconds.

Most of these metrics in fact address the precision research question (RQ1): Polymorphic Jump
Target measures the precision of the global analysis level, while Block in Multiple Functions and
Unstructured Control Flow measure the precision of the output IR. Unresolved Operand addresses
both precision (RQ1) and completeness (RQ2): unresolved operants manifest as incompleteness in
the final output, but can be caused by either imprecision at any decompilation stage (e.g., global
analysis, function boundary inference), which leads the analysis to consider unrealizable behaviors,
or by inferring an incorrect number of arguments in a private function. Timeout and Execution
Time address RQ3.

The results of our experiment using the default parameters of each system are shown in Figure
9. For each metric, we report the percentage of contracts in our sample that exhibit the measured
pathology: either imprecision/incompleteness, or lack of scalability. For instance, the figure shows
that, under Gigahorse, 37.2% of the sampled contracts exhibit at least one operator with unresolved
operands, whereas this number drops to 0.5% for Elipmoc.

As can be seen in Figure 9, Elipmoc significantly outperforms Gigahorse in all three (conflicting)
quality indicators—scalability, precision and completeness. Since Elipmoc and Gigahorse share
their architecture and are both implemented in Datalog, the improvements are directly attributable
to the algorithms presented in this paper. In particular, the transactional context sensitivity and the
new function reconstruction algorithms have delivered impressive precision improvements.

Elipmoc is also more scalable than Gigahorse, timing out for a mere 4.9% of the sampled contracts,
to Gigahorse’s 18.7%. In addition to their timeouts, Table 1 also contains the average decompilation

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

https://contract-library.com

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:19

Unstructured
Control Flow

Polymorphic
Jump Target

Unresolved
Operand

Block in Multiple
Functions

Timeout
0%

10%

20%

30%

40%

50% 47.1

14.8

8.8

38.6
40.5

11.4

37.2

1.7 0.5

21.4

0.0 0.0

18.7
21.5

4.9

Gigahorse Elipmoc w/10-call Elipmoc

Fig. 9. Comparison between Gigahorse, Elipmoc, and a modified form of Elipmoc with the same context-
sensitivity algorithm as Gigahorse. The latter serves to showcase what part of the improvement is due to
better context sensitivity vs. other improvements. All metrics show the % of contracts (for Timeout over
all contracts in our dataset, for the rest, over the common contracts all 3 tools/configurations manage to
decompile) that exhibit the behavior measured—lower is better.

Table 1. Decompilation scalability metrics vs Gigahorse. The “ / common” variants show pairwise statistics
over the contracts for which neither setup times out.

Timeouts (%) Execution Time (average)
Elipmoc 4.94 % 2.74s

Gigahorse 18.74 % 4.03s
Elipmoc / common — 1.23s

Gigahorse / common — 3.94s

times for Elipmoc and Gigahorse. As can be seen, for the subset of contracts decompiled by both
tools, Elipmoc is more than 3 times as fast on average.
The Gigahorse authors report a much lower, just 0.02%, timeout ratio [Grech et al. 2019a].

The discrepancy is due to two reasons. First, the lower timeout number is for a setting with a
1-call-site-sensitive analysis. In contrast, we measure with the default setting of the Gigahorse
code [Grech et al. 2019b], which is tuned towards precision, with a more expensive 10-call site
sensitivity. Second, our evaluation set uses more modern smart contracts, which are larger in
size and complexity. The Gigahorse dataset consisted of all contracts deployed on the Ethereum
blockchain from its creation, in July 2015, until April 2018. Such a dataset is more representative
of an era when contract deployment was orders of magnitude cheaper (so the chain is full of toy
experiments) and the mainsteam applications were simpler (simple tokens, DAOs). (In the past
year alone, gas prices denominated in ETH grew by 2.5x and the cost of ETH in dollars grew by
7x, resulting in contract deployment becoming more than 15x more expensive.) On the contrary,
the Elipmoc dataset contains contracts that were first deployed between April and September of
2021, focusing on a much more mature space including complex Decentralized Finance (DeFi)
applications.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:20 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

Figure 9 also presents results on a modified version of Elipmoc, which has the same context
sensitivity algorithm as Gigahorse (10-call-site sensitivity). This quasi-Elipmoc decompiler also
shows significant precision improvements relative to Gigahorse, indicating the positive impact of
contributions such as path-sensitive function reconstruction. At the same time, it shows clearly the
impact of better context sensitivity, when every other aspect of the decompiler remains unchanged.

Figure 1, in the Introduction, shows a sample of decompilation output (in human-readable form)
where imprecision elements are illustrated.

