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Abstract

Smart contracts are small programs that run autonomously on the
blockchain, using it as their persistent memory. The predominant
platform for smart contracts is the Ethereum VM (EVM). In EVM
smart contracts, a problem with significant applications is to iden-
tify data structures (in blockchain state, a.k.a. “storage”), given only
the deployed smart contract code. The problem has been highly
challenging and has often been considered nearly impossible to
address satisfactorily. (For reference, the latest state-of-the-art re-
search tool fails to recover nearly all complex data structures and
scales to 50% of contracts.) Much of the complication is that the
main on-chain data structures (mappings and arrays) have their
locations derived dynamically through code execution.

We propose sophisticated static analysis techniques to solve the
identification of on-chain data structures with extremely high fi-
delity and completeness. Our analysis scales nearly universally and
recovers deep data structures. Our techniques are able to identify
the exact types of data structures with 95.70% precision and at least
94.96% recall, compared to a state-of-the-art tool managing 83.30%
and 55.65% respectively. Strikingly, the analysis is often more com-
plete than the storage description that the compiler itself produces,
with full access to the source code.
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» Theory of computation — Program analysis; « Security and
privacy — Software reverse engineering; « Software and its
engineering — Automated static analysis.
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1 Introduction

Smart contracts on programmable blockchains have been success-
fully used to implement complex applications, mostly of a finan-
cial nature [42]. The dominant platform for smart contracts is the
Ethereum VM (EVM): the execution layer behind blockchains such
as Ethereum, Arbitrum, Optimism, Binance, Base, and many more.
Millions of smart contracts have been deployed on these chains and
can be invoked on-demand. Many thousands of them are in active
use every day.

To enable the persistence of data between different blockchain
transactions, contracts employ the blockchain as their persistent
memory, to save their state. In EVM terms, this persistent memory
is called “storage” and is accessed using special random-access
instructions. A challenge of high value has emerged out of the
use of storage in smart contracts: recovering high-level storage
structures from the deployed form of the smart contract, i.e., from
EVM bytecode. This task is crucial for several applications:

o Security Analysis: A number of smart contract vulnerabili-
ties arise from incorrect handling of storage variables, such
as storage collisions in upgradable contracts [35]. Precise
modeling of storage is required for detecting such vulnera-
bilities.

e Decompilation and Reverse Engineering: Tools [5, 18,
23] that decompile EVM bytecode back to high-level code
rely on storage modeling to reconstruct variable declarations
and data structures [29].

e Off-chain Applications: Blockchain explorers, debuggers,
and other off-chain tools need to interpret storage data to
provide meaningful information to users. They often rely on
compiler-generated metadata, which may be incomplete or
unavailable [15] for interesting smart contracts like propri-
etary bots or hacker contracts.
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e Static Analysis and Verification: Precise storage modeling
enables advanced static analysis and formal verification of
smart contracts, facilitating the detection of bugs and the
proof of correctness [6, 12, 17, 44].

Smart contracts are written overwhelmingly in the Solidity lan-
guage, which allows developers to define storage variables ranging
from simple value types to complex, arbitrarily nested data struc-
tures such as arrays, mappings, and structs.

However, when Solidity code is compiled into EVM bytecode,
much of the high-level structure and type information is lost. This
is because the EVM’s permanent storage is a simple key-value store
mapping 256-bit keys to 256-bit values. Due to the luxury of having
a large key space, the default pattern for high-level languages tar-
geting the EVM is to translate high-level constructs into low-level
storage access patterns using cryptographic hashing and arithmetic
operations to compute storage slots dynamically. This transforma-
tion creates a significant gap between the high-level representation
of storage variables and the low-level state of permanent storage
reflected on the blockchain.

Existing approaches to storage modeling face significant lim-
itations. Early frameworks [3, 41] often reasoned about storage
operations only when storage indexes were constants, sacrific-
ing precision or completeness when dealing with dynamic data
structures. While some tools [6, 17] introduced methods to infer
high-level storage structures, they lacked support for arbitrarily
nested data structures and complex storage patterns. Recent tools
like VarLifter [29] attempt to recover storage layouts but struggle
with scalability and completeness, failing to produce output for a
substantial portion of real-world contracts.

Contributions. This paper introduces DYELS, a static analysis
approach that accurately infers high-level storage structures from
EVM bytecode. Our key contributions are:

o Static Storage Modeling: We develop a novel static analysis
that fully supports arbitrarily nested composite data struc-
tures in Solidity. By employing a recursive storage analysis,
DYELS scalably and precisely reconstructs complex storage
layouts from low-level bytecode.

e Evaluation on All Deployed Contracts: DYELS’s scalable
design allows us to evaluate its performance on enormous
datasets. The first consists of 377,132 smart contracts with
ground truth provided by the Solidity compiler and allows
us to assess the faithfulness of DYELS’s recovered inferences.
The second includes 903,805 deduplicated contracts, corre-
sponding to all 73 million non-empty contracts deployed on
the Ethereum mainnet.! This enables scalable recognition of
storage patterns on the whole blockchain.

¢ Evaluation Against Existing Tools: We find the current
state-of-the-art tool, VarLifter [29], to terminate on only
50.5% of contracts. When successful, VarLifter misses over
40% of storage variables, including most non-trivial struc-
tures. This performance underscores the difficulty of the
problem being solved. In comparison, DYELS analyzes 99.36%
of contracts and provides higher-fidelity results, recovering
the vast majority (93.55%) of storage structures with excel-
lent precision (97.70%).

1 All numbers reported over deployed contracts are as of Jun. 28, 2025.
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e Enhanced Completeness Beyond Compiler Metadata:
We show that DYELs can infer storage variables and struc-
tures not present in compiler-generated metadata, particu-
larly those involving low-level storage patterns common in
upgradable contracts. Analyzing the entire blockchain, we
were able to identify over 300,000 contract addresses making
use of such widespread low-level variables.

The core of DYELSs is released as open-source software as part of
the Gigahorse lifting toolchain ? and has seen significant adoption
in both industry and academia. Its output is integrated into the
decompilation of https://app.dedaub.com, the Dedaub security and
decompilation tool suite used by over 10,000 registered users.

2 Background

We next provide background on the Ethereum Virtual Machine and
its storage model.

2.1 Ethereum and the Ethereum Virtual
Machine

Ethereum is a decentralized blockchain platform that enables the
execution of smart contracts—autonomous programs that run on
the blockchain. Smart contracts are predominantly written in the
Solidity high-level language and are compiled into bytecode for
execution on the Ethereum Virtual Machine (EVM). The EVM has
dominated as an execution platform and has been adopted by most
other programmable blockchains.

The EVM is a stack-based virtual machine designed to execute
smart contracts securely and deterministically. It operates on 256-bit
words, utilizes its own stack, memory, transient storage and persistent
storage, and provides a Turing-complete execution environment.
This paper focuses on persistent storage or just storage.

2.2 EVM Bytecode Format and Execution Model

EVM bytecode is a sequence of instructions, each represented by a
single-byte opcode (with an immediate argument for PUSH opcodes).
The EVM supports a rich, albeit unconventional set of operations,
which includes anything from arithmetic, logic, control flow, hash-
ing, and state and memory interaction.

