
Static Analysis of Java Enterprise Applications:
Frameworks and Caches, the Elephants in the Room

Anastasios Antoniadis
University of Athens

Greece
anantoni@di.uoa.gr

Nikos Filippakis
CERN

Switzerland
nfil@protonmail.com

Paddy Krishnan
Oracle Labs Australia

Australia
paddy.krishnan@oracle.com

Raghavendra Ramesh
ConsenSys
Australia

raghavendra.ramesh@consensys.net

Nicholas Allen
Oracle Labs Australia

Australia
nicholas.allen@oracle.com

Yannis Smaragdakis
University of Athens

Greece
smaragd@di.uoa.gr

Abstract

Enterprise applications are a major success domain of Java,
and Java is the default setting for much modern static analy-
sis research. It would stand to reason that high-quality static
analysis of Java enterprise applications would be common-
place, but this is far from true. Major analysis frameworks
feature virtually no support for enterprise applications and
offer analyses that are woefully incomplete and vastly im-
precise, when at all scalable.
In this work, we present two techniques for drastically

enhancing the completeness and precision of static analysis
for Java enterprise applications. The first technique identifies
domain-specific concepts underlying all enterprise applica-
tion frameworks, captures them in an extensible, declarative
form, and achieves modeling of components and entry points
in a largely framework-independent way. The second tech-
nique offers precision and scalability via a sound-modulo-
analysis modeling of standard data structures.
In realistic enterprise applications (an order of magni-

tude larger than prior benchmarks in the literature) our
techniques achieve high degrees of completeness (on av-
erage more than 4x higher than conventional techniques)
and speedups of about 6x compared to the most precise con-
ventional analysis, with higher precision on multiple metrics.
The result is JackEE, an enterprise analysis framework that
can offer precise, high-completeness static modeling of real-
istic enterprise applications.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3386026

CCS Concepts: · Software and its engineering → Com-

pilers; General programming languages; · Theory of

computation → Program analysis.

Keywords: static analysis, points-to analysis, Java EE

ACM Reference Format:

Anastasios Antoniadis, Nikos Filippakis, PaddyKrishnan, Raghaven-

dra Ramesh, Nicholas Allen, and Yannis Smaragdakis. 2020. Static

Analysis of Java Enterprise Applications: Frameworks and Caches,

the Elephants in the Room. In Proceedings of the 41st ACM SIGPLAN

International Conference on Programming Language Design and Im-

plementation (PLDI ’20), June 15ś20, 2020, London, UK. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3385412.3386026

1 Introduction

Throughout the 20-plus years since its introduction, Java
has been one of the world’s most popular programming
languagesÐcurrently the outright #1 per the TIOBE index [3].
In the desktop and server world, web or enterprise applica-
tions1 are by far the primary success domain of Java. The
majority of server-side software is employing one of many
Java-based technologies for its business logic, for interfacing
with databases, and for responding to front-end requests, all
in a distributed, elastic-capacity setting.

Similarly, Java has been a dominant platform for language
research. Researchers have sought to capitalize on a language
with high real-world relevance, yet offering ease of experi-
mentation via a standardized bytecode and (at least at first)
manageable front-end syntax. In static program analysis
research, in particular, Java has been the setting of proba-
bly the best-known research frameworks, such as Soot [33],
WALA [11, 29], or Doop [8].

1Established terminology often makes a distinction between web applica-

tions, running inside a web server (and using technologies such as servlets

or JSP), and enterprise applications, running inside an application server or

enterprise container (such as WebSphere, JBoss, WebLogic, and using tech-

nologies such as EJBs and JMS). Both kinds of technologies were introduced

by Java Platform, Enterprise Edition [2, 20]. In our context, we use the

terms łweb applicationž and łenterprise applicationž interchangeably, to

encompass both kinds of technologies, covering the entire scope of Java EE.

794

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3386026
https://doi.org/10.1145/3385412.3386026

PLDI ’20, June 15ś20, 2020, London, UK A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen, and Y. Smaragdakis

Although enterprise applications are such a major use
domain of Java, researchers might scoff at their mention: en-
terprise applications seem like amessy collection of disparate
technologies, tuned to the needs of the software practices
of-the-day. Yet one can only wonder if such derision isn’t
simply sour grapes: enterprise applications represent a major
failure of applying programming languages research to the
real worldÐa black eye of the research community, and espe-
cially of the static analysis community. Essentially none of
the published algorithms or successful research frameworks
for program analysis achieve acceptable results for enterprise
applications on the main quality axes of static analysis re-
search: completeness, precision, and scalability. Running Soot,
WALA, or Doop out of the box on a realistic Java enterprise
application yields virtually zero coverage of the application
code, or fails to scale.
The literature contains very few techniques that specifi-

cally target enterprise applications. The best known research
is IBM’S TAJ [32]. TAJ leverages points-to analysis, along
with JSP, Enterprise Java Beans, and framework modeling
to perform high-precision taint analysis. TAJ is the only
past work to target web applications close to industry-level-
size. However, it is specifically geared towards taint analysis
(not modeling of all value-flow in the program), followup
work [28] claims that its modeling is incomplete, and it is
evaluated on web applications an order of magnitude smaller
than our benchmarks. Other well-known research efforts,
IBM’s F4F [28] and Andromeda [31], also target a specific
client analysis (taint analysis). Even so, both F4F and An-
dromeda are evaluated on systems with just a few hundred
classes and computed call-graph sizes in the low thousandsÐ
metrics that are two orders of magnitude lower than current
realistic enterprise applications.
The technical challenge of enterprise applications for

static analysis is their complexity, in terms of both size and
dynamic patterns. Enterprise applications heavily leverage
frameworks in their development. These frameworks are de-
signed with an emphasis on abstraction: the framework aims
to be as general as possible, applying to all different applica-
tions. To achieve this goal, frameworks commonly employ
dynamic techniques, such as dependency injection [1, 14].
Customization of the framework to the specific application
logic is performed via annotations, side-documents in XML,
and various other techniques that commonly resist static
analysis and directly hurt analysis completeness.
Furthermore, frameworks aim for transparent perfor-

mance in a distributed setting. The primary technique for per-
formance is highly-generic, object-agnostic caching. Caching
of objects in a large number and variety is ubiquitous in vari-
ous levels of enterprise application frameworks. For instance,
the identity map pattern is a foundational one in Fowler’s
łPatterns of Enterprise Application Architecturež [13] for
caching database-related objects. At the other end, the Spring

framework [16] introduces aggressive caching of view ob-
jects, for front-end purposes. However, central caches of
highly heterogeneous objects are hostile to static analysis,
in terms of both precision and scalability.
In this work we present JackEE, a static analysis frame-

work for enterprise applications. JackEE shows that scalable,
high-completeness, high-precision static analysis of realis-
tic enterprise applications is possible. The work essentially
breaks open the domain of enterprise applications, so that
rich further research can be conducted and evaluated. JackEE
presents several elements of technical value and novelty:

• We introduce techniques and general concepts for identi-
fying and modeling enterprise application entry points. Jac-
kEE defines a vocabulary that allows expressing (with small
per-framework effort) the behavior of enterprise frame-
works, both current and to come (Sections 2 and 3).

• To address precision and scalability challenges, we intro-
duce a sound-modulo-analysis model of Java data struc-
tures (esp. variants of HashMap and ConcurrentHashMap) that
makes the analysis of enterprise applications more scal-
able and precise. Unlike other modeling/mocking efforts
that throw away relevant information, our sound-modulo-
analysis replacements maintain the full behavior of the
data structure as far as the static analysis is concerned.
For instance, this entails modeling all possible aliasing per-
formed and all exceptions possibly thrown by data struc-
ture operations. Several specific technical insights are un-
covered in the course of this modelingÐe.g., we discuss
how the implementation of the TreeNode class of the stan-
dard java.util.HashMap is hostile to the very same kind of
context-sensitivity (2-object sensitivity) that makes analy-
sis of the rest of java.util very precise.
These techniques interact beneficially with the central

data structures (e.g., caches) in enterprise frameworks, re-
sulting in analyses with substantial speedup (up to 15.5x)
and higher precision (Section 4).

• We evaluate JackEE over realistic benchmarks. We define
a benchmark suite containing applications suggested by
experts (e.g., two large enterprise applications proposed
by Oracle researchers as representative of realistic soft-
ware), top-popularity representatives of major classes of
enterprise applications (CMS, Version Control repository
hosting, e-shop/e-commerce and blogging software), as
well as smaller benchmarks from prior literature. This also
offers a strong suite for future evaluations of static analyses
over enterprise applications (Section 5). (All our software
and all but one of our benchmarks are open-source, the
remaining benchmark is free-binary-only.)