Scalability and size distribution. To get better insights on the scalability of the two tools (RQ3),
we compare the success rates of Elipmoc and Gigahorse for contracts of different sizes. The results
are summarized in the following table:

Bytecode Size [0,5KB) [5KB,10KB) [10KB,15KB) [15KB,20KB) [20KB,max)
Elipmoc 2547 (99.8%) 1023 (96%) 536 (82.6%) 254 (86.1%) 393 (89.5%)

Gigahorse 2538 (99.5%) 909 (85.3%) 405 (62.4%) 124 (42.0%) 87 (19.8%)
Total 2552 1065 649 295 439

The results of this comparison can help us get a better understanding of our dataset and the
modern smart contracts for which it is representative. Over half of the contracts in it are smaller
than 5 kilobytes; these small (often hand-tweaked) contracts are often wallet contracts deployed at
scale (with different parameters, e.g., customer address) by exchange services or proxy contracts
utilized by many DeFi protocols. The vast majority of these small contracts can be decompiled
by both Elipmoc and Gigahorse. More diverse contracts that warrant analysis efforts are larger.
Looking at the results for contracts larger than 5 kilobytes, the increased difficulty of decompiling
modern contracts becomes apparent. Elipmoc handily outperforms Gigahorse across all different
contract sizes.

7.2 Comparison to Panoramix
Panoramix (originally “Eveem”) [Kolinko and Palkeo 2020] is an open-source EVM decompiler,
the most-widely used, since it has been deployed in the foremost Ethereum blockchain explorer,
etherscan.io. We compare to Panoramix commit 876a8de.
Panoramix uses symbolic execution, so it decompiles programs as many different execution

sequences and reconstructs a high-level representation of these. Therefore, the architecture of
Panoramix and Elipmoc are significantly different and simplemetrics are not useful when comparing
the fidelity of the approaches. For instance, Panoramix does not infer private functions, so function-
based metrics cannot apply. Panoramix also regularly decompiles a limited number of execution
sequences of a program, therefore entire branches of the program may be missing. On the other
hand, since Panoramix uses a symbolic execution approach, it often inlines entire sequences of
instructions or even unrolls loops. Combining these two properties leads Panoramix to produce
programs with a larger number of variables, but capturing fewer behaviors. In order to have a
meaningful comparison, we run queries on the decompiled representations and produce high-level
metrics with end-user value. These measure completeness and are resilient to inlining/unrolling
and different output forms.

An excellent such metric is the number of unique CALL instruction signatures (performing calls
outside the contract to a function with the given signature) that are present in the decompiled
output. This is a metric that is highly resilient to different approaches to decompilation: the same
call could be inlined many times, yet will only be counted once. Similarly, no matter what the
decompiler does (e.g., condense/optimize the presentation of input instructions), the call signatures
should always be present in the decompiled output, if the code block containing them has been
successfully covered (i.e., decompiled). The metric is also independently interesting, since many

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

https://{etherscan.io}

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:21

Table 2. Decompilation completeness and scalability metrics vs Panoramix. “Panoramix Partial” cuts off the
analysis of any function that times out (at the default 120sec) and continues with the rest of the functions.
Decompilation is then considered to partially succeed if the total time taken is less than 300sec—2.5x the
time allotted to Elipmoc or regular Panoramix. The “ / common” variants show pairwise statistics over the
contracts for which neither setup times out.

Unique External Unique Timeouts Execution
Calls Events (%) Time (average)

Elipmoc 11816 11640 5.0% 2.75s
Panoramix 7048 7128 17.94% 15.6s

Panoramix Partial 9322 9030 7.12% 35.05s
Elipmoc / common 7307 7043 — 1.41s

Panoramix / common 6437 6686 — 14.12s
Elipmoc / common 9798 9104 — 1.62s

Panoramix Partial / common 8379 8381 — 28.59s

security analyses are queries that start with external calls (e.g., reentrancy, gas denial-of-service
[Grech et al. 2018], or tainted calls [Brent et al. 2020]).

The full set of metrics used for this comparison includes:

● Unique External Calls: Number of unique call signatures found.
● Unique Events: Number of unique event signatures found.
● Timeouts: Percentage of contracts that have timed out or otherwise report a decompilation
failure.
● Execution Time: Mean decompilation time in seconds.

Table 2 shows the results of the comparison of Elipmoc with Panoramix. The most striking
metric is the number of unique external call signatures in the decompiled output. Elipmoc manages
to discover 11816 signatures in all contracts, against 7048 for Panoramix—a 67% increase. This
showcases Elipmoc’s completeness/coverage: it roughly shows how much more code a user can
decompile with Elipmoc. A similar result is apparent in the unique events metric, measuring the
unique signatures of event-emitting instructions found in the decompilation output. Panoramix
misses many such instructions due to incompleteness.
To analyze this result more deeply, Figure 2 also contains more detailed comparisons. First, we

introduce the “Panoramix Partial” setup, which allows Panoramix to continue decompilation even
if a complex function times out: decompilation moves on to the next function and is considered to
terminate if the overall time does not exceed 300sec (2.5x the default timeout). Even this setup, with
2.5x the global timeout of Elipmoc, misses a large number of externally-observable instructions
(calls and events).