As a stack-based machine, most EVM opcodes perform compu-
tations using a stack of 256-bit words, when such an opcode has a
fixed operand or return size. The EVM also features different kinds
of state. Memory is a dense addressable byte array that is cleared at
the end of each transaction with a smart contract (from the outside
or nested, via calls from one contract to the next). A recent addition
is transient storage, which is cleared at the end of the outermost
transaction.

2.3 Storage in the EVM

At the EVM level, persistent storage (or simply storage) is a persis-
tent key-value store where both keys and values are 256-bit words.
Storage maintains the state of a contract between transactions.
Storage is simply a sparse word array indexed by 256-bit words,
spanning from keys 0 to 2% — 1.

Zhttps://github.com/nevillegrech/gigahorse-toolchain
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High-level languages like Solidity provide structured data types
such as integers, arrays, mappings, and structs. The Solidity com-
piler maps these high-level constructs to EVM storage using specific
patterns, now also widely-adopted in other compilers.

The EVM only allows reading from and writing to storage us-
ing the SLOAD and SSTORE instructions, both of which index storage
using a 32-byte index value, with the value read or written also
being fixed at 32 bytes. As high-level languages need to implement
arbitrarily complex data structures using such very low-level prim-
itives, there is a huge disparity between the source and bytecode
representations.

2.4 EVM Storage Model and Solidity Storage
Layout

During compilation, the Solidity compiler generally predictably or-
ders smart contract storage variables using a deterministic heuristic
(e.g., by employing C3 linearization upon inheritance) and assigns a
slot p to each variable, and accumulates p by an appropriate amount
at each step.

The following cases briefly capture the mapping of high-level
constructs to EVM storage:

e Value Types: Simple value types (e.g., uint256, bool,
address) are stored in sequential storage slots starting from
slot 0. To optimize space, multiple small values may be
packed into a single 32-byte storage slot. For example, two
uint128 variables can share one slot, and smaller types like
bool and uint8 can be packed together.

e Static Arrays: Fixed-size arrays are stored by sequentially
allocating storage slots for each element. For an array de-
clared as T[n], where T is the element type and n is the fixed
size, elements are stored starting from slot p, the assigned
slot of the array variable. The element at index i is stored at
slot p + 1.

e Dynamic Arrays: Dynamic arrays store their length at a
fixed slot p, and their elements are stored starting from the
Keccak-256 hash of slot p. (This is a cryptographic hash
function, expected to be collision-resistant.) Specifically, ele-
ment i is stored at position keccak256(p) + i where p is the
slot assigned to the array variable. This allows for arrays of
arbitrary length without preallocating storage slots.

e Mappings: Mappings use a hashing scheme to avoid
key collisions. A mapping declared as mapping(K =>
V) at slot p stores a value associated with key k at
keccak256 (encode(k) || p) where || denotes concatenation,
and encode(k) is the padded representation of key k. This
ensures that each key-value pair in the mapping has a unique
storage slot.

e Structs: Structs are stored by sequentially allocating storage
slots for each of their members, similar to value types. For a
struct declared as struct S { ... }and a variable of type S
assigned to slot p, its members are stored starting from slot p.
If a struct contains members that are arrays or mappings, the
storage rules for arrays and mappings are applied recursively
to those members.

The recursive nature of these storage rules makes static model-
ing of storage complex, especially when only the EVM bytecode is
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available. For instance, mappings and dynamic arrays involve run-
time computations of storage slots using hash functions, which are
challenging to resolve statically. Additionally, the packing of multi-
ple variables into a single storage slot requires bit-level instruction
analysis to accurately extract individual variables.

3 Smart Contract Storage Patterns

We next show a simple smart contract that will serve as an exam-
ple to explain how the most common data structures provided by
Solidity are implemented in the low-level EVM bytecode.

contract StorageExample {
uint256 public supply; // slot 0x@
address public owner; // slot 0x1
bool public isPaused; // slot ox1
uint256[] public supplies; // slot 0x2
mapping (address => bool) public admins; // slot 0x3
struct vals {uint256 field@; uint256 fieldl;}
mapping (address => mapping(uint256 => vals)) public complex; //
slot ox4

Figure 1: Example Smart Contract

3.1 Low-Level Implementation Patterns

For our example contract in Figure 1, the storage layout translates
to the following low-level operations, also shown schematically in
Figure 2:

e Simple Values (slot 0x0): The supply variable occupies a
full slot:

— Load: SLOAD(0x@)

— Store: SSTORE(0x@) = newSupply

e Packed Values (slot 0x1): The owner (20 bytes) and isPaused

(1 byte) share slot 0x1:

— Load owner: SLOAD(9x1) followed by AND(loaded,
OXffffffffffffffffffffffffffffrffrffrfffffffe)

— Load isPaused: SLOAD(ox1) followed by AND(SHR(@xa@,
loaded), 0oxff). The masked variable is often followed
by two ISZERO(ISZERO(masked)).

— Store requires reading existing value, masking, and com-
bining with new value.

e Dynamic Array (slot 0x2): For supplies:

— Length access: length = SLOAD(0x2)

- Element i access: SLOAD(keccak256(0x2) + i)

— Store: SSTORE(keccak256(@x2) + i) = value

e Mapping (slot 0x3): For admins:

— Key k access: SLoAD(keccak256(pad32(k) || ox3))

— Store: SSTORE(keccak256(pad32(k) || @x3)) = value

¢ Nested Mapping (slot 0x4): For complex:

— For keys ki, ka:
fielde is accessed using: SLOAD(keccak256(pad32(ky) ||
keccak256(pad32(ky) || 0x4)))
field1 is accessed using: SLOAD(keccak256(pad32(kz) ||
keccak256(pad32(ky) || ox4)) +1)
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Figure 2: Low-level Storage Layout Implementation of our
example in Figure 1

bytes32 internal constant _ADMIN_SLOT =
0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

// returns the value of the address variable stored at _ADMIN_SLOT
function _getAdmin() internal view returns (address) {

return StorageSlot.getAddressSlot (_ADMIN_SLOT).value;
}

struct AddressSlot { address value; }

// Returns an ~AddressSlot™ with member ~value™ located at “slot".
function getAddressSlot(bytes32 slot) internal pure
returns (AddressSlot storage r) {
assembly {
r.slot := slot
}
}

Figure 3: Low-level code implementing the ERC-1967 stan-
dard.

3.2 Low-level Storage Patterns in High-level
Code

Although high-level storage patterns allow developers to implement
powerful protocols, making use of complex high-level data struc-
tures, the storage allocation algorithm has its drawbacks. Solidity
does not offer a high-level way to override the assigned storage slot
of a variable declaring it at an arbitrary slot. This functionality is
needed by various standards requiring compatible storage layouts.
The most important such standard is ERC-1967 [32], standardizing
the allocated storage slots to be used for the implementation, ad-
min, and beacon contract addresses of widely-used [45] upgradable
proxy contracts. To support these standard patterns developers
make use of Solidity’s inline assembly [8], as shown in Figure 3.
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V: set of variables S: set of program statements
C: set of 256-bit numbers  Int: set of 16-bit numbers

Figure 4: Type domain definitions

I:r:=LOAD(iv) |reV,I€S,iveV
SLOAD statement I loads into r the value of storage location
pointed-to by iv

I:STORE(iv):=u|I€S,iveV,ueV
SSTORE statement I stores the value of u into the storage
location pointed to by iv

r:= ADD/SUB/MUL(a,b) |[reV,aeVUC,beVUC
Binary arithmetic operation over variable or constant operands
a,b

voc|veV,ceC
Constant folding and constant propagation analysis.
v has constant value c.

li=¢u)|leV,ueV
SSA PHI instructions

r:=HASH(a,*) |reV,aeV
SHA3 operation that computes the keccak256 hash
of a variable number of args, storing it into r

Figure 5: Input relation definitions

Such low-level code patterns allow users to use storage variables
that are not declared as such. Thus, these variables are unknown
to the Solidity compiler, and are not included in its storage layout
metadata. This incompleteness of the compiler-produced metadata
will be examined in our evaluation of Section 7.

