
What Can the GC Compute Efficiently?
A Language for Heap Assertions at GC Time

Christoph Reichenbach
University of Massachusetts

creichen@gmail.com

Neil Immerman
University of Massachusetts
neil.immerman@gmail.com

Yannis Smaragdakis
University of Massachusetts

yannis@cs.umass.edu

Edward E. Aftandilian
Tufts University

eaftan@cs.tufts.edu

Samuel Z. Guyer
Tufts University

sguyer@cs.tufts.edu

Abstract
We present the DeAL language for heap assertions that are
efficiently evaluated during garbage collection time. DeAL is
a rich, declarative, logic-based language whose programs are
guaranteed to be executable with good whole-heap locality,
i.e., within a single traversal over every live object on the
heap and a finite neighborhood around each object. As a
result, evaluating DeAL programs incurs negligible cost:
for simple assertion checking at each garbage collection,
the end-to-end execution slowdown is below 2%. DeAL is
integrated into Java as a VM extension and we demonstrate
its efficiency and expressiveness with several applications
and properties from the past literature.

Compared to past systems for heap assertions, DeAL is
distinguished by its very attractive expressiveness/efficiency
tradeoff: it offers a significantly richer class of assertions
than what past systems could check with a single traversal.
Conversely, past systems that can express the same (or more)
complex assertions as DeAL do so only by suffering orders-
of-magnitude higher costs.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]; D.2.4 [Software/Program Verification]: Asser-
tion checkers

General Terms Algorithms, Reliability

Keywords heap assertions, garbage collector, reachability,
dominance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

1. Introduction
Garbage collection (GC) is a widely popular mechanism in
modern programming languages, employed in representa-
tives of virtually all language classes, from mainstream man-
aged languages (e.g., Java, C#), to dynamic languages (e.g.,
Perl, Python), and to the language avant-garde (e.g., Haskell,
OCaml). The traditional view on GC considers it a necessary
cost. Our work is based on the observation that GC also rep-
resents a unique opportunity. GC necessitates an occasional
traversal of all live program objects. If all objects are going
to be traversed anyway, it is natural to consider using this
traversal for more than computing liveness. With minimal
machinery that piggybacks on the GC traversal, the system
can perform computation over a program’s heap. Such com-
putation should be side-effect free, but also similar in struc-
ture to a garbage collection traversal, in order to exploit GC
well without undue overhead. Furthermore, this computation
should not compute results essential to the main program’s
control flow, or it would cause much more frequent garbage
collection than would be otherwise necessary.

Assertion checking is a good fit for these requirements.
Ensuring program properties by way of programmer-defined
assertions is a crucial technique in software development
and forms the cornerstone of methodologies such as Design
by Contract [13]. Virtually every programmer with modern
training has been well-exposed to the idea that using asser-
tions to trigger program failures is an excellent way to reveal
faults. Since assertion checking only queries program data
but does not update them, it requires no computations with
side effects. Additionally assertions should not alter the pro-
gram control flow or compute results that the program will
later use.

Performing assertion checking during GC time is not
new. The QVM Java virtual machine [3] allows heap
probes, which check reachability and dominance properties
at GC time. The GC Assertions system of Aftandilian and

Guyer [1] describes a suite of assertions that can be effi-
ciently checked at GC time. The limitation of these past
systems is that they either do not offer a general language
for writing assertions or they require multiple GC traver-
sals to evaluate a single assertion. In this way, they sacri-
fice either efficiency or expressiveness. For instance, the Af-
tandilian and Guyer system includes very specific kinds of
assertions, such as assert-unshared(obj). Recent versions
of the QVM system allow full JML assertions but cannot
evaluate those in a single GC traversal, often resulting in nu-
merous heap traversals in the course of evaluating an asser-
tion. As a consequence, efficiency for QVM assertions relies
on reducing the cost of every GC via parallelism. Still, per-
forming multiple GCs, even in parallel, is much more costly
than piggybacking on a single GC (which would need to oc-
cur anyway).

In contrast, we present a Declarative Assertion Language
(DeAL), which fulfills the requirements of computing during
GC time: it only allows side-effect-free computations and it
can only express programs whose object access patterns are
a good fit for a GC traversal and incur constant overhead per
object. Our approach is informed by Descriptive Complex-
ity, where the important complexity classes (LOGSPACE,
PTIME, NP, PSPACE, etc.) have been captured by logic-
based languages [10]. Although the performance property
we are interested in does not correspond to a complexity
class, one can view it as a limited case of linear-time compu-
tation, where we have the extra guarantee that the program is
evaluated in a single traversal of the heap. This is not a prop-
erty that is well-expressed in complexity theory, but it is an
often-cited property of good locality for garbage collectors.
For instance, Wilson’s GC survey [23] distinguishes algo-
rithms based on their locality. A GC algorithm is considered
to have good locality when it only needs to visit each ob-
ject once. Algorithms that need to perform multiple passes
over the heap have bad temporal locality, since they always
access the data that have not been accessed the longest. This
behavior is a bad fit for LRU-based cache mechanisms, espe-
cially for traversals that revisit structures slightly larger than
the cache.

DeAL is a logic-based extension of Java and guarantees
that any assertion expressible in it runs by traversing each
live heap object (and a constant-size neighborhood around
it) exactly once. From a logic standpoint, DeAL is a single-
variable first order logic with predicates of the form Rc/d(x),
meaning that object x is reachable from object c without
going through object d. For instance, we can express the
well-formedness property of a doubly-linked list d via a
logical assertion:

∀x ∈ Node : Rd(x)⇒ (x.next.prev = x)

The concrete DeAL syntax uses a textual representation of
logical operators. For instance, the above property is written:

forall Node x: reach[d](x) -> x.next.prev == x

DeAL is an expressive language, as we will demonstrate
with many examples. Its generality allows us to write com-
plex properties (which past systems needed to hard-code)
as straightforward logical expressions. For instance, we can
write the property “all Node objects are dominated by object
d”, i.e., no path to them exists that does not pass through d:

∀x ∈ Node : ¬Rr0/d(x)

The special constant r0 refers to the root set of the GC
traversal. Therefore the property means that no Node object
is reachable without going through d.

Using standard boolean connectives we can write inter-
esting combinations of properties—e.g., the DeAL assertion:

(∀x ∈ Node : (x.data > threshold)⇒ Rhotcache(x))∧
(∃y ∈ Node : ¬Rhotcache(y) ∧ y.next = null)

(In words, “every Node object with an above-threshold data
value is in the hotcache data structure, and some Node object
that is not in hotcache has no next link.”) Although non-
trivial, this assertion (like any other legal DeAL program, as
defined in Section 2) is evaluated in a single heap traversal,
per DeAL’s locality guarantees.

Exploiting the GC allows DeAL assertions to be evalu-
ated with very low cost. We implemented DeAL by extend-
ing the Jikes RVM and Eclipse Java Compiler and evaluated
its efficiency extensively. The overhead of evaluating DeAL
assertions of course varies with the complexity of the asser-
tion: if the assertion consists of comparing k field derefer-
ence expressions that depend on the current object, it is in-
evitable to incur Ω(k) cost per object. For typical small prop-
erties, however, DeAL imposes at most a few percent over-
head over the cost of garbage collection, resulting in near-
zero (sub-2%) overhead over the end-to-end execution time
of applications.