There are two reasons why Elipmoc recovers more externally-visible instructions. It decom-
piles more contracts, and it decompiles more code in the same contracts. To quantify the latter,
Figure 2 shows the results of pairwise comparisons with Panoramix and Panoramix-Partial over
the “common” contracts decompiled successfully by both systems being compared. The Elipmoc
decompilation exhibits significantly higher completeness (of 13% and 17% on the External Calls
metric) even when considering contracts that Panoramix also decompiles.
The overall result can be seen as indicative of the superior completeness of a static analysis

approach, relative to a symbolic execution approach. For applications such as decompilation, where
all input code needs to participate in the output, symbolic execution is likely easier in engineering

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:22 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

terms but cannot approach the completeness of covering all possible branches via exhaustive static
analysis.
Elipmoc additionally exhibits both higher speed (5x lower average execution time) and greater

scalability/robustness than Panoramix. Elipmoc times out in 5% of the contracts 10, versus Panoramix,
which either times out or registers errors for 17.9%.

Scalability and size distribution. To further examine the scalability of the two tools (RQ3), we
compare the success rates of Elipmoc and Panoramix for contracts of different sizes. The results
appear in the following table:

Bytecode Size [0,5KB) [5KB,10KB) [10KB,15KB) [15KB,20KB) [20KB,max)
Elipmoc 2547 (99.8%) 1022 (96%) 535 (82.4%) 253 (85.8%) 393 (89.5%)

Panoramix 2483 (97.3%) 925 (86.9%) 455 (70.1%) 160 (54.2%) 80 (18.2%)
Total 2552 1065 649 295 439

As can be seen, Panoramix success rates drop rapidly for larger contracts, which are the ones
more likely to require automated analysis. For the largest size class, contracts with at least 20KB of
bytecode, the Panoramix success rate drops to just 18%.

Decompilation Output. Informally, Elipmoc and Panoramix produce code that is roughly equally
compact. Occasionally Panoramix (which uses a Python-esque syntax and not Solidity-like) con-
denses simple expressions better, but most of the reduced output size is due to incompleteness, for
large contracts. Looking at the median and mean sizes of the output produced by the two tools,
gives us interesting insides on their inner workings. The median output size for Elipmoc is 6579
bytes and 4568 for Panoramix. However, if we were to take the mean instead of the median, the
picture would be highly skewed, at 33545 bytes for Panoramix vs. 10354 for Elipmoc. This is due
to enormous outliers, however—e.g., the largest output for Panoramix (due to over-eager loop
unrolling) is 1.4MB, for a contract that Elipmoc decompiles into under 14KB.
Figure 10 demonstrates the source-like output that Elipmoc and Panoramix produce for the

continuation of the transfer function snippet from Figure 1. Panoramix completely lacks private
function inference (no SafeMul, SafeDiv calls), as if all private calls have been inlined. This leads to
significant increase in output size, which can harm readability.

7.3 Design Decisions
Elipmoc’s comparison to Gigahorse in Figure 9 has already shown the importance of better context
sensitivity. We next briefly investigate the design decisions of Elipmoc’s transactional context
sensitivity and the contributions of each component towards precision (RQ1), completeness (RQ2)
and scalability (RQ3). We try the following two modifications to the algorithm:
● Removal of the public function context component, keeping only the private function component.
● Using the public function component, replacing the private function one with a 10-call site
sensitivity component.
We compare these modified context sensitivities with the original, full transactional context

sensitivity and 10-call site sensitivity.
As shown in Figure 11, the full transactional context sensitivity performs better than any

combination of its components. Both of the modified contexts perform better than Gigahorse’s
10-call site sensitivity across all 3 of the (precision and scalability) metrics displayed. Looking more
closely, the introduction of the public function component provides a big precision improvement,
and a lesser, though significant, reduction of timeouts. On the other hand, the private function
10The timeout rate for Elipmoc rises slightly, from 4.9% to 5.0%, compared to Section 7.1, since the optional source unparser
module is now required: comparisons with Panoramix can only be done on high-level output.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:23

else {
v3 = _SafeMul(_commission, varg1);
v4 = _SafeDiv(_ethPerToken, v3);
v5 = _SafeSub(varg1, _balanceOf[msg.sender]);
_balanceOf[msg.sender] = v5;
v6 = _SafeSub(varg1, _totalSupply);
_totalSupply = v6;
v7 = msg.sender.call().value(v4).gas(!v4 * 2300);
require(v7);
v8 = _SafeSub(_commission, 100);
v9 = _SafeDiv(100, v4);
v10 = _SafeMul(v8, v9);
v11 = _exitWallet.call().value(v10).gas(!v10 * 2300);
require(v11);
emit Transfer(msg.sender, _rubusOrangeAddress, varg1);
emit MoreData(v4, _ethPerToken);
v2 = v12 = 1;