4 Analysis Preliminaries and Input

The DYELS approach is a static analysis of the program’s (smart con-
tract’s) code that identifies the low-level patterns that the Solidity
compiler produces to implement the high-level features presented
in Section 3. The challenge is to maintain the right level of analysis
precision and scalability/computability, since the analysis needs
to model the derivation structure of arbitrary dynamic numerical
quantities.

Figures 4 and 5 define the input schema for our analysis. (In
using these predicates, we drop elements that are not needed for
the rule at hand, e.g., we may write “r := LOAD(iv)” instead of “I : r
:= LOAD(iv)” when the instruction identifier I is unused.)

While these types and relations originate from the Elipmoc/Giga-
horse lifter toolchain [16, 18, 25, 26], our approach is not restricted
to this framework. Instead, it can be applied to any mature decom-
pilation framework that lifts the stack-based EVM bytecode into a
register-based static-single-assignment (SSA) representation.

Some relations in Figure 5 directly correspond to the register-
based representation, such as LOAD and STORE, while others, like ADD,
SUB, and MUL, also incorporate the results of a constant folding and
constant propagation analysis.

Finally, the HASH relation, which supports the low-level imple-
mentation patterns presented in Section 3, stems from the EVM
“memory” analysis [26] built on top of Gigahorse. While this spe-
cific implementation is tied to Gigahorse, similar EVM memory
analyses [1, 20] have been developed on top of other SSA-based
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type SInd = Const; (c: C)
|  ArAr  (par: SInd, iv: V)
| ArD;  (par: SInd)
|  Map;  (par: SInd, kv: V)
| Offs; (par: SInd, of: Int)

Figure 6: Vocabulary of storage index value expressions

analysis frameworks.

5 Structure Identification

The DYELs analysis has two main parts: a) discovering the structure
of a program’s storage layout (e.g., which structures are nested
arrays or mappings); b) discovering the types of data stored in every
entry of each structure. This section presents the first part: how to
identify the data structures in a smart contract’s storage.

5.1 Storage Index Value-flow Analysis

The backbone of the analysis is a value-flow analysis that computes
the values of all potential storage index expressions, and then uses
the ones that end up being used in actual storage operations to
identify the constructs in the program’s storage layout.

Figure 6 presents our definition of the storage index values for
our value-flow analysis. The Algebraic Data Type (ADT) in the
figure aims to capture accesses to Solidity’s arbitrarily-nested high-
level structures. The ADT effectively defines what the analysis can
infer about potential storage indexes.

Consty is the only non-recursive kind of SInd type. Every storage
index will include a Constj as the leaf of its ADT value, since all
high-level storage structures are assigned a constant offset by the
compiler. The rest of the storage index types are recursively built
on top of a pre-existing SInd instantiation, encoded as par (“par” for
“parent”). These include ArrA; and ArrDy used to model operations
on dynamic arrays, Map; for mapping operations, and Offs;, which
enables supporting struct accesses. In addition to the par index,
SInd values that model an index to a high-level data structure (array
or mapping) also include the index or key variables.

To compute the possible storage indexes for arbitrarily-nested
data structures we define our analysis as a set of recursive inference
rules. The rules are faithfully transcribed from a fully mechanized
implementation, so they should be precise, modulo mathematical
shorthands used for conciseness.

The analysis first computes two new relations.

visi|v€V,si€SInd

Storage Index Overapproximation:

Variable v holds potential storage index si.

U si | si € SInd

Actual Storage Index:

si ends up being used in a storage loading/storing operation.

5.1.1 Storage Index Overapproximation. Figure 7 contains our anal-
ysis logic for overapproximating the possible storage index values.

We start with the simpler cases of the analysis for inferring the
structure of storage indexes, with detailed explanation, to also serve
as introduction to the meaning of inference rules and of the input
schema.
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Voo
(BASE)
v — Consty(c)
S .
vV — si v := HASH(kv, pv)
(MAPPING) 5
v — Mapy(si, kv)
N
v — si v := HASH(pv)

(ARRAY DATA) 3
v — ArrDj(si)

S
pv — ArrDy(si) v :=ADD(pv,i)
i := MUL(iv, c) iv:V c:C

(ARRAY ACCESS) 3
v — ArrAi(si, iv)

s
pv —si v:=ADD(pv,c) si:ArrAr | Map; c:Int
(OFFs1) . .
v — Offs;(si, c)
(OFFs2) i > Offs1 (51, 0) v:=ADD(pv,c) c:Int

S
v — Offs;(si,c+0)

Figure 7: Inference Rules for Storage indexes

The “Bask” rule produces the initial set of possible storage in-
dexes by considering the facts of the constant folding and constant
propagation analysis provided by the Gigahorse/Elipmoc frame-
work. Per the input schema, “ — ” is the predicate capturing the
result of the constant propagation/folding, matching an IR variable
(if it always holds a constant value) to its value. This means that
every static constant in the contract code will be considered as
a possible constant storage index, to be used either as-is or as a
building block of more complex indexes.

The “MAPPING” rule models mapping accesses with the help
of the HASH predicate provided by the EVM “memory” modeling
analysis. The rule states that:

e if a variable, pv points to a likely storage index si,

e and if its concatenation to the contents of another variable,
kv, is hashed in the smart contract code (using the EVM’s
hash operation),

e then the hash result variable will hold a Map; (mapping
access index) over si and kv is the key variable of the modeled
mapping access operation.

The next two rules model dynamic arrays in storage. The storage
locations of a dynamic array are determined by first hashing an
array identifier, and then performing index arithmetic via addition
and multiplication.

Similarly to the case of mappings, the “ARRAY DATA” rule will
create a new index value pointing to the start of an array after
inferring a HASH operation that hashes the contents of a variable,
and that variable points to a pre-existing index.

The second rule (“ARrRAY Access”) will infer that if a variable
holding an ArrDj is added to the result of the multiplication of
a variable and a constant, the variable defined by the addition
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an” Ssi (= LOAD(\{) V STORE(v) = _)
U si
o Ssi =gty (L= L.OAD(Iv) v STORE(lv) = _)
| si
(A3)U si si :ArrA[.| ArrDy | Mapy | Offs;
| si.par

Figure 8: Inference Rules for recognizing actual (used) storage
indexes

operation will point to a new ArrAj value, inheriting the parent
index of the ArrDy value and using the multiplied variable as its
access/indexing value.

It is worth asking whether the above code patterns are always
indicating a dynamic array, or could arise for random code. If the
compiled code has been produced via compilation, these patterns
are very unlikely to arise for non-array structures. There is no
other data structure with both contiguous (indicated via addition)
and regular (indicated via multiplication with a constant) storage
location access. Furthermore, the presence of a hashed value, via a
1-argument hash operation, adds even more confidence to the infer-
ence. Finally, the potential over-approximation of storage indexes
will be, in the next step of the analysis, checked against the use of
the index as a proper array index. All these elements contribute to
a very high-fidelity inference.