In summary, our paper makes the following contributions:

• We define a declarative language for linear time, single-
traversal computations, which results in good locality for
whole-heap traversals. To our knowledge, no past language
has ever offered this guarantee. The property that all legal
programs visit each object exactly once is a general pro-
gram property, not limited to the domain of computing dur-
ing GC. As such, our language design and overall approach
may find even more applications in the future.

• We designed our language, DeAL, as a natural Java exten-
sion for assertion checking and implemented it in a modern
high-performance JVM. We demonstrate the expressive-
ness of our design with numerous examples, mostly from
the recent research literature.

• We evaluate the practical effectiveness and efficiency of
DeAL over a suite of assertions and applications. Our
results demonstrate that the idea of an expressive language
for assertion checking at GC time has excellent properties
and promise for wide adoption.

DealAssertion ::= assertion(F) |

assertDisjoint(F) |

unsafeAssert(F)

F ∈ Formula ::= q | F ∨ F | F ∧ F | ¬F |

F ⇒ F | f ⇔ F

q ∈ QFormula ::= ∃x ∈ T : b | ∀x ∈ T : b

b ∈ BoolFormula ::= r | b ∨ b | b ∧ b | ¬b | b⇒ b | b⇔ b

r ∈ RelExpr ::= o | o ∈ T | o = o | o < o | o > o |

o ≤ o | o ≥ o | o , o | Rt(x)

t ∈ TraversalSrc ::= s/−→s | /−→s | t ∨ t

o ∈ Obj ::= v | o. f | c | x

s ∈ SourceObj ::= v | s. f

x ∈ LVar is a set of logic variable names

v ∈ JVar is a set of Java variable names

T ∈ Typ ::= Java types

c ∈ Const ::= Java constants

f ∈ Field ::= Java field names

Figure 1. DeAL syntax. Note the distinction between ex-
pressions that do and do not contain logic variables (sets
Obj and SourceObj, respectively). Their only difference is
that the former cannot appear as traversal sources in an R
predicate or be a Java constant.

2. The DeAL Language
We next present DeAL’s syntax, semantics, and usage exam-
ples.

2.1 Language Design
Syntax. The full abstract syntax of the DeAL language
is shown in Figure 1. Since DeAL’s expressions are first-
order logic formulas, we will freely alternate between the
logical and the concrete DeAL syntax, as convenient for
presentation purposes. The reader should treat the logical
notation as a shorthand for the text DeAL/Java syntax, i.e.,
∀x ∈ T , ∃x ∈ T , Rt, ∧, ∨, ¬, ∈, =, ⇒, ⇔, ,, ≤, ≥ are
synonyms of the actual DeAL operators forall T x, exists
T x, reach[t], &&, ||, !, instanceof, ==, ->, <->, !=, <=, >=,
respectively.

The language has three primitives: assertion(F),
assertDisjoint(F), and unsafeAssert(F), where F is a
sentence in first order logic. All three primitives attempt
to check whether the formula is true, but they have differ-
ent requirements and soundness guarantees, discussed later.
All the logical connectives have their usual meaning, with
forall/exists quantification implicitly applying over all live
heap objects. Objects can be compared for equality and

primitive-valued expressions can be compared with the stan-
dard primitive relational operators <, ≤, etc. There is a single
kind of unary predicate, R, described below.

There are some design decisions visible in the syntax that
are key for establishing the property that each heap object
is traversed once. The first important element is that our first
order logic has only one variable. This does not mean that we
cannot use multiple logic variable names in a single formula
for clarity (as we did in our example in Section 1 with a
“(∀x . . .) ∧ (∃y . . .)”), but that quantifiers cannot be nested,
hence all logic variables could be renamed to have the same
name without changing the meaning of the formula.

The second important element is that the unary pred-
icates of the DeAL logic have the form Rs1/o1, . . . , oi ∨

s2/oi+1, . . . , o j ∨ . . . ∨ sn/ol+1, . . . , om(x). Note that the ∨s
in the above, although logically designating an “or”, are part
of the predicate name and should not be confused with the
top-level logical “or” connective. (For instance, there are
no “and” and “not” counterparts in predicate names.) The
meaning of the above relation is that x is reachable from s1
(called a source) via a path that does not include any of the
objects o1, . . . , , oi or x is reachable from s2 via a path that
does include any of the objects o1, . . . , o j or . . . or x is reach-
able from sn via a path that does not include any of the ob-
jects o1, . . . , om. (Note that the set of excluded objects keeps
growing monotonically: the objects specified to be excluded
for every new source si are in addition to all previously ex-
cluded objects.) An empty source si is shorthand for the root
set r0 of the garbage collection; thus, we may rewrite our
earlier example of ‘all Node objects are dominated by d’ as
∀x ∈ Node : ¬R/d(x).

Together, these design decisions ensure that we can eval-
uate queries in a single pass through the heap. First, disal-
lowing nesting ensures that we disallow queries that make
us compare every heap object to every other heap object,
which we cannot do in one pass in general.

Second, the construction of the R ensures that we can find
a suitable heap traversal strategy. Intuitively, the key feature
of using a single R predicate to link reachability properties
only with an or connective is that the predicate value is
determined regardless of which path in the object graph was
used to reach an object. That is, if we reach an object via
one path, we do not need to later try to also reach it via other
paths.

We should point out precisely how the language of DeAL
formulas, F, formally fits the mathematical definition of a
first order logic—e.g., see [10]. From the logic perspective,
Java object expressions are treated as logical constants—
e.g., a Java variable v is a constant from the perspective of the
logic, since its meaning does not change for different values
of the logical variables. Java fields are treated as functions—
for instance, the expression x.next is equivalent to a logical
function “next” applied to logical object x.

Type Checking and Assertion Semantics. DeAL asser-
tions can appear as Java statements at any legal point
in a Java+DeAL program. Each assertion (a member of
DealAssertion in the syntax of Figure 1) is a separate DeAL
program, evaluated independently. The DeAL guarantee is
that each assertion requires a single traversal over objects,
and thus can be evaluated during a single garbage collec-
tion. (In Section 2.2 we discuss in more detail the various
options on how often assertions are evaluated and how they
are integrated in our current implementation.)

For a syntactically well-formed DeAL program to also
be valid, it first needs to satisfy Java type constraints on its
expressions. The types of field reference expressions (either
j or o in Figure 1) have to be compatible with their uses with
operators =, ≤, etc. That is, a relational expression (r in the
syntax) should be either a legal Java expression with type
boolean or an instance of predicate R.

More interestingly, DeAL imposes restrictions on how
the R predicates are used in different kinds of asser-
tions. These restrictions are closely tied to the meaning of
assertion vs. assertDisjoint vs. unsafeAssert.

• In instances of assertion(F), at most one reacha-
bility relation, Rs1/o1, . . . , oi ∨ s2/oi+1, . . . , o j ∨ . . . ∨
sn/ol+1, . . . , om(x), may occur in F, although the same re-
lation may occur multiple times. An assertion primitive
straightforwardly checks the asserted condition in a single
traversal over all live objects.