2 Web Application Background

We next give a highly condensed, non-exhaustive description
of today’s Java enterprise application scene and the most
popular web application frameworks, with an eye on how

795

Static Analysis of Java Enterprise Applications PLDI ’20, June 15ś20, 2020, London, UK

to model application behavior statically. There are three
elements we will be examining in the technologies sampled:

• What: key concepts, entities and kinds of data/objects
exchanged between units of application functionality;

• Where: entry points and interconnection points for the
application functionality;

• How: ways (e.g., subtyping, XML attributes, or Java anno-
tations) used to describe the łwhatž or the łwherež.

2.1 Java EE Servlets

Java Platform, Enterprise Edition (Java EE, formerly J2EE) is
the standard behind Java web applications and frameworks.
The core element of Java EE are Java Servlets and the most
fundamental way to build a web application is using the
Servlet API. A servlet is a class that accepts requests, handles
them, and then sends back a response to the client. Servlets
are controlled by another Java application, the servlet con-
tainer (e.g., Tomcat, Jetty, GlassFish, WildFly).

Generic Servlets. A generic servlet extends the abstract
javax.servlet.GenericServlet class, overriding appropri-
ate methods. The class provides lifecycle methods, such as
init and destroy, and the service method that is called by
the servlet container to respond to a request. The service

method accepts a ServletRequest object which contains the
request by the client and a ServletResponse object that will
be used to respond to the client.

Http Servlets. HTTP servlets extend the abstract HttpServ-
let class and need to override methods relating to HTTP
requests, such as doGet, doPost, doPut, etc.

Servlet Filters. A servlet filter is an object that can inter-
cept HTTP requests targeting a web application. It supports
lifecycle methods (init, destroy) and the main functional-
ity method doFilter, invoked by the web container every
time a resource needs to be filtered. ServletRequest and
ServletResponse objects are passed are parameters.

Summary:

• What: different kinds of servlets, servlet request/response
objects, filters.

• Where: lifecycle methods (init, destroy), service,
doFilter, doGet, doPost, etc.

• How: subtyping abstract classes.

2.2 Enterprise Java Beans

Enterprise Java Beans (EJB) are anothermajor part of the Java
EE specification. An EJB is a server-side software element
that captures the business logic of an application, including
its communication with the front end and its storage compo-
nent (i.e., interfacing with a database). EJBs are deployed in
an EJB container, typically inside an application server, such
as JBoss, WebLogic, or WebSphere.
EJBs follow a tedious array of conventions, regarding se-

rialization, construction, access to fields. These conventions

can be largely expressed as subtyping of interface and ab-
stract classes and following strict naming conventions. How-
ever this is an outdated, low-level view, rarely visible in the
application source (or static bytecode) nowadays. The mod-
ern way to satisfy these conventions is through dependency

injection: using Java annotations or XML configuration files
to guide a meta-programming layer, which dynamically gen-
erates glue code and transforms existing code (by way of
method, field, or constructor injection), in order to provide
the necessary interfacing with the protocol expected by the
EJB container. Java provides a standard API specification for
the dependency injection mechanism, which is implemented
by web frameworks such as Spring (discussed later).
There are currently two main types of EJBs: session and

message-driven beans.

Session Beans. A session bean encapsulates business
logic that can be invoked programmatically by a client. The
lifecycle of a session bean instance ismanaged by the EJB con-
tainer. For purposes of distributed replication, session beans
are classified as stateless, stateful, or singletons, typically dis-
tinguished by the Java annotations @Stateless, @Stateful,
and @Singleton in the code.
Using a session bean in client code is done by attaching

the @EJB annotation on the client’s field referencing the bean.

Message-Driven Beans. A message-driven bean allows
the asynchronous processing of messages. This type of bean
normally acts as a Java Message Service listener that receives
JMS messages. Message-driven beans are annotated with the
@MessageDriven annotation. Message-driven beans are not
used for dependency injection but their methods act as web
application entry points.

Summary:

• What: different kinds of beans, bean client classes.
• Where: lifecycle methods, methods of beans.
• How: Java annotations or XML configuration.

2.3 Spring

Spring is by far the most popular Java web application frame-
work. It builds over the Java EE protocols, providing signifi-
cant reusable functionality and automation. To use a systems
analogy, if Java EE were a Unix OS, Spring would be the most
common implementation of C and libc.
Spring is primarily a Web model-view-controller (MVC)

framework, designed around a DispatcherServlet that dis-
patches requests to handlers. The default handler is based
on the @Controller and @RequestMapping annotations.

Controllers. The core element of a Spring web applica-
tion is the Controller. Controllers accept incoming requests,
process the payload of the request, send the data to a Model
for further processing and then return the processed data
to the View for rendering. The DispatcherServlet plays the

796

PLDI ’20, June 15ś20, 2020, London, UK A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen, and Y. Smaragdakis

role of the Front Controller in the architecture sending re-
quests to controllers that handle incoming requests at the
application level.

Spring MVC Interceptors. Spring MVC interceptors are
analogous to Servlet Filters, allowing chaining of request
and/or response processors. An interceptor is defined via
subtyping (e.g., implements the HandleInterceptor inter-
face) and provides methods preHandle, postHandle, and
afterCompletion.

Spring Authentication Managers and Providers.

Spring Security provides security features such as au-
thentication and authorization to secure Java Enter-
prise Applications. The main interface for authentication
is AuthenticationManager which only has one method,
authenticate, accepting (and returning) an Authentication

object. AuthenticationManager is implemented by Provi-

derManager, a class that controls one or more Authentica-

tionProvider implementations. Spring both provides de-
fault AuthenticationProvider implementations and supports
the creation of custom AuthenticationProvider implemen-
tations as beans.

Spring Beans. Spring supports constructor, field and
method injection using XML configurations as well as Java
annotations, such as @Autowired or @Inject.

Summary:

• What: controllers, interceptors, authentication managers,
providers, and beans.

• Where: methods of controllers and of other handler
classes, preHandle, postHandle, authenticate, etc.

• How: Java annotations or XML configuration, subtyping
relationships.

2.4 Other Technologies

There is a vast array of other technologies in the enterprise
application area, as well as a lot more features in the technolo-
gies discussed. However, the principles as far as modeling en-
try points, generated objects, and induced inter-connectivity
are similar, with a different concrete instantiation. To illus-
trate, we consider two examples.

Apache Struts 2. Apache Struts 2 is another popu-
lar open-source web application framework. Although it
has several differences from Spring, they are both based
on an MVC architecture and allow dependency injection
and component interconnection through XML configura-
tion files, or Java annotations. As a representative ex-
ample, Struts 2 handles requests using classes that im-
plement com.opensymphony.xwork2.Action (or extend an
ActionSupport class). On these classes, the execute method
needs to be overridden to provide custom behavior. This
method can be annotated with @Action and @Result.

JAX-RS-based REST. REST is a software architecture
style for Web services. In RESTful Web Services the web

services are resources and can be identified by their URIs.
REST client applications can use HTTP GET/POST methods
to invoke services. JAX-RS is a specification that provides
support for the creation of RESTful web services.
JAX-RS uses annotations to indicate the mapping of a

resource class to a web resource. Annotations include @Path

(the relative path for a resource), @GET/@PUT/@POST (used on
methods that implement a corresponding HTTP request),
@QueryParam/@HeaderParam (to bind a method argument to
information from an HTTP request).

3 Analysis Completeness

Popular static analysis frameworks for Java [8, 11, 33] pro-
vide no support for the lifecycle or injected semantics of
enterprise applications. Instead, analyses expect their users
to provide customization for web applications, which is a
significant burden, virtually never overcome in practice. The
very same analysis frameworks, however, provide special-
purpose support for modeling, e.g., the Android system life-
cycle [4, 15], with its numerous entry points determined by
subtyping conventions and XML configuration files.
This raises the question: is the domain of enterprise ap-

plications so much more complex and tedious than other
domains, or could a flexible but relatively straightforward
modeling, with modest customization, suffice for a large
variety of realistic enterprise applications?

3.1 Overview

JackEE’s modeling of enterprise applications attempts such a
general-yet-customizable modeling of frameworks. We pro-
vide a vocabulary, based on well-recognized enterprise appli-
cation concepts and mechanisms, for capturing the elements
of application behavior that a static analysis would nor-
mally miss. Such elements include objects with special roles,
methods with implicit semantics (especially entry points),
injected fields or methods invisible in the code, relation-
ships between objects that are not visible in the code, etc.
Customization based on this vocabulary is done on a per-
application-framework, and not per-application basis: each
application framework’s modeling captures its conventions
for entry points, object inter-relationships, injection hooks
and resulting code, etc.