Finally, the last two rules create Offs; values that are used to
model struct accesses in EVM storage. A struct is being accessed by
addition of constant field offsets to a base storage index. The base
storage index is that of a mapping or array. (If it is a mere constant
index, then there is no way to distinguish the struct from just an
explicit listing of its fields.)

The first rule will create a new Offs; when a small integer is
added to a variable pointing to a Map; or ArrA; value, while the
second one recursively creates new Offs; values for additions of
existing OffsetIndex values and small integers.

5.1.2  Filtering Out Non-Realized Indexes. The next step for com-
puting a smart contract’s storage layout is to identify the subset of
indexes computed in the overapproximating — relation that are
actually used in storage operations. Relation |} is used to compute
these storage indexes as shown in the rules of Figure 8.

The first two rules are inferring the end-level storage indexes
when they are used in LOAD/STORE operations either directly or
through PHI operations via the ¢* relation, the transitive closure
of the ¢ relation of our input. The last rule is introduced to transi-
tively infer that all parent indexes of “actual” storage indexes are
considered “actual” indexes as well.

This seemingly very simple logic hides an important subtlety.
This concerns the treatment of PHI (¢) instructions: the data-flow
merge instructions in a static-single-assignment (SSA) representa-
tion. PHI instructions are merging the values for the same higher-
level variable that arrive, via different program paths, to a control-
flow merge point. For instance, if a high-level program variable x is
set in two different branches (“then” or “else”) of an if statement,
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type SCons = Const (c:C)

| Arr (par: SCons)

| Map  (par: SCons)

| Offs (par: SCons, of: Int)
| Var (par: SCons)

|

PVar  (par: SCons, b: (Int, Int))
Figure 9: Storage Construct Type

then x is produced by a PHI whose arguments are the x-versions in
the branches that merge.
Note that, in the rules we have seen (Figure 7), the left-hand-side

variable of a PHI instruction does not become the first part of a 5,
entry, even if the right-hand-side variables (one or multiple) are in
it. Doing so would result in analysis non-termination. A PHI may be
merging different potential indexes, all captured at run-time by the
same variable. Then if the variable cyclically feeds into itself (as in
the case of code with a loop), we would end up with an unbounded
number of potential storage index inferences.

This is the importance of the “A2” rule, handling PHI instructions.
Although PHI instructions do not yield more storage indexes, rec-
ognized storage indexing patterns propagate through the transitive
closure of PHI instructions. In this way, we can get the confidence
of recognizing actual storage indexes, without attempting to fully
track them at every point in the program.

5.1.3 Storage index analysis results on our example. Now that we
have presented how the storage indexes are computed it is inter-
esting to see the results of the actual index (|} ) relation for our
example in Figure 1:

ConstI(0x1)

ConstI(0x0)

ConstI(0x2)

ConstI(0x3)

ConstI(0x4)

ArrayAI(ConstI (0x2), 0x14d)

MapI(ConstI(0x3), @0x11e)

MapI(ConstI(0x4), 0x80)

MapI (MapI(ConstI(@x4), 0x80), 0x8e)
OffsI(MapI(MapI(ConstI(@x4), 0x80), 0x8e), 1)

As can be seen, the computed actual storage indexes are constant
indexes 0x0 (containing the 256-bit supply variable), 0x1 (containing
variables owner and isPaused), and composite indexes to access
array supplies at index @x2 and mappings admins and complex at
indexes 0x3 and 0x4, along with their parent indexes.

5.2 Inferring Storage Constructs from Storage
Index Values

Figure 9 presents our definition of the SCons (storage construct)
Algebraic Data Type, used to describe all data structures that can be
found in Solidity smart contracts. The constructor cases of SCons
cover the different SInd types, while also introducing Var as an
option. Instances of Var express a value-typed fundamental unit of
data at the end of our nesting chain. This can either be a top-level
value-typed variable, the element of an array, the key to a mapping,
or a struct member. Finally, the PVar type is used to express a
“packed” variable: a construct that takes up part of a 32-byte storage
word.
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To define the algorithms that identify the program’s high-level
structures we need to introduce the following additional notation/-
computed predicates.

SCons(si) | si € SInd

SCons constructor, syntactically translating
corresponding SInd cases.

1 sc | sc e SCons

Relation containing all storage constructs in a program.
I sv|I€S, sve Var

Relation mapping storage LOAD/STORE instructions to
the storage variable they operate on.

Following the computation of the || “used storage index” relation
we can populate the | relation with all program structures, as
shown in Figure 10.

(BASE)l SCons(si)

Usi Asi’: (s’
)SCons(si’) = Arr(SCons(si)) V SCons(si’) = Map(SCons(si)))
R

(Va
| Var(SCons(si))

Figure 10: Using the “used storage index” inferences to com-
pute a program’s storage constructs.

The first rule considers all constructs that were translated from
storage indexes. The second one introduces new Var instances for
every translated construct that is never used as a parent index to a
more complex construct.

Finally, in Figure 11, we map the LOAD and STORE statements to
the instance of Var they operate on.

5.2.1 (Packed) Variable Partitioning. After computing the con-
tract’s storage construct instances we need to identify instances
of multiple variables packed together into the same 32-byte stor-
age word. These instances of Var are encoded as PVar (“packed
variable”).

This analysis step, presented in Appendix A, models all reads
and writes of each Var instance through low-level bit-masking
and shifting operations. If all read and write operations write to
non-conflicting sub-word segments, PVar instances are introduced,
replacing the pre-existing Var inferences.

S
vV —si

| Var(SCons(si))

(I:_=LOAD(v) Vv I:STORE(v):=_)
I+ Var(SCons(si))
| Var(SCons(si)) v 35 si u=¢*(v)

(I:_:=LOAD(u) Vv I:STORE(u):=_)
I+ Var(SCons(si))

Figure 11: Mapping LOAD and STORE statements to the storage
variables they operate on.
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Table 1: Kinds of operations supported by each value type
with the corresponding EVM instructions implementing
them

ops bytesX uintX intX address  bool
1 EQ, SUB EQ, SUB EQ, SUB EQ, EQ,
a. y ) ’
e SuB SUB
logical X X X X ISZERO
LT,
comp LT, GT LT, GT SLT, SGT o X
AND, OR,  AND, OR,  AND, OR,
bitwise X X
XOR, NOT ~ XOR, NOT  XOR, NOT
SHL, SHR, SHL, SHR,
shifts SHL, SAR X X
MUL, DIV  MUL, DIV
ADD, SUB,
ADD, SUB,
MUL, DIV, MUL, EXP
iths MOD, EXP ’ ’
arithm X , , SMOD, X X
ADDMOD
SDIV
MULMOD
byte ind BYTE X X X X

5.2.2  Storage construct Var and PVar inferences on our example.
At this point in our analysis pipeline the following Var inferences
will be produced for our example in Figure 1, each corresponding
to a (potentially packed) top-level variable, array element, mapping
value, or struct member:

Var (Const (0x0)) // uint256 supply

PVar (Const(0x1), @, 19) // address owner
PVar (Const(@x1), 20, 20) // bool isPaused
Var (Array (Const (0x2))) // uint256[] supplies
Var (Map(Const (0x3))) // mapping admins

