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Abstract

Smart contracts on permissionless blockchains are exposed
to inherent security risks due to interactions with untrusted
entities. Static analyzers are essential for identifying security
risks and avoiding millions of dollars worth of damage.

We introduce Ethainter, a security analyzer checking in-
formation flow with data sanitization in smart contracts.
Ethainter identifies composite attacks that involve an escala-
tion of tainted information, through multiple transactions,
leading to severe violations. The analysis scales to the entire
blockchain, consisting of hundreds of thousands of unique
smart contracts, deployed over millions of accounts. Ethain-
ter is more precise than previous approaches, as we confirm
by automatic exploit generation (e.g., destroying over 800
contracts on the Ropsten network) and by manual inspection,
showing a very high precision of 82.5% valid warnings for
end-to-end vulnerabilities. Ethainter’s balance of precision
and completeness offers significant advantages over other
tools such as Securify, Securify2, and teEther.

CCS Concepts: « Software and its engineering — For-
mal software verification; - Theory of computation —
Program analysis.
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1 Introduction

Permissionless blockchain platforms such as Bitcoin [30] and
Ethereum [6, 42] promise to revolutionize all sectors of multi-
party interaction, by enabling decentralized, resilient consen-
sus. The Ethereum platform, in particular, allows the execu-
tion of arbitrary programs, which are called smart contracts.
Smart contracts are registered immutably on the blockchain
and operate autonomously. Software correctness in smart
contracts is critical, as (1) the contracts are high-value targets
(since they manage monetary assets), (2) are immutable and
cannot be patched, and (3) are fully available for inspection
(and invocation) by potential attackers. The need for con-
tract correctness has gained prominence via several recent
high profile incidents resulting in losses of cryptocurrency
amounts valued in the hundreds of millions [9, 41].

Smart contracts are Turing-complete programs, typi-
cally expressed in a domain-specific language called Solid-
ity [40]. Solidity contracts are compiled to low-level byte-
code and executed by the Ethereum Virtual Machine (EVM)
on the blockchain. Smart contracts store data either on the
blockchain or in execution-ephemeral memory. Solidity pro-
grams implement unconventional data structures using cryp-
tographic hashing, posing a challenge for static bytecode
analyzers. Furthermore, EVM bytecode does not explicitly
expose control flow, necessitating sophisticated decompila-
tion methodologies [5, 13, 24, 44]. Hence, checking for even
basic security vulnerabilities is non-trivial, as security an-
alyzers for smart contracts require complex techniques to
overcome these challenges [14, 37].
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With the rising awareness of Ethereum security risks and
the development of recommended practices, realistic attacks
have become increasingly complex. They often chain suc-
cessive exploits that each expose more vulnerabilities. A
new class of security analyzers is required to identify such
composite attacks. The most notorious (albeit relatively sim-
ple) example of a composite attack is the Parity wallet hack,
where the equivalent of $280M [9] was stolen or frozen via
two separate vulnerabilities. The attack involved reinitial-
izing part of the contract that sets owner variables, via a
vulnerable library function, prior to attacking the contract.

To safeguard against sophisticated attacks, it is essential
to model the information flow [34] inside smart contracts ac-
curately. Information flow classifies information into trusted
and untrusted and considers how it propagates in the code.
For example, if untrusted (“tainted”) information from exter-
nal sources is allowed to spread to critical program points, it
can alter key aspects of program behavior.

Smart contract programmers employ guarding patterns
to prevent an untrusted entity from executing sensitive op-
erations, such as destroying the contract. For example, the
contract code could check whether the user of the contract
(a.k.a., its caller or sender) has specific privileges. The sim-
plest check is to permit only a particular contract owner
account to perform critical actions. For security analyzers, it
is essential to model this guarding mechanism, for any high-
fidelity information flow analysis: if guards are not taken into
consideration, many contracts will be incorrectly inferred to
be vulnerable, when the only user that can “exploit” these
vulnerabilities would be the owner of the contract them-
selves. Conversely, the guarding code can itself be attacked,
by invoking code that manipulates the state of the contract
in unexpected ways.

In this work, we present Ethainter: the first security an-
alyzer for detecting composite information flow violations
in Ethereum smart contracts. Ethainter enhances the under-
standing of tainted information flow with the tainting of
guard conditions, other potential ineffectiveness of guards,
as well as different kinds of taint that are not prevented by
guarding. Ethainter models not just the existence of guards
but also whether they are effective in sanitizing informa-
tion. The specification of the analysis is in a formalism of
independent value. It ignores orthogonal, well-understood
technical complexities, capturing, instead, the essence of
new information flow concepts (e.g., tainted guards, taint
through storage) in minimal form. For example, we consider
a tainted memory store to induce further information flow
more eagerly than an untainted (yet still statically undeter-
mined) memory store. The precision, recall, and scalability
of Ethainter are highly fine-tuned using mutually-recursive
Datalog rules for tainting and overall information flow. The
contribution of our work is as follows:
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e We formulate an information flow analysis for smart con-
tracts that takes into account the sanitization (i.e., guarding)
coding practices in smart contracts, as well as attacks that
circumvent them.

e The precision and recall of Ethainter are highly-tuned,
in a sophisticated recursive analysis. As a result, Ethain-
ter exhibits very high precision (82.5%, based on manual
inspection of a random sample of flagged contracts).

o The Ethainter implementation is highly scalable, applying
to the entire set of unique smart contracts on the Ethereum
blockchain (around 38MLoC) in 6 hours. Ethainter is live-
deployed at contract-library.com .

e Ethainter’s companion tool, Ethainter-Kill, can automat-
ically exploit (on live Ethereum networks) one of the se-
curity violations flagged by Ethainter. Ethainter-Kill has
destroyed over 800 smart contracts on a fork of the Rop-
sten Network (16.67% of the flagged contracts) confirming
Ethainter’s practical relevance and a high lower bound for
Ethainter’s end-to-end precision.

e We perform a comparison of Ethainter with different
tools for smart contract security analysis: Securify [37],
Securify2 [7], and teEther [25]. The tools cover different
points in the design space (e.g., symbolic execution for
teEther [25]) and their contrast is highly instructive. Ethain-
ter greatly outperforms all tools in terms of combining
precision (i.e., low false-positive rate) and completeness
(i.e., finding more vulnerabilities).

2 IMustration

Composite vulnerabilities escalate a weakness through mul-
tiple transactions, resulting in increasingly more tainted
elements of a contract. Consider an abstracted example:

contract Victim {
mapping(address => bool) admins;
mapping(address => bool) users;
address owner;

modifier onlyAdmins() {
require(admins[msg.sender]);

3

modifier onlyUsers() {
require(users[msg.sender]);

—

}

function
{ this.
function

registerSelf() public

users[msg.sender] = true; }

referUser(address user) public
{ this.users[user] = true; }

function referAdmin(address adm) public onlyUsers
{ this.admins[adm] = true; }

function changeOwner(address o) public onlyAdmins
{ this.owner = o; }

function kill() public onlyAdmins
{ selfdestruct(self.owner); }

onlyUsers
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At first glance, the Victim contract is seemingly unsuscepti-
ble to the “accessible selfdestruct” vulnerability, as function
kill() can only be called by administrators and, in any case,
when called it only sends the contract’s balance to the owner.
Furthermore, all functions are guarded. Some are only ac-
cessible to registered users, some to admins and some to
owners. However, the contract exhibits an error in the mod-
ifier of method referAdmin. This functionality, which adds
administrators, should be protected by modifier onlyAdmins
rather than onlyUsers—a mistake perhaps caused by the de-
veloper copying and pasting the referUser definition. As a
consequence, an attacker may exploit the contract, in four
successive steps, with each step invoking a separate internal
transaction. This is encoded in the following attack:

contract Attacker {
Victim victim = ...;
function attack() public {
victim.registerSelf(); // make myself a user
victim.referAdmin(this); // make myself an admin
victim.changeOwner(this);// make myself an owner
victim.kill(); // destroy contract
}
3