Conceptually, JackEE is similar to well-known work in the
literature on static analysis of enterprise applications: IBM’s
F4F [28] (framework for frameworks), which seeks to offer a
way to encode framework behavior in a generic way. There
is no publicly available version of F4F but the published de-
scription suggests a mechanismwith significant differences.2

2We contacted the first author of F4F who informed us that the last rem-

nants of public entry point logic in the open-source IBM WALA framework

were removed in 2012 [27] because of bitrot. Although we cannot directly

investigate the differences with F4F, it is worth noting that its published

results evaluate it on systems with a maximum of 790 classes and computed

call-graph size of at most 5,300 edges. In our own evaluation (Section 5)

797

Static Analysis of Java Enterprise Applications PLDI ’20, June 15ś20, 2020, London, UK

Inputs:

Class_Annotation(c : ClassType)

Method_Annotation(m : Method)

Field_Annotation(f : Field)

XMLNode(f : file, nodeId : int, parentId : int,

namespaceURI : symbol, name : symbol)

XMLNodeAttr(f : file, nodeId : int, index : symbol,

name : symbol, value : symbol)

Outputs:

Servlet(c : ClassType)

Controller(c : ClassType)

RESTResource(c : ClassType)

Interceptor(c : ClassType)

Bean(c : ClassType)

BeanFieldInjection(c: ClassType, f : Field, o : Value)

GeneratedObject(o : Value, c : ClassType)

EntryPointClass(c : ClassType)

ExercisedEntryPoint(m : Method)

Figure 1.Base relations, overwhich a framework ismodeled.

Foremostly, F4F is a framework for modeling frameworks
by writing analysis-based generators. Each łmodelž of an
application framework in F4F is a generator (in Java), based
on a WALA program analysis and other accompanying in-
formation (e.g., XML files) of the analyzed application, that
will produce a specification of the joint application’s and
framework’s behavior (in a standardized language, WAFL).
Writing such a generator is far from a trivial task, even with
support from the F4F framework and with a standardized
output language.
Instead, JackEE leverages the context of the Doop3 anal-

ysis framework [8] to offer high-level, rule-based specifica-
tions of web application framework semantics. We chose
Doop because, among the main Java analysis frameworks,
it is distinguished by its use of declarative specifications, in
the Datalog language. Modeling a new framework in this
setting is an easy task, once the main, framework-agnostic
vocabulary has been defined. Our model of a new enterprise
framework is a collection of logic rules, most of which appeal
to simple configuration predicates.

3.2 Vocabulary

Figure 1 shows a sample of key concepts of our framework-
modeling vocabulary, pertaining both to program text and
configuration files (e.g., Class_Annotation, XMLNode) and to
the program semantics (e.g., Interceptor, Servlet) or to the
analysis semantics (e.g., GeneratedObject, EntryPointClass).
The former are framework-specification inputs, while the
latter are outputs and directly inform the analysis.

these metrics are larger by some-two orders of magnitudeÐe.g., over 9,000

classes in the application as well as another 28,000 in libraries, yielding

1.1M call-graph edges for alfresco.
3Publicly available at https://bitbucket.org/yanniss/doop .

Based on this vocabulary, the semantics of a framework
can be described in terms closely following the scheme of
what, where, and how of the previous section. It is easy,
for instance, to express as rules (for a given framework):

• that a method with a certain annotation is an entry point
that should be exercised with a specific type;

• that a class named in a certain XML node is an interceptor;
• that a class with a given annotation should have an object
generated for it.

The per-framework rules can directly appeal to program
structure (and even analysis-level) concepts as defined in the
Doop framework. Furthermore, the rules vocabulary lever-
ages some pre-defined, framework-agnostic functionality.

3.3 Framework-Independent Support

The łoutputž concepts and entities of Figure 1 abstract away
from the specifics of each framework, in order to allow us
to pre-define common functionality. When a rule produces
analysis-level concepts (e.g., EntryPointClass) or enterprise-
domain concepts (e.g., Controller), it triggers a lot of further
inferences. Most of them concern the derivation of entry
points, as well as a policy for how to exercise them inside
the analysis (i.e., with abstract objects of what type and with
what interconnectivity).

Once entry points are identified, the framework-
independent policy for creating abstract objects (subse-
quently called mock objects) for use at entry points can be
described by the following rules:

• Given an entry point method m and its declaring type C,
we create a receiver mock object of type C for the entry
point method. The static analysis considers the receiver
variable (this) to point to the mock object.

• Given an entry point method m and its argument with
index i and type T :
- If T has concrete subtypes in the application, we create
a mock object for each subtype of T in the application

- If T does not have subtypes in the application, we find all
the casts in the entry-point method that are to subtypes
S of T. We create one mock object for each S.

- We follow the rule of one mock object per-type to ensure
that the analysis will remain scalable regardless of the
number of entry points.

- The static analysis considers argument i to point to the
above type-compatible mock objects.

• For each mock object type T we mark the constructors
of T as entry points to ensure that the mock object of T
has acquired the required state for the points-to analysis
to fully analyze the entry point method and its callees.
The constructor arguments are analyzed under the same
mocking policy, recursively, i.e., they get assigned mock
objects of compatible types.

This reusable strategy can be customized per-analysis (e.g.,
to create multiple, distinguished mock objects).

798

https://bitbucket.org/yanniss/doop

PLDI ’20, June 15ś20, 2020, London, UK A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen, and Y. Smaragdakis

ConcreteApplicationClass(c : ClassType) c is a non-abstract class in application code
Method_DeclaringType(m : Method, c : ClassType) maps method to its declaring class
Field_DeclaringType(f : Field, c : ClassType) maps field to its declaring class
Field_Name(f : Field, s : symbol) maps field to its name
Var_Type(v : Variable, t : Type) static type of variable
Value_Type(o : Value, t : ClassType) dynamic type of (abstract) object
Bean_Id(o : ClassType, t : string) maps a bean class to its id
Subtype(t1 : Type, t2 : Type) t1 is a subtype of t2
FormalParam(i : number, m : Method, v : Variable) i-th formal argument of method
FormalParam(i : number, mi : MethodInvocation, v : Variable) i-th actual argument of invocation
AssignReturnValue(mi : MethodInvocation, v : Variable) return value of invocation assigned to local variable
GetBeanInvocation(mi : MethodInvocation) invocation of Spring method getBean()

Figure 2. Program-related information, for use in framework specifications (and further analysis).

3.4 Modeling Examples

We next present the modeling of different aspects of en-
terprise frameworks via examples, using the vocabulary of
Figure 1, as well as program-related concepts. We give a brief
description of the latter in Figure 2.

3.4.1 Java Servlet API. For a web application imple-
menting the Java Servlet API to be analyzed prop-
erly, we need to identify all the concrete subtypes of
javax.servlet.GenericServlet in the application. Gene-

ricServlet is at the top of the Servlet class hierarchy so
any application request-handling class needs to extend it.

Servlet(class) :-

ConcreteApplicationClass(class),

SubtypeOf(class, "javax.servlet.GenericServlet").

Every servlet class is automatically an entry point class
(per framework-independent rules). However, another rule
extends the modeling of the Java servlet API specifically:
a method of any class that accepts a ServletRequest or
ServletResponse parameter is considered an entry point (and
is appropriately mocked).

ExercisedEntryPointMethod(method) :-

ConcreteApplicationClass(class),

Method_DeclaringType(method, class),

FormalParam(_, method, param),

Var_Type(param, paramType),

(SubtypeOf(paramType, "javax.servlet.ServletRequest");

SubtypeOf(paramType, "javax.servlet.ServletResponse")).

Filters are objects that perform filtering tasks to a request
to a resource and/or to a response from a resource. Custom
filters are implemented by extending javax.servlet.Filter

and overriding the doFilterMethod. Filter classes are also
generic entry points.

EntryPointClass(class) :-

ConcreteApplicationClass(class),

SubtypeOf(class, "javax.Servlet.Filter").

3.4.2 Java RESTful Web Services API Entry. The fol-
lowing framework-modeling rule marks application meth-
ods with http-request annotations from javax.ws.rs.* as

entry points that need to be exercised, and the declaring
class of every such method as a RESTResource class which
is an EntryPointClass. This logic can be easily extended to
support other REST API specifications and implementations.

EntryPointClass(class),

RESTResource(class),

ExercisedEntryPointMethod(method) :-

ConcreteApplicationClass(class),

Method_DeclaringType(method, class),

(Method_Annotation(method, "javax.ws.rs.POST");

Method_Annotation(method, "javax.ws.rs.PUT");

Method_Annotation(method, "javax.ws.rs.GET");

Method_Annotation(method, "javax.ws.rs.HEAD");

Method_Annotation(method, "javax.ws.rs.DELETE")).