}
return v2;

(a) Code decompiled by Elipmoc

else:
if _value:

require _value
require _value * withdrawCommission / _value == withdrawCommission

require priceEthPerToken
require _value <= balanceOf[caller]
balanceOf[caller] -= _value
require _value <= totalSupply
totalSupply -= _value
call caller with:

value _value * withdrawCommission / priceEthPerToken wei
gas 2300 * is_zero(value) wei

require ext_call.success
require withdrawCommission <= 100
if _value * withdrawCommission / priceEthPerToken / 100:

require _value * withdrawCommission / priceEthPerToken / 100
require (100 * _value * withdrawCommission / priceEthPerToken / 100) - (withdrawCommission * _value *
withdrawCommission / priceEthPerToken / 100) / _value * withdrawCommission / priceEthPerToken / 100 == -
withdrawCommission + 100

call exitWalletAddress with:
value (100 * _value * withdrawCommission / priceEthPerToken / 100) - (withdrawCommission * _value *
withdrawCommission / priceEthPerToken / 100) wei
gas 2300 * is_zero(value) wei

require ext_call.success
log Transfer(

address from=_value,
address to=caller,
uint256 tokens=rubusOrangeAddress)

log 0xab7f846d: _value * withdrawCommission / priceEthPerToken, priceEthPerToken
return 1

(b) Code decompiled by Panoramix

Fig. 10. Comparison of Elipmoc and Panoramix output. Slight simplification (names, casts) to fit space.

context alone greatly improves scalability while also improving precision. (Recall that the private
function context contains a small subset of the jump sites, based on an a priori classification of
jump instructions.) The marriage of the two components produces significant benefits, however.

8 RELATEDWORK
The popularity of the Ethereum platform and the fact that most deployed smart contracts only have
low-level EVM bytecode resulted in the emergence of many EVM decompilation tools from both
academia [Brent et al. 2018; Grech et al. 2019a; Zhou et al. 2018] and industry [eth 2018; Falliere

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

77:24 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

Polymorphic Target Unstructured
Control Flow

Timeout
0%

10%

20%

30%

40%

50%

40.5

19.6

29.6

11.4
14.8

8.7

13.3

8.8

21.5

15.2

7.6
4.9

10-Call 10-Call
WPublic

Transactional
Private Only Transactional

Fig. 11. Impact of the various components of transactional context sensitivity on performance and precision.

2019; Kolinko and Palkeo 2020; TrustLook 2019]. We earlier compared to the tools that have a
current claim of being “the best”.

The recent EtherSolve [Contro et al. 2021] tool builds a global CFG as a building block for static
analyses. Its modeling of the stack is, however, limited to the parts of it that affect the construction
of the CFG, producing an IR that contains stack-altering instructions. This design decision dictates
that security analyses built on top of EtherSolve will have to model the stack in order to obtain
accurate data-flow and value-flow information, effectively limiting its usability as an out-of-the-box
static analysis framework. This conclusion can be supported by the fact that most published static
analysis research targetting the EVM [Brent et al. 2020; Grech et al. 2018; Tsankov et al. 2018] has
been developed on top of well-formed three-address-code representations.
Recently, the SigRec [Chen et al. 2021] tool has been proposed to recover the public function

signatures for smart contracts when their source-code is not available. SigRec proposes the use
of type-aware symbolic execution (TASE) for the detection of known patterns used by the Solidity
and Vyper compilers in order to infer the types of public function parameters. This is orthogonal
to our work which focuses on providing a precise and complete IR, including the reconstruction
of internal functions. The detection of such patterns can be performed on top of the IR produced
by Elipmoc as done in the recent Ethereum “memory” analysis [Lagouvardos et al. 2020], which
supports a subset of the patterns supported by SigRec while providing a general model for the
different “memory” buffers of the EVM.

