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Abstract. So, you can write a program that generates other programs.
Sorry, . . . not impressed. You want to impress me? Make sure your
program-generating program only produces well-formed programs. What
is “well-formed”, you ask? Well, let’s start with “it parses”. Then let’s
get to “. . . and type-checks”. You want to really impress me? Give me an
expressive language for program generators in which any program you
write will only generate well-formed programs.
In this briefing, we will sample the state-of-the-art in program genera-
tion relative to the above important goal. If we want to establish program
generation as a general-purpose, disciplined methodology, instead of an
ad hoc hack, we should be able to check the generator once and immedi-
ately validate the well-formedness of anything it might generate. This is
a modular safety property for meta-programs, much akin to static typing
for regular programs.
Some of the emphasis will be on our own work on “class morphing”
(or just “morphing”): the statically-safe adaptation of the contents of a
class, depending on other classes supplied as parameters. Along the way,
lots of other techniques will be discussed and contrasted, from different
template facilities, to syntactically-safe program generation, to program
staging techniques.

1 Introduction

A program generator (or just generator) is a program that generates programs
expressed in a high-level language. The language in which the generator is writ-
ten (commonly called the host or the meta language) and the output language
(commonly called the object or target language) do not have to be the same,
although they often are.1

Generators arise in so many practical scenarios that one may wonder whether
they deserve a special name, or they are merely “programs”. Generators appear
as wizards or refactorings in IDEs, as template or macro libraries, as imple-
mentations (compilers) of domain-specific languages (DSL), as high-performance
optimizing libraries, as modularity (e.g., aspect-oriented) mechanisms, as frame-
works (e.g., for dependency injection), and much more.

1 A closely related concept is that of a program transformer, which modifies an existing
program, instead of generating a new one. The main principles and ideas behind
generators and transformers are virtually identical. In this text, we write “generator”
to mean “generator or transformer”.



Generators exist because of the desire, as old as programming itself, to auto-
mate, elevate, modularize or otherwise facilitate program development. In prac-
tice, generators are one of many technologies for enabling modularity and soft-
ware reuse—other examples are binary or source libraries, application frame-
works, component technologies, and services. However, generators are often the
technique of last resort. They are used for programming automation patterns
not covered by other, conventional technologies. Generators offer the potential
for more advanced optimizations, syntactic convenience, or static checking than
plain libraries or component technologies.

Generators are also an intellectually fascinating topic: what can be more
interesting to a computer scientist than computing programs? The canonical
sensationalist example is self-generating programs. For example, we can have:

((lambda (x) (list x (list 'quote x)))

'(lambda (x) (list x (list 'quote x))))

in Lisp or:

main(a){a="main(a){a=%c%s%c;printf(a,34,a,34);}";printf(a,34,a,34);}

in C.

The power and appeal of generators comes at a cost, however. Programmers
often view program generation technology as low-level and largely ad hoc. A
common complaint concerns debugging: an error in the generated program can be
very hard to debug and may require full understanding of the generator itself. In
more general terms, the fault is due to lack of modular reasoning. The generator
author cannot easily consider what the generator will do for every input, only
for the inputs he/she has tested. The generator user (i.e., the end programmer)
should not have to reason about the code produced by the generator, only about
the way he/she uses it.

This need is the focus of our briefing. We discuss structured program gen-
eration techniques, i.e., techniques that can offer guarantees on the correctness
(w.r.t. static semantics, i.e., at most type-correctness) of generated programs
before these are generated, i.e., for all inputs to the generator. We will refer to
this property as modular safety of a generator.2

Ensuring that a generator only produces well-formed programs (typically
under some assumptions on the generator input) is practically important and
intuitively appealing. Viewed as a type-checking matter, this property is quite
similar to static typing of regular programs. Much like in standard static typing,
we want to statically check the generator and be sure that no type error arises
during its run time, which happens to be the compile time of the generated
program.

If the problem of structured program generation is solved, “program gener-
ation” will become mere “programming”, raising the level of programming au-
tomation without sacrificing high-level, modular reasoning. Consider: if a gen-

2 This is also occasionally called meta type-safety.



erator that can do most useful things that current generators do can also be
checked modularly, i.e., for all possible inputs, then why does it matter that it
is a generator? The output program will never need to be inspected by the end
programmer. Instead, we might prefer to mentally model what the generator
does as program generation, while in reality we will not care whether a program
is actually ever generated.

In the next sections, we present current program generation mechanisms
and levels of modular safety, before focusing on state-of-the-art techniques for
modular safety of generators. Our goal is not to offer an exhaustive survey of
the literature but to inform of different levels of reasoning power, with selected
pioneering or representative work in each one.