3.4.3 Spring MVC Entry Points. Each Spring applica-
tion defines its own application-level controllers that handle
requests, annotated with the @Controller annotation. The
@RequestMapping annotation is used to bind the annotated
controller class or method to a specific URL. The following
framework-modeling rules mark all application non-abstract
classes annotated with @Controller as entry points and any
individual methods annotated with @RequestMapping as en-
try points to be mocked. We abridge package names in the
following examples. The symbol@ denotes annotation in-
terfaces.

Controller(class),

EntryPointClass(class) :-

ConcreteApplicationClass(class),

Class_Annotation(class, "org.spring...@Controller").

Controller(class),

ExercisedEntryPointMethod(method) :-

ConcreteApplicationClass(class),

Method_DeclaringType(method, class),

Method_Annotation(method, "org.spring...@RequestMapping").

Application classes implementing the HandleInterceptor

interface or extending the HandleInterceptorAdapter class
are custom Spring interceptors. The framework model marks

799

Static Analysis of Java Enterprise Applications PLDI ’20, June 15ś20, 2020, London, UK

these classes as entry points and mocks the receivers and
arguments of their methods.

EntryPointClass(class),

Interceptor(class) :-

ConcreteApplicationClass(class),

(Subtype(class, "org.spring...HandleInterceptorAdapter");

Subtype(class, "org.spring...HandlerInterceptor")).

Spring security offers a large array of options for per-
forming authentication in a web application. These options
conform to the pattern that an authentication request is
processed by an authentication provider. Custom authen-
tication providers may use external or developer-defined
authentication services. Such authentication providers with
custom authentication services are registered using an XML
configurationÐfor instance:

1 <authentication -manager >

2 <authentication -provider

3 ref="customAuthenticationProvider" />

4 </authentication -manager >

The <authentication-manager> tag instructs Spring to cre-
ate a new authentication.ProviderManager object to regis-
ter authentication providers to it. Spring then uses the bean
id found in the <authentication-provider> tag to create an
object of the specified custom authentication provider and
registers it to the ProviderManager object. The rule below
identifies custom authentication providers defined in the
XML configuration of web application.

Interceptor(authProvider) :-

XMLNode(XMLfil, parntId, _, _, "authentication-manager"),

XMLNode(XMLfil, nodeId, parntId, _, "authentication-provider"),

XMLNodeAttr(XMLFile, nodeId, _, _, providerId),

Bean_Id(authProvider, providerId).

3.5 Wiring Together Beans

The framework specification rules we have seen so far cap-
ture configuration definitions that conceptually initialize a
static analysis. However, a framework’s logic may need to
interact deeply with an analysis: to establish connections
between objects and also to query the analysis for its in-
ferences. The best examples of such recursive framework
specifications can be found in rules for setting up beans.
These appeal directly to the main two relations defined in
the static analysis: ObjectFieldPointsTo(o1 : Value, f : Field, o2 :
Value) and VarPointsTo(v : Variable, o : Value)Ðcapturing what
abstract values an object’s field or a program variable may
have, respectively.
The modeling rules in the rest of this section merge

some elements that are framework-specific with implicit,
framework-independent logic, for a unified presentation.

Declaring and Setting Up Beans. Web applications rely
heavily on beans to take advantage of reusable code. There-
fore the bean configuration of a web application is also crit-
ical to the completeness of a static analysis. In fact, most

of the mechanisms already described as entry points in the
previous section rely on beans. For instance, when declaring
a custom AuthenticationProvider in Spring, that custom au-
thentication provider implementation needs to be registered
as a bean so that the Spring framework will know it is respon-
sible for creating it and injecting its dependencies. Either at
entry-point level or deeper in the application, web applica-
tions rely on the creation and lifecycle management of beans
by the web framework to have the bean objects created and
provided to them in a complete state for processing.
A static analysis oblivious to the side-effects of the exe-

cution of the web framework would encounter references
pointing to null where a bean object needs to be injected by
the framework. As a result, generating the full bean objects
along with their transitive dependencies is important so that
the analysis can fully analyze bean code.

The most common dependency injection patterns are con-
structor and field injection, followed by the less common
method injection. In even rarer cases it is possible for a field
to depend on a collection of beans, such as a List or Map.
The first task of JackEE is the identification of classes

in the application that are declared as beans. There are
framework-independent ways to declare a beanÐe.g., XML
configurationÐor framework-dependent ways, such as an-
notations. JackEE provides rules to identify both.

Bean(type) :-

(Class_Annotation(type, "javax.ejb.@Stateful");

Class_Annotation(type, "javax.ejb.@Stateless");

Class_Annotation(type, "javax.ejb.@Singleton");

Class_Annotation(type, "org.spring...@Component");

Class_Annotation(type, "org.spring...@Service");

Class_Annotation(type, "org.spring...@Repository");

Class_Annotation(type, "org.spring...@Controller")).

The above rule registers classes annotated with EJB
bean annotations, i.e., @Stateless, @Stateful, @Singleton, or
Spring bean annotations. (@Component defines that a class is
a bean and @Controller, @Service and @Repository are its
subtypes.) We omit the bean id creation by the framework
which fills the Bean_Id relation. A bean can both receive a
dependency injection and be injected into another bean.
There are several XML patterns that declare a field injec-

tion. We demonstrate one such pattern below.

1 <bean class="targetClass">

2 <property name="targetField" ref="beanId"

/>

3 </bean >

4

5 <bean id="beanId" class="beanClass"><bean >

The next rule identifies the above pattern and infers a
BeanFieldInjection, the dependency injection of a bean ob-
ject beanObject into the field targetField of another bean
targetClass.

800

PLDI ’20, June 15ś20, 2020, London, UK A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen, and Y. Smaragdakis

BeanFieldInjection(targetClass, targetField, beanObject) :-

XMLNode(XMLFile, parentNodeId, _, _, _),

XMLNodeAttr(XMLFile, parentNodeId, _, "id", _),

XMLNodeAttr(XMLFile, parentNodeId, _, "class", targetClass),

XMLNode(XMLFile, nodeId, parentNodeId, _, "property"),

XMLNodeAttr(XMLFile, nodeId, _, "name", fieldName),

XMLNodeAttr(XMLFile, nodeId, _, "bean", beanId),

Field_DeclaringType(targetField, targetClass),

Field_Name(targetField, fieldName),

Bean_Id(beanClass, beanId),

GeneratedObject(beanObject, beanClass).

The BeanFieldInjection inference leads to a core static
analysis inference that models the dependency injection: an
ObjectFieldPointsTo relationship, making the targetField of
the bean object of type targetClass point to beanObject.

ObjectFieldPointsTo(targetObject, targetField, beanObject) :-

Value_Type(targetObject, type),

Field_DeclaringType(targetField, type),

BeanFieldInjection(targetClass, targetField, beanObject).

Similar modeling can be performed with framework-
specific techniques for declaring field injection. For instance,
injected Spring Beans are identified with the @Autowired an-
notation on a field, whereas the @Inject annotation is used
for the Java extension package version described in the JSR-
330[21] specification. The latter modeling is shown as an
example:

BeanFieldInjection(targetClass, targetField, beanObject) :-

Field_DeclaringType(targetField, targetClass),

Field_Annotation(targetField, "@Inject"),

Bean_Id(beanClass, targetField),

GeneratedObject(beanObject, beanClass).

Getting Beans Programmatically. Finally, beans can be
retrieved programmatically instead of based on static ele-
ments, such as annotations or XML specifications. This kind
of modeling consumes information from the static analysis
and produces information for the analysis. The logic can be
framework-specificÐe.g., when the T getBean(String name)

method of BeanFactory is used in Spring. An invocation of
getBean returns the bean with same id as the value provide
in the name argument of the invocation. Below we present
the rule that identifies such an invocation and returns the
requested bean.

VarPointsTo(local, beanObject) :-

GetBeanInvocation(invocation),

ActualParam(0, invocation, actualParam),

VarPointsTo(actualParam, beanName),

Bean_Id(beanClass, beanName),

GeneratedObject(beanObject, beanClass),

AssignReturnValue(invocation, local).

The above rule infers that if the first (and only) parameter
of a getBean invocation points to a beanName string and if that
beanName is the id of bean beanClass, then the local variable
localVar, to which the invocation return value is assigned,
points to beanObject: the generated object for beanClass.

4 Analysis of Web Applications: Precision
and Scalability

Completeness of a static analysis, given the complex dynamic
features of enterprise applications, is one side of the anal-
ysis quality story. The other side is the tradeoff of analysis
scalability and precision. The issue is particularly pertinent
to realistic enterprise applications due to their large size, as
well as due to the very same factors (i.e., high degrees of
abstraction and configurability) that hinder completeness.