A plethora of Java bytecode decompilers [Benfield 2020; Dupuy 2020; Gómez-Zamalloa et al. 2009;
Miecznikowski and Hendren 2002; Proebsting and Watterson 1997; Strobel 2020; Various 2020]
have been developed over the years. The Dava [Miecznikowski and Hendren 2002] decompiler that
is part of the Soot framework [Vallée-Rai et al. 1999] employs AST-level transformations in order
to improve the quality of the decompiled output. It is important to realize that decompilation over
Java bytecode is technically an entirely dissimilar problem to EVM decompilation. Java bytecode
contains large amounts of high-level information (types, classes, methods, arrays, calls, jumps only
to known labels) and enforces strict constraints (stack depth and type of contents are invariant

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:25

for every path reaching a program point). As such, the challenge of Java bytecode decompilers is
how fully they can recover the rich idioms of the source syntax, not whether they can produce a
high-level program in the first place. Still, works [Hamilton and Danicic 2009; Harrand et al. 2019]
evaluating different Java bytecode decompilers have shown that providing syntactically correct
and semantically equivalent Java code for realistic programs is still an open issue.
Binary disassembly [Ben Khadra et al. 2016; Flores-Montoya and Schulte 2019; Kruegel et al.

2004] and decompilation [Brumley et al. 2013; Cifuentes 1994; Katz et al. 2018; Van Emmerik 2007;
Yakdan et al. 2016; Yakdan et al. 2015] are closer to the EVM decompilation problem, although
control flow is still more disciplined than in the EVM. Many standard techniques had already
been developed in the mid-90s [Cifuentes 1994]. The focus is on the x86 architecture, which is in
some ways even easier to decompile once a reliable disassembly is produced. Inferring function
boundaries and arguments in this domain is aided by standard calling conventions, ISA support
of function calls and returns and a standardized call stack structure. Closer in spirit to our work,
the Ddisasm [Flores-Montoya and Schulte 2019] tool implements a disassembler for x64 binaries
written in Datalog, and the OOAnalyzer [Schwartz et al. 2018] system uses a Prolog-based reasoning
system in order to recover C++ abstractions.

9 CONCLUSIONS
We presented Elipmoc, a decompiler for Ethereum VM bytecode. Elipmoc integrates high-precision
algorithms and design decisions that target a balance of precision and scalability. As a result it
decidedly advances the state of the art in a technically very challenging domain. The core of
Elipmoc includes algorithms for reconstructing high-level control flow and function structure from
an optimized CPS representation—a problem that is of unexpectedly high value in the context of
the EVM and is so fundamental that will likely also arise in future domains.

ACKNOWLEDGMENTS
We gratefully acknowledge funding by the Hellenic Foundation for Research and Innovation (HFRI
project DEAN-BLOCK).

REFERENCES
2018. Online Solidity Decompiler. http://ethervm.io/decompile
M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. 2016. Speculative Disassembly of Binary Code. In Proceedings

of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems (Pittsburgh, Pennsylvania)
(CASES ’16). Association for Computing Machinery, New York, NY, USA, Article 16, 10 pages. https://doi.org/10.1145/
2968455.2968505

Lee Benfield. 2020. CFR - another java decompiler. https://www.benf.org/other/cfr/
Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smaragdakis. 2020. Ethainter: A Smart Contract

Security Analyzer for Composite Vulnerabilities. In Conf. on Programming Language Design and Implementation (PLDI).
ACM.

Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent Gramoli, Ralph Holz, and Bernhard Scholz.
2018. Vandal: A Scalable Security Analysis Framework for Smart Contracts. arXiv:1809.03981 [cs.PL]

David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick Woo. 2013. Native x86 Decompilation Using Semantics-
Preserving Structural Analysis and Iterative Control-Flow Structuring. In 22nd USENIX Security Symposium (USENIX
Security 13). USENIX Association, Washington, D.C., 353–368. https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/schwartz

JP Morgan Chase. 2020. Quorum: A permissioned implementation of Ethereum supporting data privacy. https://github.
com/jpmorganchase/quorum

Ting Chen, Zihao Li, Xiapu Luo, Xiaofeng Wang, Ting Wang, Zheyuan He, Kezhao Fang, Yufei Zhang, Hang Zhu, Hongwei
Li, Yan Cheng, and Xiao-song Zhang. 2021. SigRec: Automatic Recovery of Function Signatures in Smart Contracts. IEEE
Transactions on Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3078342

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

http://ethervm.io/decompile
https://doi.org/10.1145/2968455.2968505
https://doi.org/10.1145/2968455.2968505
https://www.benf.org/other/cfr/
https://arxiv.org/abs/1809.03981
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://github.com/jpmorganchase/quorum
https://github.com/jpmorganchase/quorum
https://doi.org/10.1109/TSE.2021.3078342

77:26 Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis

Cristina Cifuentes. 1994. Reverse compilation techniques. Ph. D. Dissertation. Queensland University of Technology.
https://eprints.qut.edu.au/36820/ Presented to the School of Computing Science, Queensland University of Technology..