The attack starts by registering the attacker as a user, after
which the attacker is (erroneously) allowed to add themselves
to the list of admins, enabling them to call changeOwner to reg-
ister themself as the owner. The attacker can then call kill
to invoke a selfdestruct operation that destroys the smart
contract and sends its funds to self.owner (the attacker).
Notably, there are two primitive vulnerabilities in this
contract: “accessible selfdestruct” after the second step of
the attack, and “tainted selfdestruct” after the fourth step.
Our analysis can detect such vulnerabilities: the tainting of
a guard condition successively enables more tainting, which
invalidates guards that might locally appear sound. These
vulnerabilities are described in further detail next.

3 Background: Kinds of Information Flow
Vulnerabilities

We next present examples of (the building blocks of) infor-
mation flow vulnerabilities in smart contracts, as well as the
usual programming patterns that prevent them. We refer to
these vulnerabilities by name in the rest of the paper. The
presentation is intended to be simplified, showing the sim-
plest form of every vulnerability, rather than combinations
or occurrences in the wild.

3.1 Tainted Owner Variable

Smart contract programming languages, such as Solidity,
typically offer require/assert features that guard a smart
contract’s execution. These guards are often a mechanism
employed by the smart contract developer to protect against
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the execution of sensitive operations by untrusted parties.
Precise modeling of these guards is essential for reducing
the number of false positives by any analysis. Guards can,
however, be attacked by third parties, for instance, by mis-
placed constructor functions in libraries, as has happened in
the notorious Parity wallet hack.

Numerous further attacks may happen when guards are
successfully attacked. These attacks may result in economic
consequences quickly. For instance, an attacker may want
to artificially dilute or inflate the value of ERC20 tokens,
functionality that would undoubtedly be guarded. We con-
sider Tainted Owner Variable a vulnerability in its own right,
however, this vulnerability may introduce other information
flow vulnerabilities, such as making contract self-destruction
accessible.

The following example shows a contract with a global
variable owner, used in function kill to check whether the
address of the caller of the contract (denoted msg. sender) is
the same as the address of the owner of the contract. How-
ever, in this contract, a public setter function called initOwner
makes it possible for anyone to update the owner to an arbi-
trary value, making the contract vulnerable.

address owner = ...;

function initOwner(address _owner) public {
owner = _owner;

}

function kill() public {
if (msg.sender == owner)
{ /x sensitive operations */ ... }

}

3.2 Tainted delegatecall

The EVM’s delegatecall instruction allows any code that
is called to make any state changes to the caller’s contract,
including sending funds to any address or destroying the
contract. The tainted delegatecall vulnerability allows an
attacker to cause the contract to call another, resulting in
a high-risk security vulnerability. The following Solidity
code shows a naive function called migrate that allows any
user to supply the address used by the delegatecall. Such
functions could well exist as private members of a contract,
for reasons of code reuse, but a vulnerability arises, e.g.,
when the function is publicly accessible or called from a
publicly accessible function without guarding.

function migrate(address delegate) public {
delegate.delegatecall.gas(msg.gas - 1500)();
}

IStrictly speaking, only a require guard is appropriate for eliminating
undesired input, but an assert is equally valuable for preventing an unex-
pected violation of contract invariants from propagating further.
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3.3 Accessible selfdestruct

When the EVM’s selfdestruct instruction is invoked, the
contract is deactivated, and any remaining balance is sent
to the address supplied. The following code demonstrates
the pattern. Naturally, selfdestruct is a highly sensitive
operation that results in the permanent termination of a
contract, so it should be guarded.

function kill() public
{ selfdestruct(beneficiary); }

This vulnerability is more commonly encountered in combi-
nation with a tainted guard.

3.4 Tainted selfdestruct

This vulnerability is a variant of the previous one, with
a potential direct profit for an attacker. With a tainted
selfdestruct vulnerability, the receiving address of the
funds can be controlled by any user of the contract. No-
tice that, even though selfdestruct is not accessible by
third-party users, any user can taint the address (held by an
administrator), so that, when selfdestruct is finally called,
any remaining balance will be transferred to the attacker.

address owner = ...;
address administrator = ...;

function initAdmin(address admin) public
{ administrator = admin; }
function kill() public {
if (msg.sender owner) {
selfdestruct(administrator);
}
3

3.5 Unchecked Tainted staticcall

A recently introduced EVM opcode is staticcall. This can
be used to call a smart contract, while disallowing any modi-
fications to the state during the call. The staticcall opcode
enables more secure smart contract development by allow-
ing purely functional calls, thus disallowing state-modifying
reentrancy.

A problematic staticcall is one where the return values
do not overwrite the current memory buffer used for passing
and returning data to CALL instructions. A recent example
of this vulnerability was found in the 0x [1] decentralized
exchange protocol. This vulnerability enabled a single wal-
let to sign off transactions that should have been signed
off by multiple parties. An example of such suspect code
(in Solidity assembly) is shown below. The output of the
staticcall invocation is meant to overwrite its input. How-
ever, staticcall does not perform this unless the client that
is called returns at least 32 bytes of data. Otherwise, the input
is read as output. As a consequence, a tainted staticcall
potentially allows the attacker to pass untrusted input as
output from a trusted external call, fooling the caller.
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let cdStart := add(calldata, 32)
let success := staticcall(
walletAddress, // address of Wallet contract
cdStart, // pointer to start of input
mload(calldata), // length of input
cdStart, // write output over input
32 // output size is 32 bytes
)
switch success
case 1 {
// Signature is valid if call did not revert and returned
true
isValid := mload(cdStart)
}

To defend against such a vulnerability, the latest Solid-
ity compilers insert instructions that check whether the
called address has valid code. Further, when the callee re-
turns less than the minimum expected amount of data, the
RETURNDATASIZE opcode is used to pad the output accordingly.
As this issue was fixed less than a year ago, many libraries
still exist that do not correctly handle these cases.

4 Information Flow Analysis Framework

In this section, we present a distilled, formalized version
of our information-flow analysis on an abstract input lan-
guage. The key tenet is to abstract away from the complexity
of language elements keeping the focus on the detection
of composite vulnerabilities. For this purpose, we design a
small abstract input language that captures information flow
semantics of smart contracts: it has taint sources and sinks,
transfers through various operations, loads and stores to
persistent storage, and input sanitization through guards.
We provide information flow rules which we will mark as
either an over- or an under-approximation. The emphasis of
the formalism is to capture sufficient information-flow for
the detection of composite vulnerabilities. We consider:

e programmatic guarding/sanitizing so that tainted input
cannot be propagated,

e only caller input can be sanitized via guards, whereas, if
taint propagates to the persistent storage of the contract,
it can elude guards,

e the problem of tainting either arbitrary storage locations
or the condition of a guard,

o the complex form of effective guards, possibly using the
contract caller’s address as a key into persistent data struc-
tures, to look up permissions, ownership, balances, etc.