2 Kinds of Generation and Program Transformation

There is a large variety of mechanisms that can be used to generate or transform
programs—for instance, see Reference [12] for a representative comparison. We
briefly survey the general classes of such mechanisms, for reference in future
sections.

Generation of programs as text. The most basic technique for program gener-
ation is that of producing character strings containing the text of a program,
which is subsequently interpreted or compiled. For instance, a common approach
for generating database queries (in SQL) inside an imperative language program
is via string concatenation—for instance:

sqlProg = "SELECT name FROM" + tableName + "WHERE id = " + idVar;

Note the distinction between target language identifiers (name, id) and meta-
variables (tableName, idVar). The latter correspond to parts of the generated
program text that may vary, depending on the generator’s execution. The former
are fixed and need to have a meaning in the context of the generated program.
(We discuss the topic of what generated names may refer to in the next section,
under “Scoping and Hygiene”.)

Text-based program generation is readily available in most programming
settings, yet clearly low-level. There is nothing in the generator code to indicate
that the string that is being assembled represents a program. Therefore, this
program could have errors at any level of program processing (lexical analysis,
parsing, static semantics, etc.).

Syntax tree manipulation. A more sophisticated, yet commonly used, technique
is to generate the syntax tree of a program, instead of its unstructured text.
This requires defining host language concepts that correspond to the syntactic
structure of the target language—an idea we will revisit in the next section. For
example, our SQL-generating program could be written as follows:

sqlProg = new SelectStmt(new Column(name), table,

new WhereClause(new Column(id), idVar));



The generated program can be produced by either pretty-printing the syntax
tree and invoking a traditional language processor (e.g., a compiler for the target
language) or by interfacing with the post-parsing stage of such a target language
processor.

Code templates, quoting. Generating programs by assembling syntax trees can
be tedious, even in languages with pattern-matching constructs [54]. Therefore,
several facilities for program generation (e.g., [2,35,43,56], among many) offer the
ability to generate program fragments by “quoting” the code to be generated, i.e.,
using code templates with constant and variable parts. This requires language
constructs for generating program fragments in the target language (typically
called a quote—e.g., “‘[...]”) as well as for supplying values to fill in holes in
the generated syntax tree (typically called an unquote or escape—e.g., “#[...]”).
For instance, our earlier code fragment might be written as:

sqlProg = ‘[SELECT name FROM #[table] WHERE id = #[idVar]];

As can be seen, this approach (often termed meta-programming with concrete
syntax [54]) approximates the syntactic simplicity of a plain evaluated program,
significantly simplifying the program text of the generator.

Macros. Another meta-programming approach of widespread use is macros:
reusable code templates with pre-set rules for parameterizing them and yielding
different generated program fragments. A typical macro only allows substitu-
tion of parameters in its body, as opposed to more general program generation
control flow—e.g., a loop that generates an unbounded number of statements.
A reference facility for high-level macros is the Scheme macro system [46]. A
swapping macro, replacing its uses by an expression that swaps two values, can
be written as follows:

(define-syntax-rule (swap x y)

(let ([tmp x])

(set! x y)

(set! y tmp)))

Macro languages can vary greatly in sophistication and are difficult to cate-
gorize. A common element is that they blend the distinction between generator
and generated program. The generated fragment is typically not treated as a
data structure (e.g., a syntax tree) but instead replaces program expressions
wherever it occurs. Thus, the usual relationship between meta-program and ob-
ject program is inverted: in macros, the default, undistinguished program text is
as-if generated and augmented/transformed by the output of the generator (i.e.,
the macro), whereas in typical program generation undistinguished program text
is part of the generator and generated code is clearly marked.



Generics. Common (type-)genericity mechanisms in programming languages
may occasionally be powerful enough to be considered general-purpose program
generation facilities. Genericity refers to the ability to parameterize a code tem-
plate with different static types. Mechanisms such as C++ templates work by
producing specialized code for each concrete type parameter. Furthermore, the
specialization mechanism is powerful enough to allow conditional reasoning, and
templates can be recursive, thus allowing full Turing-complete computation [53].
C++ templates are also explicitly able to compute over compile-time constants,
using regular C++ operators. This capability is used to define a compile-time
adder in the following code fragment:

template<int X, int Y>

struct Adder {

enum { result = X + Y };

};

There are several standard techniques that have harnessed the expressive-
ness of C++ templates to yield arbitrary program generation capabilities, as
discussed in References [12,52].

Specialized languages. Beyond the above classes of mechanisms, there are sev-
eral specialized languages for program generators. For example, aspect-oriented
programming facilities can be viewed as implicit transformations of a program
[28,29]. This is most evident in features such as inter-type declarations:

aspect S {

declare parents:

Car implements Serializable;

}

The above aspect adds a supertype (Serializable) to an existing class Car.
As in more overt program generation/transformation techniques, we can ask the
question of what guarantees are offered on the generated program, when the
aspect is generic and can apply to yet-unspecified classes.