Filippo Contro, Marco Crosara, Mariano Ceccato, and Mila Dalla Preda. 2021. EtherSolve: Computing an Accurate Control-
Flow Graph from Ethereum Bytecode. In 2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC).
127–137. https://doi.org/10.1109/ICPC52881.2021.00021

Dedaub. 2019. Rising Gas Prices are Threatening our Security (no, it’s not the Saudi attack). https://medium.com/dedaub/
rising-gas-prices-are-threatening-our-security-no-its-not-the-saudi-attack-4b7aa4878e83

Dedaub. 2021a. EIP-3074 Impact Study. https://docs.google.com/document/d/1itvPn7BhZ9N8h27d1Ig5C86_FZpyG5_
cdpsuPJYmb-o/edit?usp=sharing

Dedaub. 2021b. Ethereum Pawn Stars: ’$5.7M in hard assets? Best I can do is $2.3M’. https://medium.com/dedaub/ethereum-
pawn-stars-5-7m-in-hard-assets-best-i-can-do-is-2-3m-b93604be503e

Dedaub. 2021c. Killing a Bad (Arbitrage) Bot ... to Save its Owners. https://medium.com/dedaub/killing-a-bad-arbitrage-
bot-f29e7e808c7d

Dedaub. 2021d. Look Ma’, no source! Hacking a DeFi Service with No Source Code Available. https://medium.com/dedaub/
look-ma-no-source-hacking-a-defi-service-with-no-source-code-available-c40a6583f28f

Dedaub. 2021e. Verkle Gas Cost Changes Insights. https://docs.google.com/document/d/
1s3qqzbkQFPcNvhzKPdnxg3MlFbv0YjK1z02SxRtdMs8/edit#heading=h.slduooqtgkoq

Dedaub. 2021f. Yield Skimming: Forcing Bad Swaps on Yield Farming. https://medium.com/dedaub/yield-skimming-
forcing-bad-swaps-on-yield-farming-397361fd7c72?source=friends_link&sk=d146b3640321f0a3ccc80540b54368ff

E. Dupuy. 2020. Java Decompiler. http://java-decompiler.github.io/
Nicolas Falliere. 2019. Ethereum Smart Contract Decompiler. https://www.pnfsoftware.com/blog/ethereum-smart-contract-

decompiler/
Antonio Flores-Montoya and Eric Schulte. 2019. Datalog Disassembly. arXiv:1906.03969 [cs.PL]
Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla. 2009. Decompilation of Java Bytecode to Prolog by Partial

Evaluation. Inf. Softw. Technol. 51, 10 (Oct. 2009), 1409–1427. https://doi.org/10.1016/j.infsof.2009.04.010
Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019a. Gigahorse: Thorough, Declarative Decompilation

of Smart Contracts. In Proceedings of the 41st International Conference on Software Engineering (Montreal, Quebec, Canada)
(ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1176–1186. https://doi.org/10.1109/ICSE.2019.00120

Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019b. Gigahorse: Thorough, Declarative Decompilation
of Smart Contracts. https://doi.org/10.5281/zenodo.2578692 Research artifact corresponding to ICSE’19 technical paper
"Gigahorse: Thorough, Declarative Decompilation of Smart Contracts".

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. MadMax:
Surviving Out-of-Gas Conditions in Ethereum Smart Contracts. Proc. ACM Programming Languages 2, OOPSLA (Nov.
2018). https://doi.org/10.1145/3276486

James Hamilton and Sebastian Danicic. 2009. An Evaluation of Current Java Bytecode Decompilers. In Proceedings of the
2009 Ninth IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM ’09). IEEE Computer
Society, Washington, DC, USA, 129–136. https://doi.org/10.1109/SCAM.2009.24

Nicolas Harrand, C’esar Soto-Valero, Martin Monperrus, and Benoit Baudry. 2019. The Strengths and Behavioral Quirks of
Java Bytecode Decompilers. In 2019 19th International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 92–102. https://arxiv.org/pdf/1908.06895.pdf

Immunefi. 2021. Harvest Finance Uninitialized Proxies Bug Fix Postmortem. https://medium.com/immunefi/harvest-
finance-uninitialized-proxies-bug-fix-postmortem-ea5c0f7af96b

Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-Driven Context-Sensitivity for Points-to Analysis.
Proc. ACM Program. Lang. 1, OOPSLA, Article 100 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133924

D. S. Katz, J. Ruchti, and E. Schulte. 2018. Using recurrent neural networks for decompilation. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 346–356.

Tomasz Kolinko and Palkeo. 2020. Panoramix – Decompiler at the heart of eveem.org. https://github.com/palkeo/panoramix
Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna. 2004. Static Disassembly of Obfuscated

Binaries. In Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13 (San Diego, CA) (SSYM’04).
USENIX Association, USA, 18.