Background. Context sensitivity in static analysis [19, 23ś
25] is a powerful way to achieve precision without sacrificing
scalability. Under context sensitivity, a method is analyzed
separately for every distinct context, where contexts are ab-
stractions of the possible settings in dynamic executions.
(A second aspect of the approach is a context-sensitive heap,
which distinguishes allocated objects also based on abstrac-
tions of the possible dynamic environment of the allocation.)
In the Java setting, object-sensitivity [19] has been the context
sensitivity approach that constitutes the state of the art for
precise analysis of realistic programs. In particular, a 2-object-
sensitive analysis with a context-sensitive heap (2objH) is
often considered the golden standard4 of a łprecise analysisž
in the literature [17, 18, 26]Ðwe briefly postpone discussing
what 2objH entails exactly. Notably, a 2objH analysis is excel-
lent for precisely analyzing the java.util package, mainly
consisting of the standard Java collections. This is one of
the most central pieces of reusable functionality in the Java
world: nearly every application will use pre-defined data
structures from java.util. A precise treatment of it in static
analysis is essential: different use-sites of distinct data struc-
tures should not be conflated for good precision. Tellingly,
recent research that attempts to develop sophisticated algo-
rithms for adaptive precision and scalability hardwires [18]
the context-sensitivity flavor to 2objH for all of java.util
or employs heuristics that result in all of java.util being
analyzed under 2objH [17].

Problem. A striking finding of our work with enterprise
applications has been that a 2objH analysis is extraordinarily
heavy, due to its treatment of java.utilÐthe very same func-
tionality that 2objH is key for handling well. For illustration,
a 2objH analysis of WebGoat (the smallest application in our
experimental set, and much analyzed in past work) incurs
over two-thirds (69.8%) of its cost in analyzing java.util

alone. (The cost can be attributed to specific packages as a
proportion of the context-sensitive variable-may-hold-value
inferences made by the analysis.) This is an extraordinarily
high number compared to typical Java desktop applicationsÐ
e.g., for the DaCapo benchmarks, often used to evaluate static
analyses, the corresponding number is typically under 20%.

4Even more precise analyses are, of course, desirable, if they can be made

to scale, however they rarely do.

801

Static Analysis of Java Enterprise Applications PLDI ’20, June 15ś20, 2020, London, UK

The finding has been a constant throughout our experimen-
tation with enterprise applications of diverse backgrounds.
The reason for this analysis behavior somewhat varies

per-case but is generally attributable to highly-generic, het-
erogeneous data structures, central to the enterprise applica-
tion. An example of such a data structure is a cache, applied
to a large number of objects, of many different types, and
from distant parts of the application’s code. Caches feature
prominently in enterprise application frameworks, especially
because of the distributed nature of applications and need
for horizontal scaling. The identity map pattern [13] is well-
known, regarding database-related objects. At the same time,
view objects or business logic objects may also be aggres-
sively cached. Spring, for instance, offers annotations such
as @EnableCaching and @Cacheable, to trigger the caching of
any bean object.

Approach. To address the issues with inefficient anal-
ysis of java.util data structures, we introduce a replace-
ment implementation of key data structures, namely vari-
ants of HashMap (currently merely two classes: HashMap,
LinkedHashMap) and ConcurrentHashMap. The replacement im-
plementations follow a principle that we term sound-modulo-

analysis.5

A sound-modulo-analysis model of a code entity𝐶 relative
to a static analysis 𝑆 produces a replacement code entity 𝐶 ′

for 𝐶 such that the analysis 𝑆 (𝐶 ′) is guaranteed to model all
dynamic program behaviors of the original program 𝐶 .

This definition allows the replacement code, 𝐶 ′, to result
in both more precise and less precise analysis (under fixed
𝑆) than analyzing the original program 𝐶 , as long as all real-
izable behaviors of 𝐶 are modeled.

In our case, the analysis 𝑆 is a context-sensitive but path-,
flow-, and array-insensitive static analysis: neither the con-
ditions of branches, nor the order of analyzed statements,
nor the exact index of an array’s contents affect the static
analysis result. We exploit these properties to offer scalable
and precise simplified versions of data structures. Figure 3
illustrates a small part of the rewrite of java.util.HashMap.

The original code stores all data in a table field: an array of
Node objects (line 3, left hand side). For an array-insensitive
analysis, we can replace the table by a single NodeÐcontents,
on the right. The contents field is initialized to a node al-
located at construction time. Every assignment of a Node

object to a table position in the original code (not shown)
maps to a corresponding assignment of the contents.key

and contents.value fields, without allocating a new Node. A
traversal of the table, such as that in method foreach (lines
6-20) results in behavior that is at least as general on the
right-hand-side version, as far as the analysis is concerned.
Since all data that enter the HashMap get collapsed into a
single Node, iteration is unnecessary: the code can merely

5Our modified OpenJDK 8 is publicly available at https://github.com/plast-

lab/sound-modulo-analysis-openjdk-8 .

retrieve the node (line 13, r.h.s.) and simulate the field ac-
cesses and method calls on it (lines 14-15). A flow-insensitive
static analysis will treat equivalently (and possibly only less
precisely) the access to a single contents field that points to
multiple abstract objects and the loop on the left.

As seen in the example, the sound-modulo-analysis mod-
eling goes to great lengths to ensure capturing all of the
original behaviors of the Java library. For instance, the sim-
plifiedmodel preserves all exceptions thrown (possibly under
simplified branching conditions, as seen on line 18, since the
analysis is path-insensitive and does not model them).

Scalability. The sound-modulo-analysis simplification
of java.util.HashMap/LinkedHashMap, and java.util.con-

current.ConcurrentHashMap results in a much lighter anal-
ysis. For instance, as can be seen in Figure 3, there is no
need for the tab local alias of the table field on line 7 (which
would result in an array variable pointing to a large number
of abstract objects inside the analysis), nor for local variables
for tab[i] (line 13). Removing internal complexity from the
most-reused part of standard libraries reduces the burden on
the static analysis.
The largest complexity-removal factor, however, is the

elimination of the TreeNode class (nested in HashMap).
TreeNodes are an alternative to regular (linked list) Nodes
in a HashMap. The alternative exists for performance and
for generality relative to the LinkedHashMap specialization of
HashMap (which we also rewrote in a sound-modulo-analysis
simplification). The existence of TreeNodes is an optimiza-
tion that is semantically irrelevant to library clients, and no
other part of the Java library refers to the TreeNode class.
However, a static analysis of the original java.util.HashMap
code has to capture all possible behaviors and, thus, model
all data inserted in any HashMap as possibly also stored in a
TreeNode-based version, incurring significant overhead.

Precision. The sound-modulo-analysis modeling of Hash-
Map structures in practice results in amore precise analysis, as
far as clients of the library are concerned. The reason is that
the simplification of the code allows the context sensitivity
policy to keep greater precision.

One specific code pattern helps illustrate much of the pre-
cision loss in the original HashMap. To understand it, we need
to consider the definition of 2objHÐa 2-object-sensitive anal-
ysis. 2objH analyzes every call, łbase.method()ž, separately
for every possible context, consisting of two elements:

• the abstract receiver object, i.e., the allocation instruction
of the object that base refers to

• the abstract receiver object of the method that performed
that allocation, i.e., that contains the allocation instruction
of the previous step.

This kind of context combination is typically information-
rich enough to distinguish dynamic invocation conditions of
łbase.method()ž, keeping the data flow from different calls
separate, resulting in precision. For instance, two uses of a

802

https://github.com/plast-lab/sound-modulo-analysis-openjdk-8
https://github.com/plast-lab/sound-modulo-analysis-openjdk-8

PLDI ’20, June 15ś20, 2020, London, UK A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen, and Y. Smaragdakis

1 public class HashMap <K,V> extends AbstractMap <K,V>

2 implements Map <K,V>, Cloneable , Serializable { ...

3 transient Node <K,V>[] table;

4

5 final class KeySet extends AbstractSet <K> { ...

6 public final void forEach(Consumer <..> action) {

7 Node <K,V>[] tab;

8 if (action == null)

9 throw new NullPointerException ();

10 if (size > 0 && (tab = table) != null) {

11 int mc = modCount;

12 for (int i = 0; i < tab.length; ++i) {

13 for (Node <K,V> e = tab[i];

14 e != null;

15 e = e.next)

16 action.accept(e.key);

17 }

18 if (modCount != mc)

19 throw new ConcurrentModificationException ();

20 } ...

21 } ...