4.1 Input and Output Schema

The syntax for the instructions of the abstract input language
is shown in Figure 1. We use lowercase letters (f, ¢, x,y, . ..)
to designate program variables. Variable sender is a reserved
name, designating the caller of a contract. The input program
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Instruction := x := OP(y,z) operation, including arithmetic, boolean ops, equality, phi
| x := INPUT() load input data: a taint source instruction
| x := HASH(y) hash function (e.g., SHA3)
| x := GUARD(p,y) value guarded by sender predicate: contract caller checked in predicate p to sanitizey
| SSTORE(f,t) write to persistent storage: from local variable f to storage address t
| SLOAD(f,t) load from persistent storage: from storage address f to local variable t
|  SINK(x) sensitive instruction: a taint sink
Figure 1. Syntax of the source language instructions.
Relation Notation Description
InputTaintedVar Ux Variable x is tainted from input.
StorageTaintedVar 1x Variable x is tainted from storage.
TaintedStorage 1TS(v)  Storage location with constant address v is tainted.
NonSanitizingGuard tp Guard predicate p fails to sanitize.
ConstValue C(x) =v Variable x is inferred to have constant value v .
StorageAliasVar x ~ S(v) Variable x is inferred to be an alias for storage slot v .
SenderDataStructElem DS(x)  x holds (aliases) a data structure element, whose key is the message sender’s address.
SenderDataStructAddr ~ DSA(x)  x is the address of a data structure element, whose key is the message sender’s address.

Figure 2. Relations computed by the analysis. The first two are output relations, computed in mutual recursion with the next
two, while the last four are auxiliary relations. The auxiliary relations are computed before the output relations (i.e., do not

depend on taint propagation, therefore their contents are fixed in a previous stratum in the fixpoint computation).

is in three-address (i.e., all expressions are expanded, up to
variables) static single-assignment (SSA) form (i.e., a variable
name implicitly encodes a single program location—the vari-
able’s definition). SSA phi-instructions, for merging different
versions of a variable, are mere OPs in our language. Equality
is also an OP for most analysis purposes, however we some-
times need to refer to equality comparisons explicitly, in
which case we write them in infix form, ie., “x := (y = z)”,
is just an instance of an “x := OP(y, z)”.

The GUARD instruction deserves attention: “x
means that x receives a sanitized value from y if a predicate
with truth value p is satisfied. This captures in terms of values
(instead of guarded code statements) the common pattern of
reading possibly-tainted inputs only when the msg. sender
value (i.e., the contract’s caller) satisfies some criterion: ei-
ther it is equal to a known storage value, or it is looked up in
a data structure of allowed callers. A single syntactic block
guarded by, e.g., “if (msg.sender == owner)” is equivalent
to multiple GUARD statements, sanitizing every caller-input
value that may flow into this block, with a predicate such as
“p := (sender = z)” (where z is the result of an SLOAD from
the persistent storage location holding the contract’s owner).

Figure 2 illustrates the relations computed by our informa-
tion flow analysis. Note that there are two different kinds of

:= GUARD(p, y)’

5
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taint values for variables, denoted by |'x (InputTaintedVar)
and |"x (StorageTaintedVar). Taint from unsanitized user
input can be eliminated by the use of sender guards, which
ensure that the caller of a contract is approved. However,
taint that has propagated into storage cannot be removed
by the use of sender guards. The relation }p (NonSanitiz-
ingGuard) captures conditions under which a guard fails to
successfully sanitize caller input: either the guard condition
is itself tainted, or the guard does not compare sender (either
directly or by indexing into storage data structures).

Relations C(x) = v (ConstValue) and x ~ S(v) (Stor-
ageAliasVar) encode standard value-flow and alias analyses.
These are the only relations whose definitions we elide, since
they are entirely conventional and orthogonal to the infor-
mation flow analysis. In fact, these can well be considered
input relations, computed using extra information that is
not present in the abstracted input language (e.g., function
boundaries). Note that x ~ S(v) applies only to storage lo-
cations indexed by a statically-known constant address. We
complement this relation with a less strict, but more spe-
cialized, concept, of all (unknown) addresses/data reachable
through storage data structures, based on sender, in relations
DSA(x) and DS(x).
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x := INPUT()
(LoapINPUT) B S—
I'x
=0 s ur =0 , /T
(OPERATION-1) X Pji;i My (OPERATION-2) x Pit/gi Uy
.= T - I
Goaot) GUARDi*, y) 1y Goarz) GUARD(p, Iy) 'y #p
l X lx
SSTORE(f, t ¥ C(t) = SSTORE(f, t ¥ “t
(STORAGEWRITE-1) AL - vf )=v (STORAGEWRITE-2) (fs0) _ Vol
175@) vi: |TS(3)
storo(f,1)  L'S(w)  C(f)=v SINK(x)  'x
(STORAGELOAD) = (VIOLATION)
't VIOLATION
.= der = ~8 Ts = (y = -DS -DS
Y z>% z~50)  1'SE) N e ek ? ) ()
P P

Figure 3. Inference rules for information flow analysis. Discussed in Section 4.2

(DS-SENDERKEY)

DS(sender)
:= HAS DS 1= HAS DSA
(DS-Looxup) X = WsHy) © (DSA-Lookup) X i= HASH(Y) ©)
DSA(x) DSA(x)
DSA := OP(y, DSA = OP(x,
(DS-ADDROP-1) ) x = Ply.v) (DS-ADDROP-2) y) x := P y)
DSA(x) DSA(x)
DSA(x)  SLOAD(x,y)
(DSA-Loap)
DS(y)

Figure 4. Inference rules for identifying data structures in storage. Discussed in Section 4.3.

4.2 Information Flow Core Analysis

Figure 3 lists the rules of the information flow analysis. We
employ some conventions for syntactic convenience: Wild-
card symbol * indicates a “don’t care” value, for a variable
or a taint flavor (i.e., “T” or “T”, for input vs. storage taint).
The notation J,I /T also denotes either kind of taint, but all
occurrences in the same rule are required to have matching
taint kinds. We discuss the information flow rules next:

e LoaDINPUT, OPERATION-1, OPERATION-2: These rules per-
form taint introduction and propagation through binary
operators. (Note that, per our lI T convention, the taint fla-
vor that propagates is the same as the incoming one.) The
only nuance is that taint from INPUT statements is explicitly
designated as being input taint.

e GUARD-1, GUARD-2: The first rule states that storage taint
(but not input taint) propagates through GUARD operations.
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Conversely, input taint propagates through GUARD opera-
tions only if the guard predicate is non-sanitizing.

e STORAGEWRITE-1, STORAGEWRITE-2: The first of these
rules turns any kind of taint from a tainted source into
storage taint, when written into a statically-known storage
location. The second rule taints all such statically-known
storage locations when the destination of the store opera-
tion is also tainted, capturing the high risk of tainted writes
to addresses that may be influenced by an attacker.

e VIOLATION, STORAGELOAD: Loads from tainted constant
storage locations introduce storage taint into a local vari-
able. Either kind of taint on an operand of a SINK instruction
results in a reported violation. (Note that variables f and ¢,
for “from” and “to”, change types between the SSTORE and
SLOAD commands—e.g., for SLOAD, f is the address, whereas,
for SSTORE, t is.)
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e UGUARD-T, UGUARD-NDS: The NonSanitizingGuard rela-
tion is established under two conditions: Either the guard
predicate directly compares the contract caller to a tainted
storage address, or the guard predicate does not involve
(neither in its left- nor in its right-hand-side) values possi-
bly based on sender, via direct reference or data structure
lookup (Section 4.3).