• In instances of assertDisjoint(F), multiple reachability
relations may occur, but, if two such relations occur, then in
addition to asserting F we are asserting that the domains of
the two relations are disjoint. If there is a node that satisfies
both relations then we will detect this and report failure
of the assertion. (If the domains are all disjoint, we can
evaluate F in a single run through the heap during garbage
collection, and if the domains are not all disjoint then we
will detect this during the single traversal of the heap.)

• In instances of unsafeAssert(F), multiple R relations
may occur without a claim of disjointness. In this mode,
the DeAL system will behave as if the domains of the R
relations mentioned are all disjoint, without checking this
property. If the relations are not disjoint, then we are not
guaranteed to detect this, nor to actually check F. Specifi-
cally, DeAL will not correctly check formula F if the truth
value of F depends on objects that simultaneously satisfy
multiple R relations. The reason is that DeAL will only
traverse such objects once, while processing one of the
R relations and without knowing whether the object sat-
isfies other Rs. Yet formula F may express different re-
quirements for an object depending on which R it satisfies.

2.2 DeAL Language Usage
We next discuss how the user interacts with the DeAL lan-
guage and offer specific usage scenarios. We begin with

specifics on the current DeAL integration in Java. Although
these are largely engineering choices (which could change
without altering the essence of the language) they are useful
in order for the reader to establish a concrete model of usage.

Integration. We have integrated DeAL to Java as a con-
servative extension. The DeAL language is hidden behind a
library and the user invokes assertions by calling static meth-
ods assertion, assertDisjoint, and unsafeAssert in the
main DeAL class. The method calls accept DeAL formulas
as regular strings. For instance, the doubly-linked list con-
sistency invariant is asserted as:

assertion(

"forall Node x: reach[d](x) -> x.next.prev == x");

This allows unsuspecting Java compilers to process
DeAL programs by linking to a simple stub library. The
DeAL compiler, however, fully parses and statically type
checks the assertion string. (As indicated earlier, most of the
examples in this paper use the equivalent DeAL syntax of
Figure 1 instead of the concrete textual syntax. Accordingly,
we elide the quotes that delimit the assertion string.)

In designing DeAL’s assertion evaluation model, we con-
sidered two questions: when to evaluate and whether to eval-
uate. Regarding when to evaluate, we chose to execute asser-
tion statements at the point they are encountered, rather than
delaying until the time when garbage collection would oc-
cur anyway. Compared to past systems, this design decision
resembles that of the QVM system [3], as opposed to the
option followed by Aftandilian and Guyer [1], which puts
off assertion checking until GC time. The latter has the dis-
advantage that the shape of the heap may have changed be-
tween the point of assertion statement and the point of its
evaluation, resulting in incorrect evaluation (both unsound
and incomplete).

However, the issue with evaluating assertions at the point
they are encountered is that if every assertion causes a
garbage collection then GC will occur too frequently, with
high overhead. Therefore, DeAL decides whether to eval-
uate an assertion by measuring the amount of time since
the last GC. The assertion is evaluated only if a sufficiently
long time has elapsed. In this way, assertions can be ignored,
resulting in incompleteness.1 By default, we tie our deci-
sion of whether an assertion is to be evaluated or not to the
same internal metrics that the Jikes RVM GC uses to decide
whether to perform a collection. Thus, we evaluate an asser-
tion roughly around the time a GC would be due to happen
anyway. This is what we view as the most likely mode of
use of DeAL: assertion checking happens at low frequency
but without imposing heavy overhead. We offer the user the
option of “throttling” the evaluation frequency of assertions,
up to executing every single assertion encountered and suf-
fering the resulting overhead. This allows us to enforce as-

1 We choose to view DeAL as a fault detector, hence the meanings of
“sound” and “complete” are exactly inverse from what they would be for
a correctness verifier.

sertion checking even in pathological cases that our default
heuristic would always skip, such as when specified right af-
ter a call to System.gc().

Examples. There are several possibilities for using DeAL
in the course of regular programming. These include local
data structure invariants, ownership and dominance prop-
erties, disjointness properties, reachability properties, and
combinations of those. We show below several DeAL as-
sertions, most of them taken from the recent literature [6–
8, 11, 16, 17, 19].

One common kind of condition concerns type constraints.
For instance, all objects in a data structure may need to be
Serializable, and no instance of a subtype of Thread may
be stored in the structure:

assertion(∀x ∈ Node :RHttpSession(x)⇒
x instanceof Serializable ∧

¬(x instanceof Thread));

(Note that although class Thread is not Serializable, a
user-defined subclass of it may be.)

Local invariants for data structures are quite common and
useful. We already saw a doubly-linked list invariant, and a
sortedness invariant is equally easy to express:

assertion(∀x ∈ Node : Rc(x)⇒ x.data ≤ x.next.data);

(Note that we can ignore the case of x.next being null. If
a subexpression of a field dereference expression is null
DeAL ignores the corresponding value of the logical vari-
able.2)

It is similarly easy to specify that a data structure rooted
at c should have a cycle:

assertion(∀x ∈ Node : Rc(x)⇒ x.next , null);

In the same way, we can state data structure invariants for
binary and n-ary trees, heaps, and so on.

More interesting properties are those that require the
reachability of all objects that satisfy a condition:

assertion(∀x ∈ Node : (x.next = null)⇒ Rleaves(x));

Such properties are not easily expressible in plain Java, be-
cause they refer to any possible live object (with a given
type, in this case) and not just to objects in a specific struc-
ture that could be traversed with a plain for loop.

With an existential quantifier, we can easily assert that a
value satisfying certain properties is found, independently of
which data structure contains it:

assertion(∃x ∈ Node : x.data > 3.141∧ x.data < 3.142);

2 For example, if in the quantified expression, “Qx : ϕ,” x.next.data
occurs in ϕ, then the quantifier is restricted to the case that x.next ,
null, i.e, (Qx such that x.next , null) : ϕ.

As mentioned briefly in the Introduction, we can express
dominance properties as non-reachability if the dominator is
excluded [22]. For instance, we can evaluate a property over
all dominated nodes:

assertion(∀x ∈ Node : ¬R/c(x)⇒ x.data > 0);

Dominance by a single object is an object ownership
property. Combinations of dominance properties allow more
complex conditions. For instance, we can specify that every
object of type Person has to be dominated by the combina-
tion of data structures males and females. That is, no path
in the object graph should be able to reach a Person object
without going through the object called males or the object
called females in the program:

assertion(∀x ∈ Person : ¬R/males,females(x));

Note that dominance by a set of sources is not equivalent
to any boolean combination of individual dominance prop-
erties. In particular, “x is dominated by the combined objects
males and females” is equivalent to neither “x is dominated
by males AND x is dominated by females” nor “x is dom-
inated by males OR x is dominated by females”. (Consider
objects reachable from both data structures, which are dom-
inated by neither one.)