Sifis Lagouvardos, Neville Grech, Ilias Tsatiris, and Yannis Smaragdakis. 2020. Precise Static Modelling of Ethereum
“Memory”. Proceedings of the ACM in Programming Languages (OOPSLA) 4, OOPSLA (2020).

Michales, Jonah. 2021. Inside the War Room That Saved Primitive Finance. https://medium.com/immunefi/inside-the-war-
room-that-saved-primitive-finance-6509e2188c86

Jerome Miecznikowski and Laurie J. Hendren. 2002. Decompiling Java Bytecode: Problems, Traps and Pitfalls. In Proceedings
of the 11th International Conference on Compiler Construction (CC ’02). Springer-Verlag, London, UK, UK, 111–127.
http://dl.acm.org/citation.cfm?id=647478.727938

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

https://eprints.qut.edu.au/36820/
https://doi.org/10.1109/ICPC52881.2021.00021
https://medium.com/dedaub/rising-gas-prices-are-threatening-our-security-no-its-not-the-saudi-attack-4b7aa4878e83
https://medium.com/dedaub/rising-gas-prices-are-threatening-our-security-no-its-not-the-saudi-attack-4b7aa4878e83
https://docs.google.com/document/d/1itvPn7BhZ9N8h27d1Ig5C86_FZpyG5_cdpsuPJYmb-o/edit?usp=sharing
https://docs.google.com/document/d/1itvPn7BhZ9N8h27d1Ig5C86_FZpyG5_cdpsuPJYmb-o/edit?usp=sharing
https://medium.com/dedaub/ethereum-pawn-stars-5-7m-in-hard-assets-best-i-can-do-is-2-3m-b93604be503e
https://medium.com/dedaub/ethereum-pawn-stars-5-7m-in-hard-assets-best-i-can-do-is-2-3m-b93604be503e
https://medium.com/dedaub/killing-a-bad-arbitrage-bot-f29e7e808c7d
https://medium.com/dedaub/killing-a-bad-arbitrage-bot-f29e7e808c7d
https://medium.com/dedaub/look-ma-no-source-hacking-a-defi-service-with-no-source-code-available-c40a6583f28f
https://medium.com/dedaub/look-ma-no-source-hacking-a-defi-service-with-no-source-code-available-c40a6583f28f
https://docs.google.com/document/d/1s3qqzbkQFPcNvhzKPdnxg3MlFbv0YjK1z02SxRtdMs8/edit#heading=h.slduooqtgkoq
https://docs.google.com/document/d/1s3qqzbkQFPcNvhzKPdnxg3MlFbv0YjK1z02SxRtdMs8/edit#heading=h.slduooqtgkoq
https://medium.com/dedaub/yield-skimming-forcing-bad-swaps-on-yield-farming-397361fd7c72?source=friends_link&sk=d146b3640321f0a3ccc80540b54368ff
https://medium.com/dedaub/yield-skimming-forcing-bad-swaps-on-yield-farming-397361fd7c72?source=friends_link&sk=d146b3640321f0a3ccc80540b54368ff
http://java-decompiler.github.io/
https://www.pnfsoftware.com/blog/ethereum-smart-contract-decompiler/
https://www.pnfsoftware.com/blog/ethereum-smart-contract-decompiler/
https://arxiv.org/abs/1906.03969
https://doi.org/10.1016/j.infsof.2009.04.010
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.5281/zenodo.2578692
https://doi.org/10.1145/3276486
https://doi.org/10.1109/SCAM.2009.24
https://arxiv.org/pdf/1908.06895.pdf
https://medium.com/immunefi/harvest-finance-uninitialized-proxies-bug-fix-postmortem-ea5c0f7af96b
https://medium.com/immunefi/harvest-finance-uninitialized-proxies-bug-fix-postmortem-ea5c0f7af96b
https://doi.org/10.1145/3133924
https://github.com/palkeo/panoramix
https://medium.com/immunefi/inside-the-war-room-that-saved-primitive-finance-6509e2188c86
https://medium.com/immunefi/inside-the-war-room-that-saved-primitive-finance-6509e2188c86
http://dl.acm.org/citation.cfm?id=647478.727938

Elipmoc: Advanced Decompilation of Ethereum Smart Contracts 77:27

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for Java.
ACM Trans. Softw. Eng. Methodol. 14, 1 (2005), 1–41.