The analysis definition of Figure 3 makes the four relations
Ux, |Tx, [TS(v), and tp mutually recursive. They all grow
monotonically, with each inference for one relation only
leading to a growing set of inferences for others. Therefore,
the rules can be directly translated to an analysis algorithm:
the rules iterate starting from empty and up to fixpoint for
all relations. Conversely, relation DS(x) is negated in rule
UGUARD-DS, therefore, its growing leads to fewer inferences
for other relations (starting from %p). The evaluation of DS(x)
is independent of taint propagation, however, and can com-
plete before the main analysis, as described next.

4.3 Sender-Keyed Data Structure Lookups

Figure 4 shows the definition of relations DS(x) and DSA(x),
which capture the notion of predicates that scrutinize the
caller of a contract (by direct comparisons or in a persistent
data structure). Per rule DS-SENDERKEY, the sender variable
is a base case of information that pertains to the identity
of a contract’s caller. The only other way to produce a y
that satisfies DS(y) is via rule DSA-Loab: by dereferencing
an address x that satisfies DSA(x). Therefore, most of the
relevant rules concern relation DSA, i.e., the definition of
addresses that may hold data pertaining to a contract’s caller.

The rules conservatively capture the unconventional
Ethereum memory layout and data structure policy. The hash
function (SHA3 in the EVM) is considered collision-free and
used for a variety of mapping purposes, including data struc-
ture nesting. For instance, a 2-dimensional array arr[][] is
typically identified merely by a constant storage location
(e.g., 42) that stores the length of the outer array (and not an
address/pointer to its contents, as might be expected). Ad-
dresses are then “invented” by hashing: the contents of the
array are found starting at location HASH(HASH(42)) for sub-
array arr[0], location HASH(HASH(42)+1) for subarray arr[1],
etc. (Accordingly, location HASH(42) stores the length of sub-
array arr[0] and location HASH(42)+1 stores the length of
subarray arr[1].) Rule DS-Lookup encodes the hashing of
caller-related information (DS(y)), to be used as a storage ad-
dress. Rule DSA-Lookup captures nested data structures, i.e.,
hashes of addresses, as in our previous example, also aided
by arithmetic on addresses, as shown in rules DS-ApDDROP-1
and DS-ADDROP-2.

4.4 Analysis Design Discussion

We designed our information flow analysis keeping the com-
pleteness and precision of Ethainter’s implementation in mind.
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The tradeoff between completeness and precision profoundly
impacts the error detection of a security analyzer. In our de-
sign, we made conscious decisions when to over-approximate,
which may introduce a higher false-positive rate, and when
to under-approximate, obtaining high-confidence inferences
of violations for improving precision at the cost of complete-
ness. We summarize our design decisions below:

e Relations DS() and DSA() have an over-approximate defi-
nition: the rules of Figure 4 capture any dereference, arith-
metic; an expression that may involve the key of the con-
tract’s caller (i.e., the value of the sender variable). How-
ever, the relation DS() is negated in the main information
flow analysis (Figure 3), therefore the analysis about caller
lookups is an under-approximation: it favors precision,
avoiding warnings whenever the analysis establishes that
a guard expression might be scrutinizing the contract’s
caller. Instead, warnings are emitted only in high confi-
dence scenarios.
As discussed earlier, auxiliary relations C(x) = v (Con-
stValue) and x ~ S(v) (StorageAliasVar) encode standard
static value-flow and alias analyses. As conventional in
static reasoning, the definition of such analyses is an over-
approximation concerning control flow: whenever two pro-
gram paths meet, the union of inferences is propagated.
However, the formulation of the relations themselves is an
under approximation: they are defined only for constant
values (numeric values or storage addresses). This means
that aliasing with a statically unknown storage location
is not captured. Aliasing with a constant storage location
through memory operations that involve runtime variable
addresses is also not captured. This design decision means
that the analysis favors precision: it establishes taint viola-
tions and tainted guards with high confidence only.

e The one analysis rule that over-approximates, is
STORAGEWRITE-2. If a store operation has both its value
and its address tainted, then all constant storage locations
that arise in the analysis are considered tainted. This de-
sign choice focuses on completeness of the analysis, i.e., it
increases its ability to capture errors, but possibly yields
false positives.

4.5 Connecting to Practice

The simplified model we just presented captures many key
aspects of the approach, including the different kinds of taint
(storage vs. input) and the presence of guards. It misses, how-
ever, an orthogonal element which is essential in practice:
the definition of taint sinks and guards. In the formalism (Fig-
ure 1) we considered guards and sinks to be an input of the
analysis: syntactic forms of instructions (x := GUARD(p, y)
and SINK(x)).

In the implementation, which condition of the program is
a guard and which is a taint sink (i.e., a sensitive statement
to be protected) can be information that the analysis itself
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computes, out of much lower-level statements. For guards,
their computation is rather mundane—it is recursive with
the main analysis, but hardly surprising: in essence, if a
check dominates a use of a tainted variable, it is considered a
guard for that variable. For taint sinks, the story can be even
simpler: “accessible selfdestruct”, “tainted selfdestruct”,
“unchecked tainted staticcall”, “tainted delegatecall” all
have the sensitive variable (or statement) clearly identified
syntactically.

For the “tainted owner variable” vulnerability (Section 3.1),
however, the computation of sinks is highly interesting. The
analysis cannot know which storage location corresponds to
the “owner” of a contract. Instead, it needs to compute which
locations are sensitive. This computation is essential for
precision. The analysis certainly should not flag all tainted
writes to arbitrary storage locations, or it would warn about
nearly all contracts.

To address this problem, taint sinks are computed in a
way similar to tainted guards (rule UGUARD-T): a variable
is a sink if its value is read from storage and it is used as
a guard for another tainted variable. Slightly abusing our
notation (since SINK is no longer an input instruction kind),

we have:
* := GUARD(sender = z,x) |"/Tx

SINK(z)

z ~ S(x)

In intuitive terms, the analysis is trying to find which
tainted locations are worth reporting. Guards are akin to real-
life locks on doors. A merely unlocked door to a room does
not elicit a warning (i.e., an unguarded or badly-guarded vari-
able is not by itself a sink) unless the room has self-evidently
sensitive contents (as in the case of “tainted selfdestruct”,
etc.). But the analysis does warn when it finds an unlocked
door to a room that contains keys found to match a locked
door: a variable that determines a potentially-sanitizing
guard is by itself a sink.

5 Datalog Implementation

Ethainter implements the information flow model as a set
of several hundred declarative rules in the Datalog lan-
guage. The Ethainter implementation back-end is the high-
performance Soufflé [22] Datalog engine, which translates
Datalog input relations into highly optimized C++ code.
Ethainter is deployed (together with several more analyses)
over all Ethereum-based blockchains at contract-library.com,
with results updated in quasi-real time.