If we want to state that the two structures are disjoint,
we can do so with an assertDisjoint statement, which will
also allow us to combine other conditions on the objects. For
instance, we can have:

assertDisjoint(∀x ∈ Person : Rmales(x)∨Rfemales(x));

This states that any object of type Person is reachable from
one of the two data structures, though there may also be other
paths to it. Since an assertDisjoint allows multiple disjoint
R predicates in the same assertion, we can easily strengthen
the condition to express “every Person is dominated by
either males or females but not both”, by combining the last
two example formulas:

assertDisjoint(∀x ∈ Person :
(Rmales(x) ∨ Rfemales(x))∧
¬R/males,females(x));

Disjointness conditions have a variety of applications, in-
cluding leak detection (data may be reachable by unexpected
data structures) and detection of improper sharing among
threads. For instance, we can state that trees from distinct
compilation phases do not share structure:

assertDisjoint(∀x : ¬(RparseTree(x)∧RsyntaxTree(x)));

The above examples are representative of simple but pow-
erful DeAL assertions. The examples do not include uses of
unsafeAssert, which allows more complex assertions but
with few guarantees, as we describe next.

Unsafe Assertions. The unsafeAssert primitive gives the
user extra flexibility but at the cost of not guaranteeing cor-
rectness. We do not consider unsafeAssert to be a core part
of the DeAL language, and we have not used it in prac-
tice. Nevertheless, it represents an escape clause for the user
to specify richer properties than those that DeAL can stat-
ically guarantee to check in a single traversal. It is the re-
sponsibility of the user to ensure that such properties make
sense under DeAL’s single-traversal execution. Therefore, it
is worth elucidating possible usage patterns, since correct-
ness depends on understanding them. There are four possi-
bilities for the correctness of evaluating an unsafeAssert:

• The formula is evaluated soundly and completely, i.e.,
DeAL assertion failures correctly indicate that the formula
is false, and if the DeAL assertion evaluation does not fail,
the formula is true. This is the case when the shape of
the properties or of the heap ensures that the truth value
of the formula does not depend on which objects satisfy
multiple Rs. For a simple example, consider a formula
that treats all objects reachable under two different sets of
conditions the same way: ∀x : (Rs1/o1(x) ⇒ x.data >
0) ∧ (Rs2/o2(x)⇒ x.data > 0).

• The formula is evaluated soundly, i.e., DeAL assertion
failures correctly indicate that the formula is false. This
means that some DeAL warnings may be missed, but this
is likely practically acceptable. For example, the formula
may contain two distinct R predicates with one of them
implying stronger conditions than the other (e.g., ∀x :
(Rs1(x)⇒ x.data > 0) ∧ (Rs2(x)⇒ x.data ≥ 0)). DeAL
offers no guarantee as to which condition it will check for
objects that satisfy both Rs.

• The formula is evaluated completely: there may be false
assertion failures, but if no assertion fails then the formula
was true at the point of evaluation. An example would
be the complement of our previous “unsound” formula:
∃x : Rs1(x) ∧ x.data ≤ 0 ∨ Rs2(x) ∧ x.data < 0.

• The formula is evaluated neither soundly nor
completely—e.g., it combines an incomplete and an un-
sound sub-formula. This scenario may still be valuable if
it turns out to detect failures often while issuing false re-
ports rarely. Practical automatic bug detectors are often
unsound and incomplete—the authors of ESC/Java have
argued forcefully that soundness and completeness are
overrated properties compared to practical usefulness in
catching bugs [9].

3. Single Traversal Property and Language
Implementation

We next state and prove DeAL’s single traversal property.
This discussion also serves to introduce the way the DeAL
compiler processes programs and the changes required to the
runtime system so that assertions are evaluated as part of a
GC traversal.

3.1 Single Traversal Evaluation
DeAL assertions are guaranteed to be evaluated in a single
traversal of live heap objects. Although in the rest of the
paper we informally describe this property as “each object is
traversed once”, this assumes an implicit understanding that
an object may be re-examined briefly, only to discover that it
was visited earlier. Below we state the desired property more
precisely.

Theorem 1. A valid, safe DeAL assertion (i.e., a sin-
gle assertion or assertDisjoint statement but not an
unsafeAssert statement) can be evaluated correctly in a
single traversal that crosses each edge in the object graph
exactly once and performs a constant amount of work per
object. (This constant depends on the size of the assertion.)

Proof. Consider first the case of an assertion statement.
According to Figure 1, an asserted formula is a boolean com-
bination of quantified formulas (each starting with ∀ or ∃),
with each quantified formula being a boolean combination
of relational expressions, r. Since all quantification is over
live objects, it is clear that we only need to evaluate every
relational expression r once per object. All relational expres-
sions of a form other than Rt(x) can be evaluated correctly
in constant time for any object. Thus, we can evaluate all
such expressions (from the entire asserted formula) at what-
ever time an object is visited. The difficulty lies in proving
that we can define a traversal (i.e., a loop over live objects)
for which expressions of the form Rt(x) are also correctly
evaluated in constant time. If we also show this, then our
traversal needs to keep current truth values only for all quan-
tified formulas and at the end of the entire traversal perform
their boolean combination for the final result. (An optimiza-
tion consists of short-circuiting the evaluation of quantified
formulas. That is, if an ∃ or ∀ formula has already had its
truth value determined before the end of the traversal—this
can only be true for ∃ and false for ∀—there is no reason to
evaluate for further objects the relational expressions r in the
body of this quantified formula.)

Recall that, per the restrictions of Section 2.1, a valid
assertion statement can only contain instances of a sin-
gle Rt(x) predicate. The truth value of such a predicate
can be computed (in constant time) for a traversal visit-
ing every live object once. The full form of the predicate
is Rs1/o1, . . . , oi ∨ s2/oi+1, . . . , o j ∨ . . . ∨ sn/ol+1, . . . , om(x).
We define the traversal to satisfy the required property as
follows:

• Mark objects o1, . . . , oi ignored.
For example, for query Ra/b∨c/d, e(x) in Figure 2, we

mark b as ignored.
• Perform a standard reachability traversal starting at ob-
ject s1. The traversal processes objects that are neither
ignored nor visited and marks objects visited after pro-
cessing them. Predicate Rt(x) is true for each processed

a

b

c

d e

¶ ·

¸ º

»

root

Figure 2. Traversals for Ra/b ∨ c/d, e(x), in order.

object, since it is reachable from object s1 without going
through o1, . . . , oi. Thus, when processing an object, the
traversal can evaluate (for the current object) all relational
expressions r in the entire formula.

For our example in Figure 2, we execute traversal ¶,
starting from a, ignoring b.
• Proceed in the same manner for other sources and ex-
cluded objects. That is, mark objects oi+1, . . . , o j ignored,
perform a standard reachability traversal starting at object
s2, etc. In total there are n such steps (one for each object
s1, . . . , sn).

In our running example (Figure 2) we now ignore objects
d and e and then perform traversal ·.
• Remove the ignored flag from all objects o1, . . . , om.

In our running example we now remove this flag from b,
d, and e.
• Perform m reachability traversals, each starting at object
ok for 1 ≤ k ≤ m, followed by a reachability traversal
starting at the root set (i.e., the default live objects of the
program’s execution, such as the stack and the global re-
gion). Every traversal processes all non-visited objects
and marks objects visited after processing them. During
each of these m + 1 traversals, predicate Rt(x) is false for
each processed object, by nature of the traversal: the object
was not reachable by any si without going through the cor-
responding excluded objects o1, . . . , om. When processing
an object, the traversal can evaluate (for the current object)
all relational expressions r in the entire formula.