// the 2 fields of struct value of nested mapping complex
Var (Map (Map(Const (0x4))))

Var (0ffs(Map(Map(Const(0x4))), 1))

6 Value Type Inference
The second part of the DYELs analysis is to identify the types of
data structure entries, i.e., the types of the Var (and PVar) instances
identified in the structure recognition of the previous section.
Once Var and PVar instances have been identified, type inference
over them is primarily an instance of inferring monomorphic types
by process of elimination, based on compatible operations.
The value-types supported by Solidity are the following:
e uintX with X in range(8, 256, 8) (all numbers from 8 to
256, for each increment of 8): Unsigned integers, left-padded
e intX with X in range(8, 256, 8): Signed integers, left-
padded
e address: Address type, 20 bytes in width, left-padded
e bool: Boolean, left padded
e bytesX with X in range(1, 32, 1): Fixed width bytearrays,
right-padded
Table 1 captures the DYELs systematic encoding of the different
high-level operations Solidity supports for its value types, along
with the low-level EVM instructions that implement them. In addi-
tion to the table, bool typed variables support the high-level short-
circuiting && and | | operators, supported via control-flow patterns
(i.e., with no single corresponding low-level EVM instruction).



ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

In most cases, a simple analysis can identify a storage variable’s
type, given that the packed variable partitioning analysis of the pre-
vious subsection will give us its width. If a tightly packed variable is
then moved to the leftmost bytes of a variable (i.e., is right-padded)
we identify its type as bytesX.

For packed variables that are moved to the stack as left-padded
variables, we can easily distinguish signed- and unsigned-integer-
typed variables as the former will be used in signed arithmetic
operations, after getting the variable’s length extended to 256 bits
via the SIGNEXTEND operation.

The cases that remain ambiguous require further analysis to
correctly infer the variable type. These cases of ambiguity are:

® bool vs. uint8
® address vs. uint160
® uint256 vs. int256 vs. bytes32

The first two cases are treated by initially assigning variables to
the most restricted type (bool, address) and replacing it with the
respective uint inference if the storage variable ends up being used
in integer arithmetic.

The last case is the most challenging as the 3 possible types have
many common supported operations, as can be seen in Table 1. In
addition we can’t take advantage of syntactic information such as
variable alignment or length extension operations to get type clues.

We handle this case by first assigning an any32 type to all 32-byte
width variables, and replacing that by any other inference based on
the type constraints propagated to them. If no other type constraints
are propagated to the storage variable when our analysis reaches
its fixpoint, we replace the any32 inference with uint256.

7 Evaluation

The analysis of DYELs, presented as recursive inference rules, is
implemented as a set of recursive Datalog rules on top of the Giga-
horse/Elipmoc framework.

We evaluate DYELS over a diverse set of unique smart contracts
deployed on the Ethereum mainnet. To make the evaluation sys-
tematic, we take advantage of the storagelLayout json field output
by the Solidity compiler since version] 0.5.13 [39], released in 2019.
This compiler output provides the ground truth for our evaluation.

To evaluate our approach we gather all contracts deployed on
the Ethereum mainnet up to block 22,800,000 (proposed on the 28th
of June 2025) and deduplicate them, considering two contracts to be
duplicates if they contain the same bytecode modulo constant val-
ues. This query returned 903,805 distinct contracts corresponding
to 73,729,326 smart contract deployments.3 We filter the dataset,
removing 80,580 distinct contracts that implement “minimal proxy”
patterns. These contracts are deployed an enormous number of
times and add nothing but noise to an evaluation like ours, since
they have no storage variables. Following this collection we identi-
fied the contracts that have published, verified source code and use
the appropriate compiler version in each case, for ground truth ex-
traction. This results in our ground truth dataset of 377,132 distinct

3Qur initial query returned 903,806 distinct contracts corresponding to 78,621,489
smart contract deployments. However 4,892,163 of these deployments corresponded
to the empty bytecode. This happens for contracts that are created and self-destructed
within a single transaction. Since these are never stored on the blockchain’s state we
cannot retrieve their bytecode and we have to disregard them.
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Table 2: Analysis execution statistics for DYELs on the ground
truth dataset.

DYELS
Analysis Terminated | 374,959 (99.42%)

Timeouts 2,173 (0.58%)
Errors 0
Total 377,132

Table 3: DYELS execution breakdown. Reported decompila-
tion/inline/analysis time excludes the 2,173 contracts that
timed out.

DYELS analysis stage | Time (secs) | Timeouts
Decompilation 589,757 2,146
Inline 581,755 0
DYELS analysis 186,999 27
Total 1,358,511 2,173

contracts, corresponding to 1,944,788 deployments on the Ethereum
mainnet.

We evaluate DYELS against the state-of-the-art VarLifter tool [29].
As Varlifter’s storage layout output is not compatible with the
storageLayout output of the Solidity compiler, we parse its textual
output and produce solc-compatible layouts. Additionally, the com-
parison to the ground truth for VarLifter is more relaxed than that
for DYELs, as VarLifter’s output lacks some crucial information:

o For storage variables packed into a single slot, no information
regarding the offset of each variable is produced.

o In the case of struct types that serve as values to mappings,
VarLifter does not produce any information about the layout
of the struct members.

We conducted our experimental evaluation on an idle Ubuntu
24.04 machine with 2 Intel Xeon Gold 6426Y 16 core CPUs and 512G
of RAM. We compile our Datalog analysis using Souffle [21, 22, 36]
version 2.4.1, with 32-bit integer arithmetic and openmp disabled.
An execution cutoff of 300s is used for both tools. DYELS runs 30
single-threaded analysis jobs in parallel, taking advantage of the
native parallelization of the Gigahorse/Elipmoc framework. (This is
only a disadvantage for the timings of DYELS, since it may introduce
minor contention.) VarLifter, lacking such support, is executed
sequentially.

Our evaluation examines analysis performance on the axes of
scalability, precision, and completeness (recall). The metrics have
standard definitions, given the ground truth (i.e., the compiler’s
output): precision is the fraction #Success/#Reports, while recall is
the fraction #Success/#GroundTruth. Therefore a missing inference
lowers recall, while a wrong inference lowers both precision and
recall.

7.1 Scalability

Table 2 shows the execution statistics of DYELS for the full ground
truth dataset of 377,132 distinct contracts. DYELS is able to analyze
99.42% of contracts in the dataset, under the given 300s execution
cutoff.

Table 3 gives more insights into DYELS’s performance. Based on
the time summary for the 374,959 contracts analyzed, DYELs takes
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Table 4: Analysis execution statistics for DYELSs and VarLifter
on the trimmed dataset.

DYELS VarLifter
Analysis Terminated | 3748 (99.36%) | 1906 (50.53%)

Timeouts 24 (0.64%) | 1064 (28.20%)
Errors 0 802 (21.26%)
Total 3772 3772

an average of 3.62 seconds per contract. It is important to note that
DYELS’s analysis execution is only accounting for 13.76% (0.5s on
average) of the total execution time—the rest is spent on the under-
lying framework’s decompilation and inlining stages. Additionally,
the storage analysis of DYELs introduces very few additional time-
outs, with the vast majority of timeouts coming from the underlying
Gigahorse/Elipmoc decompilation stage.