Ethainter’s implementation is enriched with additional
smart contract analyses for further precision:

e The implementation uses intra-procedural constant prop-
agation data flow analysis for propagating constant values
(i.e., relation C(x) = v of Section 4) and a call-site-sensitive
analysis for computing storage locations that are aliases
(i.e., relation x ~ S(v)). We have experimented with other
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options for more completeness or precision and the above
offer a good balance, hard to noticeably improve upon.

e In addition to tainting (i.e., data dependencies), our anal-
ysis also considers some control dependence patterns
as information flow violations. The treatment is under-
approximate by design: we only capture limited cases that
have a high likelihood to be true vulnerabilities.

e In addition to the modeling of storage (i.e., persistent
contract data on the blockchain), the analysis models
“memory”, i.e., data that pertains to a single transaction.
The memory is modeled only locally, which still captures
enough flows to expose realistic vulnerabilities. The Ethain-
ter modeling of memory mostly follows the same principles
as variables, i.e., memory taint gets sanitized via guards,
much like input taint.

o The implementation contains more complexity in dealing
with patterns not fully captured in the input language of the
model (e.g., accessible selfdestruct, which concerns reach-
able instructions and not tainted variables). Generally, this
complexity is of the flavor expected when transiting from a
highly simplified input language to realistic programs—the
spirit of the analysis logic is well-captured by the model.

Ethainter’s Datalog implementation is defined on a lower-
level input language than the one defined in the previous
section. The input language uses a set of logical relations con-
taining a functional 3-address code representation of an EVM
bytecode program. We obtain this representation by decom-
piling each contract using the Gigahorse toolchain [13]. The
simplified core of the Datalog implementation is depicted in
Figure 5, illustrating the mutual recursion between tainting,
attacker-reachable code, and conditional information flow.

A key difference in this input language is that it does
not have any GUARD instructions directly sanitizing in-
dividual variables, but conditions over entire (sets of)
statements, as mentioned in Section 4. Guards are mod-
eled using a ReachableByAttacker(s: Statement) predicate.
ReachableByAttacker models which parts of the code are ex-
ecutable by an attacker, starting with statements that are
statically known to not to be guarded (i.e., the inverse of
StaticallyGuardedStatement(s: Statement, p: Variable)).

The rules also model (via AttackerModelInfoflow and
TaintedFlow) how information can flow in a model where the
attacker can only execute certain parts of the program while
a privileged user is not expected to introduce new tainted in-
formation to the state. AttackerModelInfoflow is a subset of
the general taint analysis Infoflow, a single-step information
flow relation which does not distinguish between attackers
and privileged users. As the attacker can reach more parts of
the program by tainting guards, AttackerModelInfoflow and
ReachableByAttacker need to be mutually recursive (via the
intermediate TaintedFlow) in order to model composite viola-
tions soundly. Infoflow abstracts away most of the complex-
ity of handling a full language, including inter-procedural
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Infoflow(x, y)

// value of x flows to y in 1 step.

// Statement s is guarded by guard.
StaticallyGuardedStatement(s, guard)

™

TaintedFlow(x, Xx) :-
ReachableByAttacker (cdStmt),
CALLDATALOAD(cdStmt, Xx).

// There exists a tainted flow x to z
// if x is tainted and flows to y.
TaintedFlow(x, z) :-
TaintedFlow(x, Yy),
AttackerModelInfoflow(y, z).

(

// Taint in guarded code can propagate
// to anywhere in the program.
AttackerModelInfoflow(x, y) :-
StaticallyGuardedStatement(s, guard),
Statement_Defines(s, Xx),
Infoflow(x, y).

// Taint can also propagate to any

// statement reachable by attacker.

AttackerModelInfoflow(x, y) :-
ReachableByAttacker(s),
Statement_Defines(s, y),
Infoflow(x, y).

// s is reachable if not guarded.
ReachableByAttacker(s) :-
!StaticallyGuardedStatement(s, guard).

// or if guard is tainted.

ReachableByAttacker(s) :-
StaticallyGuardedStatement(s, guard),
TaintedFlow(_, guard).

Figure 5. Skeleton of the core of the implementation in Datalog. Arrows depict complex recursion between the rules. Infoflow
accounts for all flows, including inter-procedural flow and flows through data structures.

flow and data structures. Most of the vulnerability patterns
are then expressed in terms of TaintedFlow, which is a tran-
sitive closure on AttackerModelInfoflow.

6 Evaluation

This section presents the results of our evaluation of the
Ethainter analysis.

We ran the analysis using 45 concurrent analysis pro-
cesses on an idle machine with two Intel Xeon E5-2687W v4
3.00GHz CPUs (each with 12 cores x 2 hardware threads, for
a total of 48 hardware threads) and 512GB of RAM. We use
a combined cutoff of 120 seconds for decompilation and the
information flow analysis step. Programs that did not finish
analyzing within these cutoffs are considered to have timed
out. (This is not too-sensitive a parameter: we decompile/an-
alyze around 98% of available contracts. Doubling the cutoff
time does not substantially increase this percentage.) Our
experiments aim to answer the following research questions:

RQ1. Is Ethainter an effective static analysis?
RQ1.A. Is the analysis relevant? What percentage of
contracts are vulnerable?
ROQ1.B. Is the analysis precise, i.e., does it have a low
false-positive rate?
RQ1.C. Is the precise complete, i.e., does it flag most
of the vulnerable contracts?
RQ2. Is our information flow analysis efficient?
RQ3. Are the individual analysis components and design
decisions justified?

We performed two main experiments:
1. For the simplest vulnerabilities reported by Ethainter
(“accessible selfdestruct” and “tainted selfdestruct”) we
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produce a completely automated exploit generator. We apply
this to the most recent contracts on the Ropsten testnet to
show that a large number of the flagged ones are indeed vul-
nerable. This is a crude experiment, without much accuracy
but with great effectiveness at establishing a lower bound:
the experiment shows that Ethainter is relevant in the real
world, in an analysis domain where translating warnings to
end-to-end vulnerabilities is very hard.

2. For all Ethainter-reported vulnerabilities, we collect sta-
tistics over a snapshot of the entire Ethereum mainnet (240K
unique contracts), and then scrutinize further a small random
sample of contracts, via manual inspection. We report re-
sults for Ethainter and compare to probably the best-known
state-of-the-art tool, Securify [37].

6.1 Experiment 1: Automated End-to-End Exploits

In many cases, Ethainter pinpoints vulnerabilities with
enough precision to actually exploit them end-to-end. To
demonstrate that it can do so with reasonable effectiveness,
showcasing the execution of these vulnerabilities in the pro-
cess, we have built a simple prototype tool called Ethainter-
Kill that exploits vulnerabilities on real programs. Ethainter-
Kill is fully automated—it reads Ethainter’s output, connects
to Ethereum nodes and proceeds to exploit a subset of vulner-
abilities that are flagged by Ethainter. Currently, Ethainter-
Kill supports only two vulnerabilities, which are “accessible
selfdestruct” and, to a lesser extent, “tainted selfdestruct”.

We deployed Ethainter-Kill on a private fork of the Rop-
sten Ethereum testnet.? In this experiment, Ethainter was
used to find vulnerabilities from smart contracts deployed in

2We considered applying Ethainter-Kill directly on the public testnet. How-
ever, we were discouraged from doing so in conversations on Ethereum
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the most recent 1.2 million blocks. This yielded 4800 flagged
contracts out of 882000 (0.54%). Out of these, Ethainter could
pinpoint the vulnerability in 3003 contracts. (For the rest,
Ethainter-Kill was unable to find a public entry point that
would reach the private, Ethainter-flagged vulnerable state-
ment.) Ethainter-Kill was called on these contracts, where it
proceeded to connect to the relevant Ethereum node and call
the API of the contracts which trigger a selfdestruct with
some generated parameters. As expected, many calls resulted
in an error, mostly due to the limitations of Ethainter-Kill.
(Automated exploit generation is a challenging area of re-
search, and actual exploits often require significant human
ingenuity.) Ethainter-Kill also verified whether the transac-
tions resulted in the contract actually being destroyed by
analyzing the exact VM instruction trace and identifying
whether the selfdestruct opcode was executed. In total 805
contracts (16.7% of warnings) were successfully destroyed
in this experiment. This rate represents a lower bound of the
true-positive rate. However, even such a lower bound is am-
ply sufficient at demonstrating the effectiveness of Ethainter
in a practical setting (i.e., to partly answer RQ1): identifying
several hundred practical end-to-end exploits automatically
is significant.