In our running example, we first run traversals ¸ through
º, though ¹ would be a no-op (since we already visited d
in ¶ before ignoring it). Then we conclude with the root
traversal ».

Note that no edge in the object graph (that is, a reference
field of an object) is processed twice: the standard reachabil-
ity traversal follows edges out of an object exactly once, after
marking the object visited, and the only further operation
on a visited object is to check whether it is visited. We
invert the meaning (i.e., mapping to a 0 or 1 bit) of visited
after every collection. (This is a standard technique in mark-
sweep garbage collection, avoiding a second visit of nodes
just to reset them.) After collection no object is ignored
(since no object is ignored initially.)

The above traversal satisfies all requirements of the proof.
It also requires space of two bits per object (one for the

visited flag and one for ignored).3 From the perspective
of the visited flag, the above traversal is a full replacement
of a GC reachability traversal with only the object visiting
order modified.

The handling of statement assertDisjoint is quite sim-
ilar. The difference is that, in addition to the visited and
ignored flags we maintain per object, we need dlog(u)e
bits per object, where u is the number of distinct predi-
cates Rt(x). These bits form a traversalNum counter. The
traversal proceeds by repeating all but the last step of the
assertion traversal for every Rt(x) predicate, with some
small differences. First, while marking an object visited af-
ter processing, the traversal sets traversalNum to the current
traversal number, which is initially 0 and incremented for ev-
ery Rt(x) predicate examined. Second, for each previously
visited object encountered, the traversal checks whether the
visited object’s traversalNum is equal to the current traver-
sal number (indicating a previously visited object during the
current traversal) or lower (indicating a disjointness error
and causing an immediate assertion failure, unless the object
is also ignored). The final traversal (from the root set and
from excluded objects) uses a traversal number of 0, thereby
avoiding disjointedness errors.

The above assertDisjoint traversal maintains the prop-
erties required for the proof. First, the truth value of every R
predicate is evident at the time of visit of each object, since
the disjointness property guarantees that the only predicate
R that is true for the object is the R predicate whose traversal
reaches the object. Second, the visited flag ensures no edge
is crossed more than once, by the same argument as for the
assertion traversal. �

Although the above proof is not hard, this is largely due
to the careful design of the DeAL language, which main-
tains the properties required for a single traversal evaluation
of assertions. We note that it is quite easy to be misled with
respect to predicates that can be evaluated in a single traver-
sal. For instance, a common mistake is to attempt to integrate
the inverse of predicate Rc(x) in a single traversal language:
It is not possible to add to DeAL a predicate Pc(x) with the
meaning “x can reach c” while maintaining the same single
traversal property for arbitrary graphs.

3.2 DeAL Implementation
The proof of the single traversal theorem essentially lays out
the principles of the DeAL implementation. Each traversal
may need to touch the entire heap, so DeAL must interface
with a whole-heap garbage collector, such as mark-sweep
or the major collection of a generational collector (which
performs whole-heap traversals).

3 This requirement can be reduced to just one bit per object, by using the
visited bit to also mean ignored, plus a second bit only for each of the
m ignored objects. The reason for the second bit is that, during the final
traversal from the root set, it is necessary to remember whether an ignored
object has been visited or not.

DeAL instructs this garbage collector to perform the
traversals described in the proof for assertion and
assertDisjoint. Statement unsafeAssert is handled identi-
cally to assertion with the only difference being that all but
the last step of the assertion traversal are repeated for every
Rt(x) predicate in the formula. Therefore, unsafeAssert
visits every object exactly once but without guaranteeing
correct evaluation of the assertion, since each object is vis-
ited only as part of a traversal corresponding to a single R
predicate.

DeAL is implemented on top of Jikes RVM [2], modify-
ing the included MarkSweep garbage collector. The bulk of
the implementation consists of changes to the runtime sys-
tem, and especially interfacing with the collector. To pro-
duce a clean and general interface, we introduced a small
“trace-and-test” language inside the VM. A trace-and-test
program instructs the garbage collector what to mark recur-
sively, what to test for, and what individual objects to ex-
pressly exclude or include in the traversal. The trace-and-
test language has primitives such as exclude-node(o) (to
exclude an object from the traversal), include-node(o) (to
unmark an object, so that it is processed when next en-
countered), mark-traversal-id(x) (to increase the traver-
sal number), set-expressions(k1, . . . , kn) (to set up the sets
of relational expressions that need to be evaluated for ev-
ery node, together with information, per set, on whether the
expressions are in an existential or universal context), and
trace(o) (to start a reachability traversal at object o).

The DeAL compiler translates an assertion into trace-
and-test language instructions, following closely the traver-
sal structure described in the proof of Section 3.1. The rela-
tional expressions that need to be evaluated per-object are
translated into plain Java methods that the runtime com-
piles with the maximum optimization level allowed by the
Jikes just-in-time compiler. We altered the garbage collec-
tion logic in the virtual machine to execute the trace-and-set
instructions. For marking nodes, we employ 4 bits per object
that are currently unused by the runtime, resulting in a max-
imum of 8 R predicates per assertDisjoint formula (since
one bit is occupied by the ignored flag); in addition we ob-
tain the visited flag from a region in the object header re-
served for the existing MarkSweep garbage collector. In the
future, the implementation could allocate extra space per ob-
ject on a side structure, allowing unlimited R predicates.

4. Discussion: Expressiveness Limitations,
Programming Patterns

DeAL is an expressive language but has by design some ex-
pressiveness limitations to support its single traversal guar-
antee. Clearly, DeAL cannot express computations that are
inherently non-linear, or non-single-traversal. Furthermore,
DeAL occasionally cannot support computations that hap-
pen to be computable in a single traversal, if their structure
obscures this fact. For instance, consider the property “all

Node objects directly referenced by array arr are dominated
by arr”. This is a property that can be evaluated in a single
traversal, yet it is not expressible in DeAL. One can attempt
to write the property straightforwardly as:

assertDisjoint(∀x ∈ Node : Rarr(x)⇒ ¬R/arr(x));

Yet this is not the desired property: the Node objects
directly referenced by arr are only a subset of all the objects
reachable by arr. For instance, the Node objects referenced
by arr may themselves refer to other objects that are not
dominated by arr, causing a spurious disjointness error.
Intuitively, the desired property should be expressible in
DeAL but is not because of a technicality: Although the
property is local (it requires traversing just one link to tell
that an object is directly referenced by arr), it is not local
from the perspective of the referenced object: when visiting
a random object it is not possible to know in constant time
whether it is directly referenced by arr.

These (as well as many other) expressiveness limitations
of DeAL can be overcome by combining Java computation
with DeAL assertion checking. The general programming
pattern consists of having Java code compute a property
of objects, summarize the results as a local property (for
instance, by marking a field for all objects satisfying the
desired property) and invoke a DeAL assertion that checks
whether the marked objects have the expected structure.