For comparing against VarLifter we soon realized that, due to
scalability limitations, we would not be able to run VarLifter on
our full ground truth dataset. To overcome this we introduce a
trimmed version of our ground truth dataset containing 1% of its
original contracts, sampled randomly. Table 4 shows the execution
statistics of DYELs and VarLifter for the trimmed version of the
ground truth dataset, consisting of 3772 contracts. DYELS is able to
successfully analyze nearly all contracts in this dataset. On the other
hand VarLifter is able to successfully analyze just over half of the
contracts. This is informative, since the VarLifter publication [29]
does not include any statistics on the tool’s timeouts and errors.*

7.2 Precision

To measure analysis precision we consider an analysis inference to
be successful if it is able to infer all the variables in a storage slot
and their exact types. It should be noted that achieving a successful
inference becomes more difficult as the nestedness and complexity
of the defined variables increase.
For example, the nested mapping defined at slot 0x4 in Figure 2

requires:

o Identifying that it is a 2-nested mapping

e Recovering both key-types based on the success criteria

e Recovering the value’s struct type based on the success cri-

teria

Table 5: Analysis results for bYELs on the 374,959 dedupli-
cated contracts it analyzed.

Result
Ground Truth | < 5,329,677
DYELS Reports | 5,044,373
DYELS Success | 4,827,641 (Precision 95.70%, Recall > 90.58%)

Table 5 contains the analysis results of DYELs for the 374,959
distinct contracts it successfully analyzes. We are focusing on the
Precision numbers, i.e., the percentage of DYELS inferences that also

“4We have also confirmed the high timeout and error rates on the VarLifter publication’s
own dataset and artifact. We have publicly reported this discrepancy along with other
issues we identified in the publication’s evaluation via github issues https://github.
com/wsong-nj/VarLifter/issues/1 and https://github.com/wsong-nj/VarLifter/issues/2.
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appear in the ground truth. We can see that DYELS is a very precise
analysis, able to infer a variable’s exact type 95.7% of the time.

Next, we consider how DYELS compares against the state-of-the-
art VarLifter. Since VarLifter times out for nearly 50% of contracts,
we perform the precision comparison over the 1896 contracts that
both tools managed to analyze. Table 6 shows the results.

Table 6: Results for pYELs and VarLifter on the 1896 contracts
(subset of the trimmed dataset) analyzed by both tools.

Result
Ground Truth < 25963
DYELS Reports 24844

DYELS Success 23365 (Precision 97.70%, Recall > 93.55%)
VarLifter Reports | 17485
13898 (Precision 83.30%, Recall > 55.65%)

VarLifter Success

DYELS manages to perform even better for this subset of contracts,
successfully identifying the exact types in 97.70% of reported vari-
ables. On the other hand, VarLifter is significantly less precise, at
83.30%. Notably, VarLifter’s output can be self-evidently imprecise,
reporting colliding types for the same slot.

7.3 Completeness

We evaluate the completeness of DYELs by examining its ability
to recover the ground truth, i.e., the recall of the analysis: the
percentage of variables in the ground truth that DYELS recovers.
Table 5 shows the recall of the DYELS to be 90.58% for the 374,959
contracts of the ground truth dataset it was able to analyze.

However, this number is only a lower bound.

The reason is that real-world smart contracts often need to de-
clare unused variables. These variables are available to the com-
piler’s ground truth (since the compiler has access to the source
code) but cannot be detected by any bytecode-level analysis. (Infer-
ring these unused variables is a no-op for all practical purposes.)

The principal case of contracts that declare unused variables is
upgradable proxy contracts. Upgradable proxy contracts need to
maintain backwards compatibility of their storage layouts through-
out their upgrades. (Failure to do this can result in storage collisions,
a well-recognized problem, also studied in past literature [35].) The
need to maintain compatible storage layouts makes developers con-
tinue to declare variables that are no longer used. Additionally, to
avoid storage collisions, developers (and standard upgradability
libraries) preemptively declare unused static arrays in storage, in
order to keep a distance between the variables of a Solidity contract
and those of the sub-contracts that inherit from it, so that future
versions of the super-contract can add more variables.

One can observe from Table 5 that the majority of the incomplete-
ness is reflected in the many fewer instances of variables inferred
by DYELS relative to the ground truth: the ground truth contains
285,304 (5.35%) more variables, numerically.

We manually inspected 50 randomly-selected instances of such
variables missed by DYELs, and all of them turned out to be unused
variables. Our sampling (of 50 out of 5,329,677) has a margin of
error of 13.86% for a confidence level of 95%. ®> That is, with 95%

5One can verify with a standard margin-of-error calculator.


https://github.com/wsong-nj/VarLifter/issues/1
https://github.com/wsong-nj/VarLifter/issues/1
https://github.com/wsong-nj/VarLifter/issues/2
https://www.surveyking.com/help/margin-of-error-calculator
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confidence DYELS misses at most 39,543 variables for the contracts in
our dataset, with the rest of the 245,761 reported missing variables
being unused ones. Based on the above, the ground truth includes
5,083,916 variables instead of the 5,329,677 reported by solc. Thus,
with 95% confidence, the real recall of DYELS is at least 94.96%.

Yet another way to appreciate the completeness of DYELS is by
comparing the analysis recall to that of VarLifter. Table 6 shows
the recall results for both tools, on the contracts in the trimmed
dataset that are analyzed by both tools. DYELS has a significantly
higher recall than VarLifter, successfully identifying (at least) 93.55%
of declared contract variables and their exact types compared to
VarlLifter’s 55.65%.

The incompleteness of VarLifter is due to its incomplete path
extraction algorithm that will not attempt to visit all code paths.
In contrast, the DYELS analysis is recursive to arbitrary depth, yet
fully scalable—e.g., avoiding non-termination issues via the subtle
treatment described in Section 5.1.2.

Furthermore, VarLifter’s implementation is heavily limited in
terms of supported structures and their composability:

e Nested mappings can only have a maximum depth of 2.

o Nested static arrays can only have at most 2 dimensions.

e Only value type and string arrays are supported.

e Only structs with members of value types are supported for
mapping values. (Whereas storage slots of struct types may
also contain strings.)

In contrast, the DYELSs inference algorithm of Section 5 is capable
of detecting arbitrarily-nested storage structures.

7.4 Practical Value

To demonstrate the practical value of our storage modeling analy-
sis we show how DYELS can benefit downstream applications and
analyses, deployed on the whole chain:

(1) DYELS can recover hundreds of thousands of variables missed
by the compiler.

(2) DYELs is invaluable for clients analyses, such as the identifi-
cation of reentrancy guards—a key component of reentrancy
analyses.

As context, it is worth noting that DYELs applies to all de-
ployed contracts on the Ethereum blockchain (and not just the
ground truth dataset of our evaluation, which consisted of contracts
with available source code) and it successfully analyzes 99.50% of
them (899,278 out of 903,805 distinct bytecodes), corresponding to
73,721,169 deployed contracts.

7.4.1 Incompleteness in the compiler-produced metadata. As dis-
cussed in Section 3, common low-level storage patterns are not
included in the compiler-produced storageLayout json. Therefore,
DYELS often retrieves more storage variables than the compiler itself.
Of course, the compiler misses these variables because of the use of
inline assembly. However, the inline assembly information is still
available to the compiler, and certainly in much more accessible
form than that available to a bytecode-only analyzer.