6.2 Experiment 2: Statistics and Manual Inspection

We evaluate the effectiveness of Ethainter by examining the
percentage of contracts flagged for each vulnerability. We
also select a subset of programs for manual inspection, and
use this to estimate a true-positive rate for our analysis.

The percentage of flagged unique contract bytecodes (i.e.,
deployed contracts with the same bytecode are only counted
once), over a total of 240K (all non-self-destructed contracts
on the Ethereum mainnet, as of Nov. 2019) are shown below,
per vulnerability:

Vulnerability ‘ Percentage ‘ ETH held
accessible selfdestruct 1.2% 2553101
tainted selfdestruct 0.17% 2176212
tainted owner variable 1.33% 221
unchecked tainted staticcall 0.04% 344
tainted delegatecall 0.17% 517

Notice that the unchecked tainted staticcall vulnerabil-
ity is relatively rare. However, this is to be expected as it
only applies to recently deployed smart contracts that utilize
the new staticcall opcode. The number of contracts that
utilize this opcode may increase in the future.

To estimate the precision (i.e., true-positive rate) of Ethain-
ter, we randomly selected 40 contracts among those flagged
by Ethainter that have verified sources on Etherscan.io (for

security forums [39]. The argument is that, although the testnets are in-
tended for testing, many smart contracts on public test networks closely
resemble smart contracts currently in production. Thus, any transactions
we would perform on these networks could disclose the exploits publicly.
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Contracts Remark

Accessible selfdestruct. True positives: 10/10

6fdv/, 9do Poor design
14f/, 342/, 4ea Programming error
2927/, 4favk Ownership guard can be tainted
a33 Race condition
adf¥x/, d4foe Ownership can be “bought”

Tainted selfdestruct. True positives: 6/6

292%¢/, 4fave/, d4fix
adf
6fdv/, 9do

Tainted via ownership
Programming error
Poor design

Tainted Owner Variable. True positives: 15/21

169 Token supply manipulable
135/, 26av/, 292 -
2ccv/, 3a2/, adf -
4d9 Conflated owner. token/contract
600/, 6¢3/, 96b Public initializer (race condition)
6fdv/, 9de Poor design
aa4/, d4f Via payment
fcbX124X Complex path condition
373X, fc3X Not an owner variable
577X Bug in inter-function flow
c5cX Imprecise data structure inference

Tainted delegatecall. True positives: 1/1
efo

Via complex flow through array

Unchecked Tainted staticcall. True positives: 1/2

8co
152X

Total Precision: 82.5% (33/40)

Missing return data size check
Complex memory conditions

Figure 6. Summary of results of manually inspected warn-
ings for Ethainter. Contract ids are a 12-bit substring of their
true address. Ids marked with Xare false-positives. The ones
marked with /are true positives. Moreover, ones marked
with v¢can only be exploited via composite tainting.

ease of manual inspection). Contracts were repeatedly sam-
pled randomly, after performing a lexicographical sort on
their addresses (i.e., 20 byte hashes), until a random sample
of 40 contracts had at least one flagged in every vulnerability
category.

The results from our systematic manual inspection of
the Ethainter sample are shown in Figure 6, and yield an
estimated precision of 82.5%.

In order to preserve the identity of contracts until we have
a responsible disclosure agreement in place, we will refer to
contracts by three hexadecimal digits from their identifier.

In addition to the randomly sampled contracts, Ethainter
correctly flags the Parity hack [9], demonstrating its effec-
tiveness against vulnerabilities that have led to significant
losses in real-world exploits.

A certain, surprising to unfamiliar readers, aspect is worth
emphasizing. The monetary amounts held by contracts
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flagged as vulnerable by Ethainter is currently (Mar. 2020) in
the hundreds of millions of dollars. Ethainter’s precision (i.e.,
true-positive rate) is estimated at over 80%. Does this mean
that hundreds of millions can be exploited? The answer is
that the actual potential for exploitation is likely dramat-
ically lower—the distribution is strongly biased. The fact
that a contract contains substantial ETH is typically strong
evidence that it is not exploitable.” Accordingly, Pérez and
Livshits [32] recently report that, of the vulnerabilities re-
ported (as “true positives”) in Ethereum program analysis
publications, only 0.3% (in terms of Ether value) have been
exploited in the wild, strongly suggesting that the truly vul-
nerable contracts rarely hold ETH.

Comparison to Securify. We continue to answer RQ1.B
by comparing other tools. Under the same setting as our
overall sampling of Ethainter vulnerability warnings, we also
perform a comparison to the recent Securify [37] tool. Se-
curify implements two “violation patterns” that are roughly
applicable to four of the vulnerabilities described in Section 3.

To ensure a fair comparison, we only consider contracts
that are flagged for vulnerabilities that have an approxi-
mate analogue supported by the other tool. For instance,
Securify’s “unrestricted write” pattern is similar to Ethain-
ter’s tainted owner variable vulnerability specification: it
models precisely the case of owner-sender guards, but with-
out propagation of taintedness into guards. Likewise, Se-
curify’s “missing input validation” pattern corresponds ap-
proximately to Ethainter’s tainted delegatecall/owner vari-
able/selfdestruct/tainted unchecked staticcall.? Since Se-
curify is capable of flagging both “violations” and “warnings”,
we consider only “violations”, as these are the most likely to
be true positives.

Just as for Ethainter, we select 40 Securify-flagged con-
tracts at random for manual inspection. (We ran Securify
over a random sample of 2K contracts instead of on all 240K
contracts of our dataset.)

We find that none of the 40 Securify-flagged contracts
are truly vulnerable, giving Securify a precision (i.e., true-
positive rate) of 0%. Note that although the Securify pa-
per [37] appears to report a much higher precision, its def-
inition of a “true violation” is the violation of a security
property rather than the existence of an apparent end-to-
end exploitable vulnerability. Still, our experimental results
initially looked surprising, so we further investigated this

3Most high-value smart contracts are very carefully developed (and often
audited) programs. The Ethereum blockchain holds high value precisely
because costly vulnerabilities are statistically very rare (though still enough
for plentiful anecdotes). Automated tools, such as ours, yield highest benefit
when employed during development or initial deployment (e.g., during a
bug bounty phase). By deployment time of a contract and its use with funds,
most vulnerabilities would have been eliminated.

4The pattern is somewhat different, but its code [link] shows it to be an
analysis with a very similar purpose, namely to find tainted input propaga-
tion. Lines 45-84 search for inputs that do not flow to a guard (JUMPI), yet
flow to an SSTORE, SLOAD, MLOAD, MSTORE, HASH, or CALL.
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lack of precision. Firstly, this result is due to Securify’s lack
of support for context sensitivity, data structure modeling,
ownership guards and their tainting. In our random sample
of 2K contracts, Securify flags a very high 39.2% for these
violations, so a low precision for end-to-end vulnerabilities
should not be surprising. Securify generally flags 75% of all
contracts for some violation, with 10 or more violations per
flagged contract.