In our above example, if we add an otherwise unused
field mark in class Node, we can easily express the desired
assertion by combining Java and DeAL evaluation:

Object dummy = new Object();

for (Node n : arr) n.mark = dummy;

assertion(∀x ∈ Node : (x.mark = dummy)⇒ ¬R/arr(x));

This programming pattern is quite powerful. It allows
nearly arbitrary extension of the properties that can be
checked, at the expense of performing some of the work
outside the DeAL traversal. Given the generality of the pat-
tern, we are considering adding language support for it in fu-
ture versions of DeAL. Namely, we can add a labelObject
primitive to DeAL and allow the Java program to mark ob-
jects with a finite set of labels, at any point in the execu-
tion. Then, when a DeAL assertion is checked, it can refer to
whether an object has a certain label or not (labels are unary
predicates). The markings will be cleared after evaluation of
the assertion. This simple addition to the language is just a
convenience feature that obviates the need for extra fields,
such as mark in our earlier example. The markings can be
kept on a side structure that the DeAL traversal consults. We
have not added such convenience features in our first version
of DeAL, preferring to concentrate on the core language in-
stead of on elements that can be easily emulated.

5. Experiments
We evaluate the implementation of DeAL with several ex-
periments:

• We evaluate the assertions of Section 2.2 in a full heap
of objects with no other computation performed in the
application. This is a controlled microbenchmark for the
given assertions, intended to check how much the overhead
varies with the complexity of typical assertions and with
the percentage of relevant objects.

• We run a wide spectrum of actual applications (includ-
ing the DaCapo benchmarks [4], SPEC JVM98 [20],
and pseudojbb—a fixed-workload version of SPEC
JBB2000 [21]). We measure the overhead of simple
(generic) DeAL assertion checking, when assertions are
evaluated with the same frequency as that of normal
garbage collection in the course of the application. This
is an end-to-end experiment establishing cost under condi-
tions where the user intends to achieve near-zero-overhead
execution.

• We analyze in more depth the overhead of a custom as-
sertion that reveals a (known) bug in pseudojbb. This is a
close approximation of a “real use” scenario.

All experiments confirm that the overhead of DeAL is
small and becomes negligible for assertion evaluation at
roughly normal GC frequencies.

5.1 Methodology and Setup
Our system is implemented on top of Jikes RVM 3.1.0, so we
compare our results to those of the unmodified Jikes RVM
3.1.0, both using the full-heap MarkSweep collector.

We use the DaCapo benchmarks versions 2006-10-MR2
and 9.12-bach. For SPEC JVM98, we use the large input size
(-s100); for DaCapo 2006, DaCapo 9.12, and pseudojbb,
we use the default input size. Many of the DaCapo 9.12
benchmarks do not run on the unmodified Jikes RVM 3.1.0,
so we provide results from only those that do. We perform
our experiments on a Core 2 Duo E6750 machine with 2 GB
of RAM, running Ubuntu Linux 9.04.

We use the adaptive configuration of Jikes RVM, which
dynamically identifies frequently executed methods and re-
compiles them at higher optimization levels. We iterate each
benchmark k times and record the results from the last it-
eration. For microbenchmarks (Section 5.2) k = 10, and
for larger programs k = 4. We repeat this twenty times for
each benchmark. All numbers reported are means of the 20
runs, and our graphs also include 90% confidence intervals.
We execute each benchmark with a heap size fixed at two
times the minimum possible for that benchmark using the
MarkSweep collector. We vary the UNIX environment size
to avoid measurement bias [14].

5.2 Controlled Microbenchmarks
The overhead of DeAL evaluation depends strongly on the
complexity of assertions. For instance, if the user asserts
a property that is a function of the values of k neighbors
of every live object, then the runtime cost will necessarily
be Ω(k). Therefore, the interesting question concerns the
overhead for typical assertions. We used as our evaluation
set the example assertions of Section 2.2 (which mostly
emulate assertions from the recent research literature [6–
8, 11, 16, 17, 19]). The assertions are applied to specially
designed skeletal programs, with appropriate data structures
for each assertion.

The intention of these microbenchmarks is to show what
can be expected as a worst-case execution time for repre-
sentative assertions. These programs do nothing aside from
building the data structure and running an assertion on it.
We used three different input sizes, determining the num-
ber of objects on the heap (counting only objects with types
relevant to the assertion): small (10,000 objects), medium
(100,000 objects), and large (1 million objects).4 The com-
parison is to an unmodified Jikes RVM that runs a regular
System.gc() every time DeAL would check an assertion.
Figure 3 shows the GC time overhead results for all three
input sizes.

The large input size expectedly incurs the most over-
head. The geometric mean of the GC time overhead is 1.25.
That is, assertion checking slows down garbage collection by
just 25%. The absolute worst-case GC time slowdowns rise
to 60-70%. Generally, assertions that access fields perform
worse than those that just check disjointedness or reacha-
bility properties. Note that the object type provided in the
assertion does not serve as an efficient filter, since the pro-
gram is specially designed to create only objects matching
the type examined in the assertion. Thus, the fields of vir-
tually every program-generated object need to be examined.
(This is unlikely to be the case in a realistic setting: object
types will be used to disqualify most objects without needing
to examine their fields.) The three worst performers are as-
sertions “cyclic”, “doubly linked list”, and “sorted”, repro-
duced here:

assertion(∀x ∈ Node : Rc(x)⇒ x.next , null);

assertion(∀x ∈ Node : Rd(x)⇒ (x.next.prev = x));

assertion(∀x ∈ Node : Rc(x)⇒ x.data ≤ x.next.data);

As can be seen from Figure 3, even the worst case slow-
down is quite low, considering that GC time is a small part
of total program execution time. Indeed, even though these

4 The choice of sizes follows the sizes of the DaCapo benchmarks. Across
all DaCapo benchmarks, the geometric mean of the maximum number
of live objects is roughly 100,000. The minimum is about 3,000 and the
maximum is 3.2 million [4]. Therefore, our three setups have roughly the
same spread of sizes as the DaCapo benchmarks.

cyclic

disjoint

disjoint_com
piler

disjoint_dom
inated

dom
inance

dom
inance_people

doubly_linked_list

leaves

pi serializable

sorted

geom
ean

0

50

100

150

200
N

o
r
m

a
li

z
e
d

 G
C

 t
im

e Base

Assert

cyclic

disjoint

disjoint_com
piler

disjoint_dom
inated

dom
inance

dom
inance_people

doubly_linked_list

leaves

pi serializable

sorted

geom
ean

0

50

100

150

200

N
o
r
m

a
li

z
e
d

 G
C

 t
im

e Base

Assert

cyclic

disjoint

disjoint_com
piler

disjoint_dom
inated

dom
inance

dom
inance_people

doubly_linked_list

leaves

pi serializable

sorted

geom
ean

0

50

100

150

200

N
o
r
m

a
li

z
e
d

 G
C

 t
im

e Base

Assert

Figure 3. GC time overhead for representative assertions and skeletal programs, for small (top), medium (middle), and large
(bottom) input sizes.

skeletal programs do very little other than assertion check-
ing, the total execution time overhead (not shown in Fig-
ure 3) has a geometric mean of 1.07 for the small config-
uration, 1.08 for the medium, and 1.13 for the large—i.e.,
assertion checking causes slowdowns of just 7, 8, and 13%,
respectively.