To quantify the impact of the storage variables missed by the
compiler-produced metadata we identified 7 cases of low-level
storage slots used in either EIP/ERC standard proposals or popular
libraries. Each of these code patterns contains variables that the
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Table 7: On-chain usage of various standard patterns using
low-level storage variables.

Pattern # Distinct | # Deployments
Diamond Proxy 503 1,147
1967 Proxy 15,970 257,180
1967 Beacon 207 93,820
1822 Proxy 359 23,331
OZ Proxy 121 2,836
OZ Initializable 8,213 10,928
OZ ReentrancyGuardUpgr 2,409 3,392

modifier nonReentrant() {
require(_status == NOT_ENTERED);
_status = ENTERED;
_; // function code goes here
_status = NOT_ENTERED;

3

Figure 12: Standard reentrancy guard pattern

compiler misses, yet DYELs (overwhelmingly) detects.® We identify
these patterns in all deployed contracts and present statistics on
their frequency in Table 7.

Thus, DYELS is able to recover hundreds of thousands of instances
of low-level storage variables deployed in the Ethereum mainnet.

7.4.2  Client: Reentrancy Guards. As an example of a client analysis
that clearly relies on DYELS, we consider a detector of reentrancy
guards. The typical reentrancy guard pattern, shown in Figure 12,
treats a special storage variable as a mutex, using it to prevent
reentry to the contract’s other protected functions.

The identification of reentrancy guards is instrumental for in-
creasing the precision of static reentrancy analyses by considering
calls between the two guard-setting statements as reentrancy-safe.

We implement a detector for reentrancy guards in 70 lines of Dat-
alog code, combining the storage analysis of DYELs with value-flow,
control-flow, and data-flow predicates and components provided
by the Gigahorse framework [16].

The checker identifies reentrancy guards in 187,633 distinct con-
tract bytecodes, corresponding to 811,639 contracts deployed on
the Ethereum mainnet.

8 Related Work

Reasoning about the usage of the EVM’s storage has been instru-
mental for analysis tools and decompilers. However, no past tools
(other than VarLifter—extensively compared earlier) attempt to stat-
ically fully recover storage structures as-if in the source program.
For instance, past analyses may have inferred “this is an access
to the balances mapping” but not the width of an entry, the full
nested structure of the mapping, or the type of elements. Such work,
discussed next, can potentially benefit from our techniques.

®Although there is no ground truth for variables that the compiler misses, the per-
formance of DYELs for them is expected to be similar to that for variables that the
compiler does know about. Patterns such as those of Figure 3 are not a problem for
a bytecode-level analyzer, like DYELs. In manual sampling of contracts with inline
assembly, we have found no evidence of different DYELs precision or recall for these
variables.
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Most early frameworks [3, 41] would only precisely reason about
storage loading / storing statements with indexes resolved to con-
stant values, sacrificing precision or completeness in low-level code
treating dynamic data structures. Madmax [17] was the first work to
propose an analysis that inferred high-level structures (arrays and
mappings) from EVM bytecode. This analysis enabled MadMax to
detect storage-related vulnerabilities focusing on griefing and DoS.
Ethainter [6] also made use of the storage modeling introduced in
[17] to detect guarding patterns and track the propagation of taint
through storage. An implicit modeling of storage was also achieved
(as keccak256 expressions with free variables) in [38].

In addition, as DYELs is publicly available in an open-source
repository, the results of previous snapshots of our codebase have
been incorporated into independently published research tools.
One such example is BlockWatchdog [43], which leverages DYELS’s
storage modeling to identify storage variables that hold addresses
of external contracts.

The recent CRUSH tool [35] implements a storage collision vul-
nerability analysis for upgradable proxy contracts. Part of this work
involves modeling storage, including a modeling of mappings, ar-
rays, and byte-ranges of constant-offset storage slots to discriminate
between storage variables packed into a single slot. Unfortunately,
the work lacks support for arbitrarily-nested data structures. These
same techniques have been applied (for the same security appli-
cation) to the Proxion tool [9]. Another recent tool [2] analyzes
storage access patterns to precisely compute the gas bounds of
contracts via a Max-SMT based approach.

Other work has focused on analyzing the usage patterns of the
EVM’s various “memory” stores. [26] proposes techniques to in-
fer high-level facts from EVM bytecode. These inferences include
high-level uses of operations reading from memory (hashing opera-
tions, external calls) memory arrays and their uses. DYELS relies on
these inferences for the modeling of the storage index values, and
the propagation of type constraints through memory. The Certora
prover employs a memory splitting transformation [20] after model-
ing the allocations of high-level arrays and structs of EVM contracts
and the aliasing between different allocations. This transformation
allows the tool to consider disjoint memory locations separately,
speeding up SMT queries by up to 120x. In other work [1] the uses
of memory are analyzed to identify optimization opportunities.

Several other end-to-end applications rely on storage modeling.
Storage modeling is also used in blockchain explorers and can be
done dynamically. The now-discontinued storage explorer tool,
evm.storage, used such a dynamic analysis, by examining the use
of hash pre-images derived from past executions of the contract.
Analysis of confused deputy attack contracts has employed both
static and dynamic storage modeling techniques [19]. A smart con-
tract policy enforcer, EVM-SHIELD, utilizes storage modeling to
pinpoint functions that perform state updates and adds pre- and
post-conditions within the smart contract itself to prevent malicious
transactions on-chain [46].

Related to our work, past tools [11, 47] have been proposed to
infer the ABI interfaces of unknown contracts by inferring the
structures and types of public function arguments. Such tools can
benefit from our work by taking our inferences into account in
their type recovery efforts. As an example, SigRec [11], lacking a
model of the EVM’s storage, considers any variable read from or
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written to storage to be of type uint256.

Outside the domain of smart contracts, a number of techniques
on variable recognition and type inference of binaries are relevant
to our work [4, 7, 10, 13, 14, 27, 28, 31, 37]. Static-analysis-based
approaches [4, 31, 34] have historically seen widespread adoption
in this setting. Recent learning-based tools [30, 33, 40] have also
been successful in recovering type information from binaries. More
closely related to our approach, OOAnalyzer [37] uses Prolog to
infer C++ classes from binaries.

9 Conclusion

We presented DYELS, a static-analysis-based lifter for storage vari-
ables from the binaries of Ethereum smart contracts. DYELS, pow-
ered by an analysis of low-level storage indexes, is able to resolve
arbitrarily-nested high-level data structures from the low-level byte-
code. Compared against the state-of-the-art in a diverse dataset
of real-world contracts, DYELS manages to excel in all evaluation
dimensions: scalability, precision, and completeness. Analyzing all
deployed contracts, DYELs identifies variables missed by the Solidity
compiler in hundreds of thousands of deployed contracts.
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Precise Static Identification of Ethereum Storage Variables

fwt|feV,teV

Limited data flows analysis: f flows to t through low-level
shifting and masking operations.

r:= LowBytesMask(u,w) [re V,u eV, w € Int

Masking operation (w bytes of mask width) used in casting u
to value types uintX, intX, address, bool

r := HighBytesMask(u,w) |[re V,ueV,w e Int

Masking operation (w bytes of mask width) used in casting u
to the bytesX value types

r := LShift/RShift(u,n) [r e V,u e V,n € Int

Variable u is shifted to the left/right by n bytes.

r:= BooleanCast(u) |[re V,ueV

Low-level cast to boolean using two consecutive ISZERO
operations.