For instance, a typical contract we inspected that would
be severely flagged by Securify with “unrestricted write” or
“missing input validation” would contain logic such as this:

if (balances[_from] < _value ||
allowed[_from][msg.sender] < _value) throw;

balances[_to] += _value;

balances[_from] -= _value;

In this case: (i) the condition that checks for underflows
is not understood (hence a “missing input validation”) and
(ii) the maps (e.g., balances) are not modeled as high-level
data structures (the compiled code contains only pointer
arithmetic), and hence the store gets interpreted as an “un-
restricted write”.

Comparison to Securify v2.0. In late Jan. 2020, the sec-
ond version of Securify was released, dubbed Securify2 [7]
and superseding the original. Securify2 boasts several preci-
sion improvements—e.g., context-sensitive analyses.

As the successor of a directly-comparable, industry-
leading tool, Securify2 is a good comparison target for Ethain-
ter, in the context of RQ1.B. However, it should be empha-
sized that design-wise the tool has diverged significantly
from the original Securify. Most notably, Securify2 is a
source-code-only analysis, not an analysis over EVM byte-
code. This means that the domain of the tool is very different
from that of Ethainter (and of the original Securify). Securify2
supports smart contracts written in the Solidity language,
versions 0.5.8+. Currently (mid-March 2020) the Etherscan
blockchain explorer reports 6,472 unique contract bytecodes
compiled with Solidity 0.5.8+, over a total of 262,812 unique
contract codes. If we consider all contracts with source code
on Etherscan that successfully compile with Solidity 0.5.8+
(even if they were compiled with other versions when de-
ployed), we get a slightly larger set of 7,276 contracts, which
is still a minuscule part (under 3%) of the domain of applica-
bility of Ethainter (and of the original Securify tool). Of these
7,276 contracts, Securify?2 fails to produce analysis input facts
for 1,182 and times out on another 441. We consider the 7,276
- 1,182 = 6,094 contracts as the universe of our evaluation, so
that we can also measure relative timeout rates.

Over these 6,094 contracts, we examine the closest com-
parable vulnerabilities reported by both Ethainter and Se-
curify2. We consider Securify2 reports that are tagged as
“violations” (i.e., the most precise, highest-confidence, analy-
sis). The table in Figure 7 shows the number of reports and
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Vulnerability/Outcome ‘ Securify2 ‘ Ethainter

Timeout (at 120sec) ‘ 441 ‘ 117

accessible selfdestruct 5 True positives: 5/5 15 True positives: 11/15

tainted owner var. / unr. write | 3502 True positives (sampled): 0/10 | 161 True positives (sampled): 6/10
tainted delegatecall 3 True positives: 0/3 21 True positives: 15/21

Figure 7. Results of comparison (including manual inspection) with Securify2, over 6,094 total contracts.

failures-to-analyze for both tools, as well as result of manual
inspection of the warnings.

The design differences of the tools are evident: Securify2
reports few vulnerabilities for accessible selfdestruct and
tainted delegatecall (patterns named “UnrestrictedSelfde-
struct” and “UnrestrictedDelegateCall” in Securify2). Ethain-
ter reports largely the same vulnerabilities (4-of-5 and 2-of-3
of the Securify2 ones), but also many more, with high pre-
cision (70% over all 46 manually-inspected contracts). Secu-
rify2 exhibits high precision for its accessible selfdestruct
warnings but zero precision for tainted delegatecall. (It also
exhibits very low completeness for tainted delegatecall be-
cause the buggy pattern typically appears in inline EVM
assembly, which a source-only tool cannot handle.)

Furthermore, Securify2 has no definition of tainted owner
variable, which is a key novelty of Ethainter (see discussion
in Section 4.5). The closest comparable is the “unrestricted
write” violation, which is, however, much more loose (as it
also was in the original Securify). Over a sample of 10, none
of the reported Securify2 violations for “unrestricted write”
corresponds to a real vulnerability. (The overall number of
3,502 reports also suggests very high imprecision.)

The result shows vividly the effect of Ethainter’s design
decisions over both the completeness and the precision of
the analysis: Ethainter finds many more vulnerabilities, with
high precision.

Comparison to teEther. We answer question RQ1.C
(completeness) by comparing against teEther [25]: a third
party symbolic execution tool that is designed to exploit
some of the vulnerabilities that Ethainter is designed to flag—
accessible selfdestruct and tainted selfdestruct. This is
a highly-instructive comparison since it pits a static
analysis tool against a symbolic execution tool. Both
approaches have been used extensively in the blockchain
space, but, to our knowledge, few direct comparisons of rep-
resentatives exist in the literature.

Generally, the expectation would be that a static analysis
approach is much more complete (issuing many more warn-
ings) but the symbolic execution approach is more precise,
since the vulnerabilities are nearly dynamically exercised.
That is, teEther’s reports are expected to be (mostly) true
positives and Ethainter should find most of them if it is to
claim good completeness (i.e., few false negatives). However,
this is only an approximate gauge to measure completeness:
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teEther is also neither sound nor precise. It may be consid-
ered incomplete simply by virtue that it scales only to a
fraction of the contracts deployed, and this incompleteness
may introduce bias. It is also imprecise, unless one also takes
into consideration the current state of the deployed smart
contract. Many of the exploits can only be executed under the
right conditions, e.g., uninitialized owner variables. (TeEther
allows importing current storage state, but we evaluate it
purely as a static tool, not as a static-dynamic combination.)
Despite this, the fact that teEther actually produces exact
execution traces that demonstrate the viability of the exploit
means that it should be, by design, a tool that finds a larger
percentage of realizable exploits (though a much smaller
overall number).

On our entire dataset, teEther flags 463 contracts for acces-
sible selfdestruct. Out of these, Ethainter flags 358 contracts
(77%). This is a good indication of Ethainter’s completeness—
or at least that it does not miss most of the warnings of an
expected-to-be more precise tool. As discussed, even the 77%
figure is not an accurate upper bound of completeness (i.e.,
23% is not guaranteed to be an accurate estimate of false
negatives) since teEther’s reports may also include false pos-
itives that Ethainter’s analysis eliminates.

Conversely, teEther’s completeness is low: on 20 hand-
checked contracts flagged by Ethainter, teEther does not
flag any. It fails to report a vulnerability for 13, times out
on 5 after 120s, and exits with an exception for 2. Overall,
Ethainter flags many times more contracts than teEther for
accessible selfdestruct (1.2% of all 240K contracts, i.e., over
2,800, as opposed to 463—over 6x more) and does so with
high precision, as shown earlier. This is indicative of the
vast completeness difference between a static analysis and a
symbolic execution approach.’

Research Question 1: Summary. The above experiment
completes the picture on RQ1: Ethainter is an effective static
analysis, practically relevant, flagging a usefully large num-
ber of contracts, with high precision and completeness.

5 A second experiment accentuates this difference even more. Our universe
of evaluation throughout the paper has consisted of the 240K unique con-
tracts on the blockchain that were still live, i.e., had not self-destructed. If
one is to also include past contracts that have self-destructed, the teEther
reports for accessible selfdestruct rise to 641. However, Ethainter flags
over 22,000 contracts (including 509 in common with teEther)—34x more.