5.3 End-to-end Simple Assertion Cost
We ran a large suite of end-to-end benchmarks to quantify
the overall overhead of our system. Our suite of applica-
tions includes the DaCapo benchmarks, SPEC JVM98, and a
fixed-workload version of SPEC JBB2000 called pseudojbb.
Clearly, the challenge of evaluating overheads over a wide
range of applications is that real assertions are application-
specific. To overcome this difficulty, we added a “generic”
assertion in our runtime that runs at the same frequency as
normally-triggered GC. This assertion checks that there are
no objects on the heap that are an instance of a certain un-
used class. Thus, the assertion should always return true, but
it will cause an instanceof predicate to be tested on every
live object. In addition, we allow this dummy assertion to be
combined with a traversal disjointness test, which incurs the
cost of also writing and checking a traversal ID in the header
of every live object.

Figure 4 shows the overhead of DeAL on GC time for
the benchmark applications. The figure shows three configu-
rations: Base (unmodified Jikes RVM), Assert (instanceof
assertion), and AssertDisjoint (instanceof assertion + dis-
jointness check).

Overall, the geometric mean of the slowdown in GC time
for Assert is 9.10% and for AssertDisjoint is 11.96%. These
overheads are quite low and become vanishingly small when
computed as a percentage of total execution time, instead
of just GC time: the geometric mean of the total execution
slowdown for both kinds of assertions is below 1.9%. (The
mean number of garbage collections for these benchmarks is
20.3, with a standard deviation of 25.9.)

5.4 Representative Example
To evaluate the overhead of a real use of DeAL, we sim-
ulated, with pessimistic assumptions, the process by which
DeAL would be used to detect a bug in practice. We picked
the most complex of the bugs previously identified in pseu-
dojbb using heap assertions [1]. The bug consists of remov-
ing Order objects from the orderTable data structure. These
orders should then become unreachable and be garbage
collected. However, the objects are also erroneously refer-
enced from Customer objects, causing a memory leak. (The
bug fix consists of unlinking Order objects from Customers
when they are removed from the orderTable.) Our assertion
checks whether the objects removed from orderTable can
be reached. This can be effected with a simple variant of the
programming pattern of Section 4. Namely, once an object
is removed from the orderTable we mark it by assigning a
special value to one of its fields. The DeAL assertion then

becomes just ∀x ∈ Order : x.field , specialValue. Since
the ∀ iteration is over live objects and we expect our removed
objects to be unreachable, no live object should have the spe-
cial value.

The bug is hard to detect because Order objects are
removed from the orderTable only at rare program in-
stances. Specifically, the orderTable is occasionally com-
pletely emptied and then destroyed. Since the programmer
might not know how often this happens, we measured the
cost of employing DeAL at high frequency: the assertion is
evaluated once every 5 times it is encountered. The high fre-
quency of assertion checking causes much more frequent
GCs than normal program execution without DeAL: the
mean of the number of GCs (over 20 executions) rises from
2.85 to 12.7, and the total GC cost is 3.37 times higher for the
version employing DeAL. However, even this high GC over-
head is hardly noticeable in terms of total program execution
time. The slowdown is merely 6.1%: the assertion-checking
program runs in 3.87s vs. 3.65s for the original program run-
ning on an unmodified VM.

6. Related work
Our work is related to a wide range of techniques, both static
and dynamic, for checking properties of data structures.

Research in static analysis has yielded a significant body
of sophisticated techniques for modeling the heap and an-
alyzing data structures at compile-time. The strength of
static analysis is that it explores all possible paths through
the program: a sound analysis algorithm can prove the ab-
sence of errors, or even verify the full correctness of a data
structure implementation. The weakness of static analysis is
that many properties, particularly those involving pointers
and heap-based structures, are undecidable in principle [15],
and extremely difficult to approximate precisely in prac-
tice [5, 12, 18, 24]. These problems are particular severe for
languages such as Java, which include many hard-to-analyze
features such as reflection, bytecode rewriting, and dynamic
class loading.

Our work is most closely related to several recent tech-
niques for dynamically analyzing heap data structures, in-
cluding two that check properties at garbage collection time.
GC Assertions provides a set of heap assertions that, like
DeAL, are checked by the garbage collector at runtime [1].
This work differs from DeAL in two critical ways. First,
it does not provide a full language for heap properties, but
rather a fixed set of assertions that cannot be composed. Sec-
ond, it does not check assertions at the time they are encoun-
tered, but instead defers checking until the next regularly
scheduled garbage collection. While this choice improves
performance, it limits the kinds of heap properties to those
that can be checked at any time, since they might, for exam-
ple, be deferred to a point at which they are knowingly but
temporarily invalidated.

dacapo2006.antlr

dacapo2006.bloat

dacapo2006.chart

dacapo2006.eclipse

dacapo2006.fop

dacapo2006.hsqldb

dacapo2006.jython

dacapo2006.luindex

dacapo2006.lusearch

dacapo2006.pm
d

dacapo2006.xalan

dacapo2009.luindex

dacapo2009.lusearch

dacapo2009.xalan

pjbb2000.pjbb2000

jvm
98._201_com

press

jvm
98._202_jess

jvm
98._205_raytrace

jvm
98._209_db

jvm
98._213_javac

jvm
98._222_m

pegaudio

jvm
98._227_m

trt

jvm
98._228_jack

geom
ean

0

50

100

150

200

N
o
r
m

a
li

z
e
d

 G
C

 t
im

e

Base

Assert

AssertDisjoint

Figure 4. GC time overhead of our system for end-to-end benchmarks.

The QVM system provides a richer set of heap checks,
called heap probes, which QVM performs using garbage
collector machinery at the point they are requested [3]. The
PHALANX system extends on QVM to add checks for
reachability and dominance [22] while parallelizing heap
probe execution. Both systems allow the checking of prop-
erties that can require multiple heap traversals to check,
significantly impacting performance. The authors explore
both sampling (at a user chosen rate) and parallelization to
control the cost. We believe that DeAL represents a sweet
spot between GC Assertions and QVM: unlike QVM, DeAL
controls overhead by guaranteeing that all properties can
be checked in a single heap traversal, and by only check-
ing these properties at or near a regularly scheduled collec-
tion; but unlike GC Assertions, DeAL offers a full asser-
tion language and a clearer semantics regarding the timing
of checks.

The Ditto system reduces the cost of data structure check-
ing by incrementalizing the checking code itself [19]. This
system provides a significantly different tradeoff than DeAL:
it supports arbitrary checks written procedurally in Java it-
self, but even with incrementalization incurs a significant
overhead (in the range of 3X to 10X slowdown).

A number of systems developed for data structure re-
pair include a method for detecting data structure errors. Al-
though these checking subsystems are not the focus of the
work, they highlight the difficulty of detecting such errors.
The STARC system uses programmer-written repOk meth-
ods to detect errors, which incur a very substantial overhead
(30X) when run frequently, and even a 20% overhead when
run only at the point of failure [8]. Demsky et al. present a
technique based on Daikon to detect heap invariants and re-

pair broken data structures [6]. While the checking overhead
is difficult to evaluate (since it is presented in milliseconds),
the paper describes it as “a rather large overhead.”

7. Conclusions and Future Work
We have presented the DeAL language for assertions that are
evaluated in a single traversal of live objects, implemented
as a variation of a garbage collection traversal. DeAL is a
rich language that can express many useful properties as
logical combinations of reachability conditions and local
comparisons. At the same time, the overhead of DeAL on a
program’s total execution time remains very low—typically
well below the 5% level. Our implementation of DeAL is
available for public download 5.