Primitive Finance. 2021. PrimitiveFi post-mortem analysis. https://primitivefinance.medium.com/postmortem-on-the-
primitive-finance-whitehack-of-february-21st-2021-17446c0f3122

Todd A. Proebsting and Scott A. Watterson. 1997. Krakatoa: Decompilation in Java (Does Bytecode Reveal Source?). In
Proceedings of the 3rd Conference on USENIX Conference on Object-Oriented Technologies (COOTS) - Volume 3 (Portland,
Oregon) (COOTS’97). USENIX Association, Berkeley, CA, USA, 14–14. http://dl.acm.org/citation.cfm?id=1268028.1268042

Edward J. Schwartz, Cory F. Cohen, Michael Duggan, Jeffrey Gennari, Jeffrey S. Havrilla, and Charles Hines. 2018. Using
Logic Programming to Recover C++ Classes and Methods from Compiled Executables. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 426–441. https://doi.org/10.1145/3243734.3243793

Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph. D. Dissertation. Carnegie Mellon University.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.2777&rep=rep1&type=pdf

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your ContextsWell: Understanding Object-Sensitivity.
SIGPLAN Not. 46, 1 (Jan. 2011), 17–30. https://doi.org/10.1145/1925844.1926390

Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris. 2021. Symbolic
Value-Flow Static Analysis: Deep, Precise, Complete Modeling of Ethereum Smart Contracts. Proc. ACM Program. Lang.
5, OOPSLA, Article 163 (oct 2021), 30 pages. https://doi.org/10.1145/3485540

Mike Strobel. 2020. Procyon. https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association
for Computing Machinery, New York, NY, USA, 263–277. https://doi.org/10.1145/3062341.3062359

TrustLook. 2019. Smart Contract Guardian - Trustlook SECaaS. https://www.trustlook.com/services/smart.html
Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and Martin Vechev. 2018. Securify:

Practical Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 67–82. https://doi.org/10.1145/3243734.
3243780

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a Java Bytecode
Optimization Framework. In Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative Research
(Mississauga, Ontario, Canada) (CASCON ’99). IBM Press, 13–. http://dl.acm.org/citation.cfm?id=781995.782008

Michael Van Emmerik. 2007. Static Single Assignment for Decompilation. Ph. D. Dissertation.
Various. 2017. GitHub - vyperlang/vyper: Pythonic Smart Contract Language for the EVM. https://github.com/ethereum/

solidity
Various. 2018. GitHub - ethereum/solidity: The Solidity Contract-Oriented Programming Language. https://github.com/

ethereum/solidity
Various. 2018a. GitHub - OpenZeppelin/openzeppelin-contracts: OpenZeppelin Contracts is a library for secure smart

contract development. https://github.com/OpenZeppelin/openzeppelin-contracts
Various. 2018b. Porosity – a decompiler for EVM bytecode into readable Solidity-syntax contracts. https://github.com/

comaeio/porosity
Various. 2020. Fernflower. https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. http://gavwood.com/paper.pdf.
K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. 2016. Helping Johnny to Analyze Malware: A Usability-Optimized

Decompiler and Malware Analysis User Study. In 2016 IEEE Symposium on Security and Privacy (SP). 158–177.
Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew Smith. 2015. No More Gotos: Decompilation

Using Pattern-Independent Control-Flow Structuring and Semantics-Preserving Transformations. https://doi.org/10.
14722/ndss.2015.23185

Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Michael Bailey. 2018. Erays: Reverse Engineering
Ethereum’s Opaque Smart Contracts. In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 1371–1385. https://www.usenix.org/conference/usenixsecurity18/presentation/zhou

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 77. Publication date: April 2022.

https://primitivefinance.medium.com/postmortem-on-the-primitive-finance-whitehack-of-february-21st-2021-17446c0f3122
https://primitivefinance.medium.com/postmortem-on-the-primitive-finance-whitehack-of-february-21st-2021-17446c0f3122
http://dl.acm.org/citation.cfm?id=1268028.1268042
https://doi.org/10.1145/3243734.3243793
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.2777&rep=rep1&type=pdf
https://doi.org/10.1145/1925844.1926390
https://doi.org/10.1145/3485540
https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
https://doi.org/10.1145/3062341.3062359
https://www.trustlook.com/services/smart.html
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
http://dl.acm.org/citation.cfm?id=781995.782008
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/comaeio/porosity
https://github.com/comaeio/porosity
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://doi.org/10.14722/ndss.2015.23185
https://doi.org/10.14722/ndss.2015.23185
https://www.usenix.org/conference/usenixsecurity18/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Contracts
	2.2 Smart Contract Analysis

	3 Structure of Elipmoc
	4 Transactional Context Sensitivity
	4.1 Classifying Jump Instructions
	4.2 Context Sensitivity

	5 (Private) Function Reconstruction
	5.1 The Private Function Reconstruction Problem
	5.2 Function Boundary Inference
	5.3 Function Argument Inference

	6 End-to-end Impact
	7 Evaluation
	7.1 Comparison to Gigahorse
	7.2 Comparison to Panoramix
	7.3 Design Decisions

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