Ethainter: A Smart Contract Security Analyzer for Composite Vulnerabilities

6.3 Efficiency of Analysis

Ethainter is a highly efficient analysis (answering RQ2 posi-
tively). It analyzes all 240K non-duplicate contracts on the
blockchain, corresponding to a total of 38 million lines of 3-
address code, in 6 hours (or about 200 CPU hours, given our
concurrency factor of 45, plus overheads). The average anal-
ysis runtime per contract (including decompilation) is under
5 seconds. It is informative to compare the scalability of our
analysis to well known research tools for the Ethereum space,
such as Oyente [28], which produces average runtimes of
350 seconds with some contracts timing out after a cutoff of
60 minutes [28]. Similarly, Securify analyzes contracts over
5x more slowly than (single-thread) Ethainter (this is a lower
bound since the exact number depends on how one counts
timeouts, which are more numerous for Securify) and is not
parallelizable in its current form, due to its use of shared re-
sources (e.g., temporary file). The scalability improvement is
apparent over state-of-the-art tools such as MadMax [14, 15],
which report analysis times of 10 hours for a much smaller
version of the Ethereum blockchain (92K contracts).

6.4 Design Decisions

RQ3 concerns the effectiveness of the analysis under different
design decisions. Ethainter optimizes for precision by model-
ing source language features and application design patterns
that can help distinguish whether a vulnerability is likely real.
One feature in which we have invested significant design
effort is the realistic modeling of guards. Figure 8b shows
that if we disregard the modeling of guards while keeping all
other design choices constant (i.e., ‘No Guard Model’), the
percentage of unique programs that are flagged as vulnerable
by Ethainter increases drastically. The newly flagged con-
tracts are (overwhelmingly, if not exclusively) false positives.
The increase in flagged contracts (and hence false-positive
rate) is most pronounced for the “tainted selfdestruct” vul-
nerability. This is because oftentimes contracts are designed
to take an address as a parameter to the public function that
calls selfdestruct, to transfer the remaining balance of the
contract to this address. The Ethainter design recognizes this,
and, since the selfdestruct is usually guarded and the taint
cannot be transferred from unguarded to guarded portions
of the program, the modeling is precise.

On the other hand, if we do not allow taint to propagate
via storage (and hence across multiple transactions, as is
needed to execute some of the exploits that were checked
manually), we obtain a sizable reduction in flagged contracts
due to incompleteness introduced (Figure 8a). Notice that
the reduction in flagged contracts is most pronounced also
for the “tainted selfdestruct” vulnerability, since many of
these exploits require overriding a guard (by overwriting an
owner variable, residing in storage). Note that systems that
employ symbolic execution, such as Oyente [28], tend not
to consider value flow across multiple transactions.
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Figure 8. Effect of analysis design decisions: number of anal-
ysis reports, as ratios, normalized to default analysis—
Section 6.2. Chart 8a shows reduced completeness (fewer
reports), Charts 8b and 8c show reduced precision.

Some of the design decisions we have taken also sacri-
fice some of the completeness of Ethainter. If we attempt to
model imprecisely but completely (much like the Securify
tool does [37]—Figure 8, non-const memory rules) storage
locations that cannot be resolved as being part of a data struc-
ture or have a known constant address, we get an unaccept-
able decrease in precision, as shown in Figure 8c. The con-
servative modeling assumes that any store to an unknown
location in storage can propagate to any location in storage,
and the converse for loads. The false-positive rate for several
vulnerabilities (e.g., “tainted selfdestruct”, “tainted owner
variable”) becomes significantly higher as a result.
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7 Related Work

Recent security issues in smart contracts have spawned a
strong interest for analysis and verification in the community,
with a rapidly growing number of papers.

Our approach is a static analysis approach and analyzes
EVM bytecode, modeling data structures, notions of owner-
ship, and notions of tainted information flow. Information
flow has received a lot of attention starting with the semi-
nal work of Denning and Denning [12], which introduced a
compile-time mechanism for certifying programs as secure
with respect to information flow properties. Later works have
introduced important extensions to information flow [34].
Taint analysis (e.g., [2, 19]) is a simplified information flow
problem that tracks input value propagation in a program.

Previous works for smart contracts can be categorized
according to their underlying techniques, including symbolic
execution, formal verification, and abstract interpretation.

Systems including Oyente [28], SASC [43], Maian [31],
GASPER [8], teEther [25] and ECFChecker [18] use a sym-
bolic execution/trace semantics approach that (compared to
exhaustive static analysis) is much less complete/exhaustive,
since only some program paths of smart contracts will be
explored. Oyente is probably the earliest and best-known
representative of such work: it checks for security vulnera-
bilities including transaction order dependency, timestamp
dependency, and reentrancy. Maian [31] analyzes multiple
invocations of a smart contract and covers safety properties
including prodigality and self-destruction. TeEther [25] is a
recent representative of symbolic execution tools, offering
both detection of information flow-like properties and ex-
ploit generation. Although symbolic execution warnings are
expected to have high precision, the goal of our work is to
combine feasibly high precision and completeness.

The smart contract analysis literature also includes formal
verification approaches, with more emphasis on deep model-
ing and less on automatic analysis. The Zeus framework [23]
translates Solidity source code to LLVM bitcode [27] before
performing the actual analysis in the SeaHorn verification
framework [35]. This approach however fails to abstract all
Solidity instructions and the EVM execution platform cor-
rectly. An alternative approach [29] abstracts Solidity code to
finite-state automata. EtherTrust [17] is a sound static mod-
eling tool using a small-step semantics. EtherTrust analyzes
EVM bytecode directly for single-entrancy vulnerabilities,
using Z3 as an underlying SMT solver.

Rodler et al. [33] present an interesting approach for pro-
tecting contracts vulnerable to reentrancy vulnerabilities,
instead of merely detecting such vulnerabilities. Interest-
ingly, they confirm (for an attack domain different from our
information flow vulnerabilities) that Securify employs “very
conservative violation pattern[s] ..., which consequently re-
sults in a very high false-positive rate”
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Other tools [20, 21, 38] employ fuzzing techniques in order
to detect various vulnerabilities. The recent ILF [20] tool
trains a neural network using inputs generated by symbolic
execution in order to increase fuzzing effectiveness.

Various exploits have been broadly identified in the litera-
ture [3, 4, 11, 36]: exploits related to Solidity, the EVM and
the blockchain itself. These exploits have been highlighted
by the community outside of publications. For instance, the
security company Consensys maintains a website [10] out-
lining the exploits mentioned in the literature, as well as
additional exploits, such as data overflows and underflows,
and suggestions on how to write better smart contracts (such
as isolating external calls into their own transactions, instead
of executing them in a single transaction, to minimize the
risk of failures and side effects).

Finally, taint analysis tools for other domains are in abun-
dance. Some have used Datalog, as in our work. Livshits [26]
fruitfully explored the use of Datalog for taint analysis in
Java. P/Taint [16] is a recent declaratively specified unified
taint and pointer analysis framework for Java and Android.
It allows full-featured context-sensitive taint analysis frame-
works to emerge from existing pointer analysis frameworks
at little additional implementation and runtime cost.

8 Conclusions

We presented the Ethainter security analyzer for detecting
composite vulnerabilities in smart contracts. Ethainter em-
ploys notions of information flow for tracking tainted values,
while extending them to model key domain concepts, such as
sanitization via guards and taint through persistent storage.
We give a specification of the analysis in a distilled formalism,
likely of independent value. We identify practical informa-
tion flow vulnerabilities in the full Ethereum blockchain, e.g.,
introduce taint to bypass an ownership guard to destroy the
contract. The analysis is finely tuned for precision and scal-
ability. Ethainter identifies real security issues in deployed
contracts, all the way to automatic exploitation of hundreds
of contracts on the Ropsten test network.
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