22 }

public class HashMap <K,V> extends AbstractMap <K,V>

implements Map <K,V>, Cloneable , Serializable { ...

transient Node <K,V> contents;

final class KeySet extends AbstractSet <K> { ...

public final void forEach(Consumer <..> action) {

if (action == null)

throw new NullPointerException ();

Node <K,V> e = contents;

// forall i, table[i] abstracts to "contents"

e = e.next;

action.accept(e.key);

if (modCount != 42) // mere non -determinism

throw new ConcurrentModificationException ();

} ...

} ...

}

Figure 3. Example of sound-modulo-analysis modeling of java.util.HashMap. Original code on the left, simplified on right.

HashMap by a certain program class operating as an intermedi-
ary on behalf of two other classes will still be distinguished.
The original HashMap code in java.util contains several

instances of a double-dispatch-like pattern (e.g., in methods
putVal, compute, merge, computeIfAbsent):

treeNode.putTreeVal(this, tab, hash, key, value).
This code pattern significantly weakens the precision of
the 2objH analysis for different application-level clients. The
receiver object of the call (i.e., the abstract value of treeNode)
is a TreeNode object allocated inside HashMap. Therefore, the
second element of the HashMap’s context is not used in this
callÐone of the two context elements is dropped, in favor of
a locally-allocated TreeMap that cannot serve to distinguish
the dynamic execution conditions of the library’s caller. This
effectively reduces a 2objH analysis to a less precise 1objH.
The above pattern serves to remind how otherwise-

powerful static analysis techniques are highly sensitive to
code idioms. Careful sound-modulo-analysis rewrite of key
functionality ensures that precision is keptÐin this case, by
the simple elimination of all TreeNode-based code.

5 Evaluation

We evaluate JackEE on a dataset of well-known open-source
applications, selected due to recommendation or popularity.
´ We use a machine with two Intel(R) Xeon(R) Gold 6136
CPU @ 3.00GHz (each with 12 cores x 2 hardware threads)
and 640GB of RAM. We evaluate on three dimensions: com-
pleteness, speed and precision. JackEE extends the Doop
framework, executed with the Souffle Datalog engine run-
ning on 16 threads.
Our benchmarks include:

• alfresco: The community edition of one of the most pop-
ular content management systems (CMS). It consists of
several different libraries packaged and deployed as as sin-
gle web app. Alfresco community edition is open-source,
available on GitHub. It was suggested to us as a good exam-
ple of a web application for analysis by Oracle researchers.
Application classes: 9164. Total classes: 37163.

• bitbucket-server: The on-premise version of the popular
web-based version-control repository hosting service. Ap-
plication classes: 581. Total classes: 29984.

• dotCMS: Popular CMS. (GitHub, 525 stars, 354 forks.) Ap-
plication classes: 5473. Total classes: 46027.

• opencms: Popular CMS. (GitHub, 421 stars, 342 forks.) Ap-
plication classes: 2143. Total classes: 16183.

• pybbs: A platform for building websites. (GitHub, 910 stars,
487 forks.) Application classes: 172. Total classes: 24692.

• shopizer: A platform for building commercial websites.
(GitHub, 1.5k stars, 1.4k forks.) Application classes: 1151.
Total classes: 33841.

• SpringBlog: A blogging system. (GitHub, 1.5k stars, 719
forks.) Application classes: 100. Total classes: 18493.

• WebGoat: A web application by OWASP, designed to teach
web application security lessons. (GitHub, 2.9k stars, 1.2k
forks.) A very small application for the standards of our
investigation, included mainly because of its use in many
past publications [9, 10, 32]. Application classes: 96. Total
classes: 7317.

5.1 Completeness

None of the major frameworks for Java program analysis
currently offers realistic support for enterprise applications.

803

Static Analysis of Java Enterprise Applications PLDI ’20, June 15ś20, 2020, London, UK

% of app reachable methods over app concrete methods

Be
nc

hm
ar

k

alfresco

bitbucket

dotCMS

opencms

pybbs

shopizer

SpringBlog

WebGoat

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Doop reachable JackEE reachable

Figure 4. App methods reachability for Doop and JackEE.

WALA [11] has virtually zero analysis completeness after the
removal of the J2EE part of the framework. Soot [33] does not
provide any automated or semi-automated analysis for web
applications, instead requiring manual definition of custom
entry points. Consequently, an out-of-the-box Soot analysis
provides zero completeness for web applications. The Doop
framework [8], on which JackEE is built, contains a basic
servlet and web-app łopen programsž logic. We enable and
compare to Doop, as a point of reference.

Due to the modular underlying architecture of Doop, Jac-
kEE can run with every variant of context sensitivity sup-
ported. We evaluate the completeness of JackEE’s enter-
prise analysis with a highly-precise analysis: the mod-2objH
analysis, which is a 2-object-sensitive analysis used with
JackEE’s sound-modulo-analysis simplified HashMaps and
ConcurrentHashMap. The only exception is DotCMS, which
runs out of memory at around the 15-hour mark for 2objH,
so we ran JackEE’s context-insensitive and mod-2objH anal-
yses.

We compare this most precise configuration of JackEE to
the least precise (context-insensitive) configuration for Doop,
thus ensuring that any false completeness (due to impreci-
sion) will count against JackEE. Figure 4 plots completeness,
measured as the proportion of reachable (concrete) applica-
tion methods. (Table 1 later shows that this metric is also
backed by a quite thorough call-graph exploration.)
JackEE’s analysis averages in-app reachability of 58.04%,

while dropping to no less than 43.48% (for alfresco). In com-
parison, Doop averages 14.48% in-app coverage while drop-
ping to approximately 1.8% and 0.0% coverage for two bench-
marks (alfresco and pybbs respectively). Both alfresco and
pybbs define entry points (and then further functionality)
via framework-specific mechanismsÐto which Doop is obliv-
ious. Alfresco has both XML-configured entry points and a
custom Spring-based REST API. The entry points of pybbs
are given using Spring annotations. Both applications then
use annotations for dependency injection.

To appreciate the practical meaning of exercising 58% of
methods in a large application archive, we computed the
same metric for Doop’s analysis of standard Java desktop
applications. The literature shows a large number of publi-
cations evaluating Doop analyses over the DaCapo2006[6]
benchmark suite. Doop achieves an average 42.89% in-app
reachability for the DaCapo2006 benchmarks, also with the
aid of reports from Tamiflex [7]Ða dynamic analysis tool for
the resolution of reflective call graph edges.

5.2 Performance

JackEE applies the sound-modulo-analysis simplifica-
tion of java.util.HashMap, java.util.LinkedHashMap, and
java.util.concurrent.ConcurrentHashMap to the Java 8 li-
brary. Figure 5 shows both the result and the need for the
optimization. Observe the (proportional, as well as absolute)
cost of java.util skyrocket between a context-insensitive
analysis and a 2objH. The JackEE replacement succeeds in
decreasing 6-fold this cost for the majority of benchmarks.
The average speedup is 5.9x, peaking at 15.1x for bitbucket-
server. Considering the minimality of the rewrite, its impact
is substantial, and shows the importance of map functionality
for web applications.

5.3 Precision

To evaluate the precision of the mod-2objH analysis we com-
pare it to the context-insensitive analysis, and the 2objH
analysis with the original Java 8 library.
Table 1 presents the results over multiple precision met-

rics. Although no single metric is fully reliable, by tak-
ing all five metrics into account we have a reliable indi-
cator of the overall precision of the analysis. As can be
seen, the sound-modulo-analysis replacement of HashMap and
ConcurrentHashMap exhibits non-negligible gains in precision
(for reasons analyzed earlier). The size of the call-graph is
noteworthy in most cases, demonstrating the thoroughness
of the analysis, as well as the size of these applications.

6 Related Work

Past work has attempted to address the challenges of ana-
lyzing web applications by taking advantages of the idioms
of Java web frameworks.
Concerto [30] addresses the problem of analyzing

framework-based applications by combining concrete in-
terpretation at the framework level and abstract interpre-
tation at the application level and taking advantage of the
framework configuration information.
To overcome the challenges of identifying entry points,

Dietrich et al. [10] generate a driver for exercising a Java EE
application. This processes XML configuration files, annota-
tions and JSPs. While it handles servlets, filters, and listeners,
the current level of support for frameworks is limited.

804

PLDI ’20, June 15ś20, 2020, London, UK A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen, and Y. Smaragdakis

2478

46465

7350

0

7554

(oom)

101310

alfresco dotCMS

0

20000

40000

60000

80000

100000

120000

java.util time non java.util time

509

8993

594

0
252

4982

2438

0

428

3567

672

0

734

5181

920

0
196

847

176
0 39 83 38

bitbucket-server opencms pybbs shopizer SpringBlog WebGoat

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

java.util time non java.util time

Figure 5. Analysis time for all benchmarks. Alfresco shown separately on the left, due to different scale. Time is broken up
heuristically into java.util vs. non-java.util based on final cumulative sizes of points-to sets. mod-2objH is a 2objH analysis
using the JackEE sound-modulo-analysis simplification of HashMaps and ConcurrentHashMap.