Although the current language forms a nicely closed set
of features, there are clear directions of interesting future ex-
tensions. One possibility is to extend DeAL from an asser-
tion language to a general query language that can produce
new data structures. The typical way to define a declarative
query language is by allowing unbound logical variables. For
instance, one can imagine a query primitive, used with first-
order logic formulas. The matching values for unbound vari-
ables become the tuples returned as the result of the query.
For example, one might produce a new Java set containing
all positive elements of a list by writing:

Set posval =

query(x.val, (x ∈ Node ∧ Rd(x))⇒ (x.val > 0));

The first part, x.val, of the above query determines the
form of the result as a projection of the matched values,

5 http://www.cs.umass.edu/˜creichen/gcassert/index.html

while the second contains the formula defining the desired
x values.

Such a query language is easy to define and can perform
useful computation during garbage collection. The chal-
lenge, however, is that querying to produce results that are
subsequently used in the Java program means that the query
evaluation can no longer be skipped. Thus, garbage collec-
tion overhead may need to be incurred quite often, mak-
ing the approach inefficient. A specific danger is that the
user will employ the query mechanism for properties that
can be evaluated much more efficiently without a traversal
of all live objects. Therefore, adding querying capabilities
to a GC traversal requires careful thought. Either somehow
the queries need to be limited to expensive “whole-heap”
properties, or the querying needs to be combined with some
mechanism for speculative execution, so that the Java pro-
gram can proceed correctly regardless of whether or not the
query was evaluated.

Another interesting possibility is that of allowing arbi-
trary Java methods in assertions, as long as the methods al-
ways terminate and do not have externally observable side-
effects. This property is hard to enforce statically (through
language design or static analysis) but can be enforced dy-
namically via resource limits (e.g., sandboxing and time-
outs). Such methods will be invoked on every visited ob-
ject during a GC traversal and can use the values of DeAL’s
R predicates. At an extreme, one can consider a variant of
DeAL where all logical operations (i.e., ∃, ∀, boolean con-
nectives) are not part of the language. Instead, the language
just offers the ability to call Java methods and have Java
methods reference R predicates, in a co-routine fashion. In
this way, the main ideas of DeAL can be reduced to a mod-
ified GC traversal that guarantees every object is visited ex-
actly once and at visit time the value of reachability predi-
cates is fully determined. This is an alternative design that
maximizes low-level control and expressiveness of the lan-
guage for local computations, yet loses the disciplined ele-
gance of the declarative DeAL design.

In all, we consider DeAL to be an excellent ambassador
of several interesting ideas and directions that are likely to
be important in future research. These include, of course,
DeAL’s hallmark property of single-traversal computations,
but also the smooth integration of declarative, logic-based,
resource bounded languages in a general-purpose program-
ming language. We believe that the DeAL design will be
multiply influential in such endeavors.

Acknowledgments This work was funded by the NSF
(CCF-0917774, CCF-0934631, CCF-0541018, CCF-
0830174, CCF-0916810, and IIS-0915071) and by Log-
icBlox Inc.

References
[1] E. E. Aftandilian and S. Z. Guyer. GC assertions: using the

garbage collector to check heap properties. In PLDI ’09: Pro-

ceedings of the 2009 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 235–244,
New York, NY, USA, 2009. ACM.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In OOPSLA
’00: Proceedings of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and appli-
cations, pages 47–65, New York, NY, USA, 2000. ACM.

[3] M. Arnold, M. Vechev, and E. Yahav. QVM: an efficient run-
time for detecting defects in deployed systems. In OOPSLA
’08: Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and appli-
cations, pages 143–162, New York, NY, USA, 2008. ACM.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN confer-
ence on Object-Oriented Programing, Systems, Languages,
and Applications, pages 169–190, New York, NY, USA, Oct.
2006. ACM Press.

[5] P. T. Darga and C. Boyapati. Efficient software model check-
ing of data structure properties. In ACM Conference on
Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 363–382, 2006.

[6] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H.
Perkins, and M. Rinard. Inference and enforcement of data
structure consistency specifications. In ISSTA ’06: Proceed-
ings of the 2006 international symposium on Software test-
ing and analysis, pages 233–244, New York, NY, USA, 2006.
ACM.

[7] B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid.
Assertion-based repair of complex data structures. In ASE
’07: Proceedings of the twenty-second IEEE/ACM interna-
tional conference on Automated software engineering, pages
64–73, New York, NY, USA, 2007. ACM.

[8] B. Elkarablieh, S. Khurshid, D. Vu, and K. S. McKinley.
STARC: Static analysis for efficient repair of complex data. In
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 387–404, 2007.

[9] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 234–245. ACM,
June 2002.

[10] N. Immerman. Descriptive Complexity. Springer, 1998.

[11] D. Jackson. Object models as heap invariants. Programming
methodology, pages 247–268, 2003.

[12] S. McPeak and G. Necula. Data structure specifications via
local equality axioms. In Computer Aided Verification, pages
476–490, 2005.

[13] B. Meyer. Object-Oriented Software Construction. Prentice
Hall PTR, 2nd edition, 1997.

[14] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney.
Producing wrong data without doing anything obviously
wrong! In ASPLOS ’09: Proceeding of the 14th interna-
tional conference on Architectural support for programming
languages and operating systems, pages 265–276, New York,
NY, USA, 2009. ACM.

[15] G. Ramalingam. The undecidability of aliasing. ACM
Transactions on Programming Languages and Systems,
16(5):1467–1471, 1994.

[16] D. Rayside and L. Mendel. Object ownership profiling: a
technique for finding and fixing memory leaks. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 194–
203, New York, NY, USA, 2007. ACM.

[17] D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan, J. Dolby,
A. Kershenbaum, and L. Koved. Validating structural proper-
ties of nested objects. In OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications, pages 294–
304, New York, NY, USA, 2004. ACM.

[18] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. In ACM Symposium on the Principles of
Programming Languages, pages 105–118, 1999.

[19] A. Shankar and R. Bodı́k. DITTO: automatic incrementaliza-
tion of data structure invariant checks (in Java). In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 310–
319, New York, NY, USA, 2007. ACM.

[20] Standard Performance Evaluation Corporation. SPECjvm98
Documentation, release 1.03 edition, 1999.

[21] Standard Performance Evaluation Corporation. SPECjbb2000
Documentation, release 1.01 edition, 2001.

[22] M. Vechev, E. Yahav, G. Yorsh, and B. Bloom. PHALANX:
Parallel Checking of Expressive Heap Assertions. In ACM
International Symposium on Memory Management, 2010.

[23] P. R. Wilson. Uniprocessor Garbage Collection Techniques.
In Y. Bekkers and J. Cohen, editors, ACM International Work-
shop on Memory Management, number 637 in Lecture Notes
in Computer Science, pages 1–42, St. Malo, France, Sept.
1992. Springer-Verlag.

[24] K. Zee, V. Kuncak, and M. Rinard. Full functional verification
of linked data structures. In ACM Conference on Program-
ming Languages Design and Implementation, pages 349–361,
2008.