HighLevelOpUse(v) |ve V

Variable v is used in high-level operation

(e.g., non-storage-address computation, calls).

Figure 13: Additional input relation definitions

A (Packed) Variable Partitioning Analysis

To identify instances of multiple high-level variables taking up part
of and sharing the same EVM storage word, we need to model their
uses in high-level operations as well as their definitions.

Figure 13 contains additional input relations needed to identify
instances of these packed variables. Predicates handling masking
and shifting are convenience wrappers for low-level arithmetic
and bitwise operations of variables and constants: LowBytesMask
and HighBytesMask correspond to operation patterns that use AND
instructions; LShift to patterns with MUL and SHL (a left-shift); Rshift
to patterns with DIV and SHR (right-shift).

The following relations capture the inferences of the analysis.

I:vi=sv[l:h]|IeSveV,sve Var,l € Int,h € Int
Partial Read:

Variable v holding byte range [| : h] of storage variable sv,
loaded via I, is used in high-level operation or is not

cast further.

Is,IL : SV[| : h] =V | IS €S, IL € S, sv € Var,
lelntthelnt,veV

Partial Write:

Variable v is written to byte range [| : h] of storage variable sv
in statement Is. All other contents of sv are retained as loaded
in statement I .

Lsv[l:h]|I€S sve Var, | € Int, h € Int

Aggregation of the two previous relations.

s |sve Var

Partitioning Analysis Failure:

Packed variable analysis failed to partition sv into multiple
PVar instances.

Lv[l' :h'] = sv[l:h]|I €S, sve Var,

"eInt,h" eInt,ve V,l € Int,h € Int

Intermediate Partial Read: Bytes [I” : h’] of variable v
hold bytes [I : h] of storage variable sv, loaded via I.

At a first approximation, the analysis merely tracks constant-
offset additions and constant-mask boolean operations that the
compiler outputs. The rules of this appendix are to some extent
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I : [v:=LOAD()]
Ir:v[0:31] — sv[0: 31]

Ir 1+ sv
(BASE)

I:pv[s:31] — sv[l: h] v := RShift(pv, n)

Ir: v[max(s —n,0) : 31] = sv[l+n—s:h]

(RSHIFT)

Ir: pv[s:31] — sv[l: h]
v := LShift(pv, n) w:=1+h-1I

In:v[s+n:31] - sv[l:h]

s+n+w <32
(LSHIFT1)

I pv[s: 31] — sv[l: h]

v := LShift(pv, n) w:i=1+h-1I s+n+w > 32
(LSHIFT2)
I:v[is+n:31] > sv[l:h—=(s+n+w-32)]
Iz pv[s:31] — sv[l: h]
v := LowBytesMask(pv, m) s<m
(LBMasKk)
Ir:v[s:31] = sv[l:min(s+ h,s+1+m—1) —s]

Ir:pv[s:31] — sv[l: h] v:=HighBytesMask(pv, m
(HBMASK)LP[ ] [1:h] ghBy (pv, m)

Ir: v[max(32 — m,s) : 31] —
svfmax(s+Ls+h—-m+1)—s:h]
Ir: pv[0:31] — sv[b: b]
Ir:v[0:31] —> sv[b:b]

v := BooleanCast(pv)

(BooLCAST)

Figure 14: Tracking storage variables through casts and shifts

just tedious “work”. However, we explicitly list the rules/patterns
recognized for technical concreteness and completeness, especially
for detail-oriented readers who may question what pattern recog-
nition can reliably yield the results reported in the experiments in
Section 7.

A.1 Uses of Packed Variables

Figure 14 shows how the contents of a storage variable are tracked
through sequences of shifting and casting operations. All rules are
recursive, with the base case of the recursion being that an inter-
mediate partial read fact “I;: v[0 : 31] — sv[0 : 31]” is produced
for each LOAD statement loading an index corresponding to storage
variable sv.

When this computation reaches fixpoint, intermediate inferences
are promoted to full partial read inferences based on the criteria
shown in Figure 15. Rule Ust1 will infer a partial read when the vari-
able holding an intermediate inference is not cast or shifted further,
while also ensuring it does not flow to a STORE statement through
low-level casting and shifting operations, eliminating LOAD state-
ments used in partial write patterns. The Usg2 rule validates inter-
mediate inferences held by variables used in high-level operations,
while the UsEg3 rule increases completeness by validating interme-
diate inferences of Var subregions that have been used in other
partial read operations.

A.2 Stores of Packed Variables

The above rules inferred use of packed variables from uses of the
variables, i.e., from LOAD statements and subsequent patterns. Similar
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I:v[_:_] - sv[l:h]
Als: (Is > sv I :STORE(u) :=_ v~ u)
—_ = LShift(v,_) - _:=RShift(v,_)
- _:= LowBytesMask(v,_) - _:= HighBytesMask(v, _)

(Usel)— IL :v:=sv[l:h]
(UsE2) Iirv[_: ] —sv[l:h] HighLevelOpUse(v)
Ip :v:=sv[l:h]
(UsE3) Ipv[_:_] = sv[l:h] _:_=sv[l:h]
I :v:=sv[l:h]

Figure 15: Inferring partial storage read inferences.

logic applies to the definitions of the variables, i.e., code that writes
to a storage word via a STORE statement.

The Is, I, : sv[l : h] := v “partial write” (by analogy to the
earlier “partial read”) is the result of the analysis tracking the stores
of packed variables. We do not show the tedious rules explicitly,
but briefly they track variables through the following low-level
patterns:

(1) The contents of a storage variable sv are loaded by the I},
statement.

(2) The [l : h] range of bytes is masked off, disregarding their
contents.

(3) The new value, held in variable v, is shifted into the correct
byte offset, if it happens to not already be at the correct
offset.

(4) The shifted variable and the contents of the other variables
occupying the same slot are combined using a bitwise OR
operation.

(5) The result of the previous step is stored to sv in statement
I.

It should be noted that, in optimized code, multiple nearby writes
will be grouped, resulting in multiple partial write inferences for
the same (sv, I, I1) but different byte ranges, corresponding to
different packed variables.

A.3 Inference aggregation

After computing the reads and writes of possibly packed storage
Var instances, we aggregate their results to ensure they do not
contain conflicting inferences.

Figure 16 captures the cases when this inference fails, i.e., when
the analysis infers conflicting offsets for the same variable, or does
not manage to infer any offsets for a variable. The partitioning
analysis failure (L) predicate of Figure 16 is used negatively: if it
does not apply, the packed variable analysis has been successful
(for the specific variable being considered)—there is an inference of
an offset inside a storage word and the offset is unique.

Sifis Lagouvardos, Yannis Bollanos, Michael Debono, Neville Grech, and Yannis Smaragdakis

I:sv[l:h] I :sv[l':h’]
(Lhy =)y (hn{’,h)y+0
L sv

(ConrLicTl)

I:sv[l:h] I':sv[l'":h] 1%/l

(ConrFLICT2)
L4 sv
I:sv -I:_=sv[_:_]
-I_:sv[_:_]:= = Tesv[_:_]=_
(MI1SSING)
LA sv

Figure 16: Logic identifying conflicting inferences of Var shar-
ing the same slot. If the failed variable partitioning inference
() is not produced for a given storage variable sv it is consid-
ered successfully merged and all inferred partial reads and
writes are matched with their corresponding PVar instances.
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