The idea of modeling libraries instead of analyzing them,
to avoid precision or scalability loss due to their complexity,
has also appeared in the past, in different forms.

TAJ [32], apart from its modeling of key Java EE concepts
and framework, is related to our work by also leveraging
a sound-modulo-analysis simplification of data structures.
However, modeling information flow through a data struc-
ture class is quite different from modeling all flows of values,
as we do. This is another instance of TAJ being a targeted
taint analysis, as opposed to general flow analysis of all val-
ues through a large application.

In recent work, ATLAS [5] performs this modeling by run-
ning tests on library code and producing points-to specifica-
tions which are then consumed by a client points-to analysis.
ATLAS’s approach is similar to JackEE’s as it attempts to col-
lapse the array fields of Collections to a single field in a man-
ner similar to what our sound-modulo-analysis approach
does for HashMap, LinkedHashMap and ConcurrentHashMap to
achieve higher precision. However, while ATLAS uses this
approach for the whole library, JackEE does it only for a crit-
ical fraction of the Collections API. This enables a focused
manual rewrite, ensuring full soundness, as opposed to auto-
mated inference with empirical measurements of soundness.
Furthermore, ATLAS summarizes collection behavior lead-
ing to a partial analysis of the Collections API, while JackEE
leverages a full-featured points-to analysis on modified Col-
lections. While ATLAS needs to only capture taint flows in
and out of the libary, JackEE keeps up with all the value
flows to and from the Java library, allowing it to be used

for a larger set of client analyses. ATLAS targets Android
applicationsÐan ecosystem that exhibits some similarities
to enterprise applications, but also several differences.
In work concurrent to ours, Fegade and Wimmer [12]

propose an idea highly related to łsound-modulo-analysisž
rewrites: łsemantic models [for collections] obtained byman-
ually simplifying data structure implementations by relying
on analysis abstractionsž. The rewrites they propose are very
similar to ours, although it is not clear whether they preserve
the full semantics of the library relative to the analysisÐe.g.,
our models maintain the full data structure behavior, in-
cluding all exceptions thrown, at any level. The Fegade and
Wimmer approach can afford to be unsound with respect to
the call-graph because, in their setting, two analyses interact:
one sound but imprecise models the call-graph; another, over
semantic models but more precise, models value flow. Still,
this difference is necessitated by the specifics of their do-
main, which includes closed-world compilation. In principle,
the Fegade and Wimmer approach appears no different from
our łsound-modulo-analysisž rewrite. Fegade and Wimmer
evaluate on relatively small benchmarks, use call-site sensi-
tivity, and aggressively merge abstract objects per type. We
believe that the latter two techniques are a suboptimal choice
for a precise and scalable analysis, at least in our setting of
enterprise applications.

Special treatment of collections is common in static analy-
sis frameworks. For instance, WALA [11] supports a special
context-sensitivity policy, ZeroOneContainerCFA, which en-
ables more precise handling of collections. (This enables

805

Static Analysis of Java Enterprise Applications PLDI ’20, June 15ś20, 2020, London, UK

Table 1. Precision+speed metrics. In all cases lower is better.
Dash (-) entries are for analyses that did not terminate in
28h. The 5 precision metrics shown are the average size of
points-to setsÐfor all variables and app-onlyÐ(how many
heap objects are computed to be pointed-to per-var), the
number of edges in the computed call-graph, the number
of virtual calls in the application whose target cannot be
disambiguated by the analysis, and the number of casts in
the application that cannot be statically shown safe.

B
en
ch
m
a
rk

Metrics

A
n
a
ly
se
s

ci 2o
bj
+H

m
od
-2
ob
j+
H

al
fr
es
co

avg. objs per var 400.0 101.9 77.2

avg. objs per app var 327.8 91.8 74.0

edges (over ∼100K meths) 1,145,133 726,751 673,132

app poly v-calls (of ∼117K) 8,193 6,008 5,962

app may-fail casts (of ∼7K) 6,445 4,307 4,176

elapsed time (s) 2,478 46,465 7,350

b
it
b
u
ck
et
-s
er
v
er avg. objects per var 178.2 49.6 28.6

avg. objects per app var 53.0 16.1 12.0

edges (over ∼48K meths) 402,697 285,905 227,426

app poly v-calls (of ∼4.1K) 210 199 201

app may-fail casts (of ∼0.44K) 169 127 124

elapsed time (s) 509 8,993 594

d
o
tC
M
S

avg. objs per var 647.6 - 135.3

avg. objs per app var 314.8 - 139.3

edges (over ∼122K meths) 2,250,607 - 1,146,463

app poly v-calls (of ∼93K) 12,417 - 10,647

app may-fail casts (of ∼9.8K) 9,459 - 7,859

elapsed time (s) 7,554 - 101,310

o
p
en
cm

s

avg. objs per var 118.3 25.9 22.4

avg. objs per app var 99.1 24.5 22.5

edges (over ∼33K meths) 277,253 200,115 196,532

app poly v-calls (of ∼67.3K) 5,460 4,837 4,829

app may-fail casts (of ∼2.5) 2,433 1,751 1,713

elapsed time (s) 252 4,982 2,438

p
y
b
b
s

avg. objs per var 196.3 61.5 40.8

avg. objs per app var 91.6 33.4 25.3

edges (over ∼44K meths) 397,771 304,832 277,638

app poly v-calls (of ∼2.4K) 78 66 66

app may-fail casts (of ∼8K) 70 54 55

elapsed time (s) 428 3,567 672

sh
o
p
iz
er

avg. objs per var 219.1 58.1 40.5

avg. objs per app var 166.4 17.6 12.8

edges (over ∼53K meths) 465,935 333,475 313,376

app poly v-calls (of ∼25.6K) 1,390 990 983

app may-fail casts (of ∼0.68K) 703 280 267

elapsed time (s) 734 5,181 920

Sp
ri
n
g
B
lo
g

avg. objs per var 113.1 30.5 16.9

avg. objs per app var 30.4 9.1 6.5

edges (over ∼25K meths) 186,990 142,957 130,627

app poly v-calls (of ∼0.73K) 56 48 48

app may-fail casts (of ∼0.04K) 28 14 13

elapsed time (s) 59 172 76

W
eb
G
o
at

avg. objs per var 34.2 7.9 5.5

avg. objs per app var 14.1 2.9 2.7

edges (over ∼12K meths) 71,666 58,588 55,989

app poly v-calls (of ∼1.6K) 103 87 87

app may-fail casts (of ∼0.04K) 41 20 19

elapsed time (s) 39 83 38

object sensitivity of unlimited depth.) The aim of this policy
is precision, rather than scalabilityÐin fact, the WALA doc-
umentation explicitly warns that the analysis can become
łrelatively expensivež.

Schwarz proposes an approach for the implementation
and analysis of web applications [22]. The analysis is, how-
ever, designed for a new web application framework, JWIG,
without intending to capture the variety of web application
technologies in the wild.

7 Conclusions

Enterprise applications have been the elephant in the Java
static analysis room. Dominant in practice, they have re-
sisted attempts for analysis, and researchers have largely
ignored them. We presented techniques for flexible model-
ing of enterprise application frameworks and demonstrated
how this modeling can lead to high-coverage analysis. Ad-
ditionally, we have identified scalability problems for high-
precision analyses and pinpointed the standard Java HashMap
and ConcurrentHashMap functionality as a central piece in
these problems.

Our JackEE framework succesfully tackles the fundamen-
tal problems of static analysis in the domain of Java En-
terprise applications. Its modular and highly expandable
technique of handling web framework functionality guaran-
tees state-of-the-art analysis coverage. At the same time the
concept of sound-modulo-analysis modeling provides a non-
intrusive way of handling core Java data structures, leading
to improved precision while achieving very high scalability,
one of the greatest challenges of static analysis that aims to
model the whole heap of the program. Object-sensitive anal-
yses that otherwise would be infeasible can be made viable
using sound-modulo-analysis models. All this is achieved in
the setting of realistic web applicatiions, while making no
compromises in analysis soundness and almost fully preserv-
ing the intended functionality of the implementation. Finally,
the sound-modulo-analysis approach can easily be extended
to provide an even higher level of precision and scalability.
We hope that JackEE can be the beginning of research

interest in analyzing enterprise applications. Covering a do-
main of such complexity and size cannot be achieved via
a single step. However, collecting a set of sizable, realistic
benchmarks, showing that their analysis is feasible, and mak-
ing progress in its precision are good ways to inspire further
research in this high-value area.

Acknowledgments

We gratefully acknowledge funding by the European Re-
search Council, grant 790340 (PARSE) and an Oracle Labs
collaborative research grant.

References
[1] 2019. Dependency injection. https://en.wikipedia.org/wiki/

Dependency_injection Accessed: 2019-11-22.

806

https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection

PLDI ’20, June 15ś20, 2020, London, UK A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen, and Y. Smaragdakis

[2] 2019. Java Platform, Enterprise Edition. https://en.wikipedia.org/

wiki/Java_Platform,_Enterprise_Edition Accessed: 2019-11-19.

[3] 2019. TIOBE Index. https://www.tiobe.com/tiobe-index/ Accessed:

2019-11-19.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-

sensitive and Lifecycle-aware Taint Analysis for Android Apps. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’14). ACM, New York, NY,

USA, 259ś269. https://doi.org/10.1145/2594291.2594299

[5] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2018.

Active Learning of Points-to Specifications. In Proceedings of the

39th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI 2018). ACM, New York, NY, USA, 678ś692.

https://doi.org/10.1145/3192366.3192383

[6] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,

Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko

Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-

dermann. 2006. The DaCapo Benchmarks: Java Benchmarking Devel-

opment and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA ’06). Association for Computing Machinery,

New York, NY, USA, 169ś190. https://doi.org/10.1145/1167473.1167488

[7] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira

Mezini. 2011. Taming Reflection: Aiding Static Analysis in the Presence

of Reflection and Custom Class Loaders. In Proceedings of the 33rd

International Conference on Software Engineering (ICSE ’11). ACM, New

York, NY, USA, 241ś250. https://doi.org/10.1145/1985793.1985827

[8] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declara-

tive Specification of Sophisticated Points-to Analyses. In OOPSLA ’09:

Proceedings of the 24th annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications.

[9] Matthias Buchler, Johan Oudinet, and Alexander Pretschner. 2012.

SPaCiTE ś Web Application Testing Engine. In Proceedings of the 2012

IEEE Fifth International Conference on Software Testing, Verification and

Validation (ICST ’12). IEEE Computer Society, Washington, DC, USA,

858ś859. https://doi.org/10.1109/ICST.2012.187

[10] Jens Dietrich, François Gauthier, and Padmanabhan Krishnan. 2018.

Driver Generation for Java EE Web Applications. In Australasian Soft-

ware Engineering Conference (ASWEC). IEEE, 121ś25.

[11] Stephen J. Fink et al. [n. d.]. T.J. Watson Libraries for Analysis (WALA).

http://wala.sourceforge.net.

[12] Pratik Fegade and Christian Wimmer. 2020. Scalable Pointer Anal-

ysis of Data Structures Using Semantic Models. In Proceedings of

the 29th International Conference on Compiler Construction (CC 2020).

Association for Computing Machinery, New York, NY, USA, 39ś50.

https://doi.org/10.1145/3377555.3377885

[13] Martin Fowler. 2002. Patterns of Enterprise Application Architecture.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[14] Martin Fowler. 2004. Inversion of Control Containers and the Depen-

dency Injection pattern. https://martinfowler.com/articles/injection.

html Accessed: 2019-11-22.

[15] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-

to and Taint Analysis. Proc. ACM Program. Lang. 1, OOPSLA, Article

102 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133926

[16] Rod Johnson. 2002. Expert One-on-One J2EE Design and Development.

Wiley Publishing, Inc.

[17] Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis. 2018.

Precision-guided Context Sensitivity for Pointer Analysis. Proc.

ACM Program. Lang. 2, OOPSLA, Article 141 (Oct. 2018), 29 pages.

https://doi.org/10.1145/3276511

[18] Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis. 2018.

Scalability-first Pointer Analysis with Self-tuning Context-sensitivity.

In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 129ś140.

https://doi.org/10.1145/3236024.3236041

[19] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parame-

terized object sensitivity for points-to analysis for Java. ACM Trans.

Softw. Eng. Methodol. 14, 1 (2005), 1ś41.

[20] Oracle. 2019. Java EE at a glance. https://www.oracle.com/java/

technologies/java-ee-glance.html Accessed: 2019-11-19.

[21] Java Communtity Process. 2019. JSR 330: Dependency Injection for

Java. https://jcp.org/en/jsr/detail?id=330 Accessed: 2019-11-22.

[22] Mathias Romme Schwarz. 2013. Design and Analysis of Web Application

Frameworks. Ph.D. Dissertation. Superviser: Anders Mùller.

[23] Micha Sharir and Amir Pnueli. 1981. Two Approaches to Interprocedural

Data Flow Analysis. Chapter 7, 189ś233.

[24] Olin G. Shivers. 1991. Control-Flow Analysis of Higher-Order Languages.

Ph.D. Dissertation. Carnegie Mellon University.

[25] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. 2011.

Pick Your Contexts Well: Understanding Object-Sensitivity. In Proc. of

the 38th ACM SIGPLAN-SIGACT Symp. on Principles of Programming

Languages (POPL ’11). ACM, New York, NY, USA, 17ś30.

[26] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014.

Introspective Analysis: Context-sensitivity, Across the Board. In Proc.

of the 2014 ACM SIGPLAN Conf. on Programming Language Design

and Implementation (PLDI ’14). ACM, New York, NY, USA, 485ś495.

https://doi.org/10.1145/2594291.2594320

[27] Manu Sridharan. 2019. Commit: remove

com.ibm.wala.j2ee. https://github.com/wala/WALA/commit/

7045a06e51acfe954b950bab3480bc8b436f4481 Accessed: 2019-11-19.

[28] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer

Tripp, and Ryan Berg. 2011. F4F: Taint Analysis of Framework-

based Web Applications. In Proceedings of the 2011 ACM International

Conference on Object Oriented Programming Systems Languages and

Applications (OOPSLA ’11). ACM, New York, NY, USA, 1053ś1068.

https://doi.org/10.1145/2048066.2048145

[29] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and

Eran Yahav. 2013. Alias Analysis for Object-Oriented Programs. In

Aliasing in Object-Oriented Programming. Types, Analysis and Verifica-

tion, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.). Lecture

Notes in Computer Science, Vol. 7850. Springer Berlin Heidelberg,

196ś232. https://doi.org/10.1007/978-3-642-36946-9_8

[30] John Toman and Dan Grossman. 2019. Concerto: A Framework for

Combined Concrete and Abstract Interpretation. Proc. ACM Program.

Lang. 3, POPL, Article 43 (Jan. 2019), 29 pages. https://doi.org/10.1145/

3290356

[31] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Sal-

vatore Guarnieri. 2013. Andromeda: Accurate and Scalable Security

Analysis of Web Applications. In Fundamental Approaches to Software

Engineering, Vittorio Cortellessa and Dániel Varró (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 210ś225.

[32] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri

Weisman. 2009. TAJ: Effective Taint Analysis of Web Applications.

In Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’09). ACM, New York, NY,

USA, 87ś97. https://doi.org/10.1145/1542476.1542486

[33] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization

Framework. In Proceedings of the 1999 Conference of the Centre for

Advanced Studies on Collaborative Research (CASCON ’99). IBM Press,

13ś. http://dl.acm.org/citation.cfm?id=781995.782008

807

https://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
https://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/3192366.3192383
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1109/ICST.2012.187
http://wala.sourceforge.net
https://doi.org/10.1145/3377555.3377885
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://www.oracle.com/java/technologies/java-ee-glance.html
https://www.oracle.com/java/technologies/java-ee-glance.html
https://jcp.org/en/jsr/detail?id=330
https://doi.org/10.1145/2594291.2594320
https://github.com/wala/WALA/commit/7045a06e51acfe954b950bab3480bc8b436f4481
https://github.com/wala/WALA/commit/7045a06e51acfe954b950bab3480bc8b436f4481
https://doi.org/10.1145/2048066.2048145
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/3290356
https://doi.org/10.1145/3290356
https://doi.org/10.1145/1542476.1542486
http://dl.acm.org/citation.cfm?id=781995.782008

	Abstract
	1 Introduction
	2 Web Application Background
	2.1 Java EE Servlets
	2.2 Enterprise Java Beans
	2.3 Spring
	2.4 Other Technologies

	3 Analysis Completeness
	3.1 Overview
	3.2 Vocabulary
	3.3 Framework-Independent Support
	3.4 Modeling Examples
	3.5 Wiring Together Beans

	4 Analysis of Web Applications: Precision and Scalability
	5 Evaluation
	5.1 Completeness
	5.2 Performance
	5.3 Precision

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