In Section 4, we will see more examples of languages specifically designed for
expressing meta-programs.

3 Kinds of Generator Safety

The main focus of this briefing is on statically-safe (or just safe for brevity) pro-
gram generation techniques: certifying the generator as “safe” should guarantee
the well-formedness of any generated program.

One can perhaps debate whether the static safety of a generator is an essential
feature. After all, the generated program will be checked statically before it
runs, so why try to catch the same errors before the program is even generated?
The answer is that static checking is not mainly intended to detect errors in
the generated program or even errors in the generator input, but errors in the



generator itself. Such errors are typically mismatched assumptions: the generator
fails to take into account some input case, so that, even though the generator
writer has tested the generator under several inputs, other inputs result in badly-
formed programs. Although these errors will be detected at compile time of the
generated program, this is (at least as late as) the generator’s run time. Thus,
errors of program well-formedness, which a programmer would hope to have
eliminated once and for all, can arise dynamically, as far as the generator is
concerned.

Consider a simple scenario in a realistic generator. The generator examines
an input program, and for every class containing a designated method—e.g.,
register—produces registration code that invokes the method. The generated
code will fail to compile if the register method is private. This is an error
in the generator itself! The generator writer has failed to take into account
the possibility of private register methods. (Multiple fixes may be possible:
the generator could ignore non-accessible methods, or the generated code could
invoke them indirectly—e.g., via reflection.) Even worse, the generator writer
could have extensively tested his/her code with large, realistic inputs, just never
with private register methods.

As discussed in the introduction, tools that only generate well-formed pro-
grams are often called structured meta-programming tools. The term “struc-
tured” only captures the basic premise, however: there are several levels of well-
formedness and we need to distinguish them for purposes of precise characteri-
zation.

Lexical and syntactic well-formedness. The first level of static safety for gener-
ators is safety with respect to lexical and syntax checking. That is, such safety
entails employing techniques for building or checking generators so that any
generated/transformed program is guaranteed to pass the lexical analysis and
parsing phases of a traditional compiler. A common way to satisfy this property
is by encoding the syntax of the object language using the type system of the
host language. For instance, consider traditional syntax checking expressed as
context-free grammar (CFG) rules. Rules for top-level syntactic categories of
an imperative language (statement, declaration, expression) will typically take
a form such as that below:

AST ::= Stmt

| Expr

| Decl

Stmt ::= IfStmt

IfStmt ::= "if" "(" Expr ")" Stmt

...

The above CFG specification can map to types for values that the generator
manipulates, as well as constructors for these values. This yields a subtyping
hierarchy3 where types Stmt, Expr, and Decl are subtypes of type AST and

3 Alternatively, one can represent a grammar as an algebraic data type (ADT), for
equivalent functionality, with respect to our static safety guarantees.



type IfStmt is a subtype of Stmt. Furthermore, values of type IfStmt are created
using a constructor that accepts an Expr value and a Stmt value. If the generator
type checks, then the values it manipulates are guaranteed to conform to the
induced type constraints, which means that they are fragments of syntactically-
correct code in the target language, per the CFG rules. There is no possibility
of, e.g., creating an IfStmt with a Stmt instead of an Expr in the condition of
the generated if code fragment.

Scoping and hygiene. Programming languages typically support variables, which
obey scoping rules: each variable is first declared and then used, and the rules
define where the declaration starts having effect and what variables are visible
at each program point. When an identifier (i.e., a name) is used to denote a
variable, we say that the identifier is a reference to the variable, or that the
identifier binds to the variable declaration.

A correctness property of great interest for generated programs concerns the
appropriate binding of identifiers, i.e., ensuring that produced variable references
are bound to the intended variable declaration. Consider an example of meta-
programming with concrete syntax:

expr = ‘[ for (int i = 0; i < #[boundExpr]; i++) { #[bodyExpr] } ];

The generated code fragment introduces a new identifier, i, in a binding posi-
tion, i.e., in a declaration. Can this declaration bind references that the generator
programmer did not intend? For instance, if boundExpr holds an expression from
the input program, could this expression refer to a variable i, bound to the newly
declared i? Conversely, can declarations of the input program accidentally bind
references in the generated code? Mistakes in binding resolution may or may not
appear as static checking errors—e.g., binding to an unintended variable may
not be a type error, depending on the declared types and the static semantics
of the target language. Thus, the problem is a semantic one: even well-typed
programs may have a different meaning than what was intended.

The absence of unintended name binding is typically called hygiene. Ques-
tions of hygiene have been studied in depth, over some-30 years of research
in meta-programming. The same issues arise in generics (e.g., C++ templates
perform hygienic renaming), in quoting/meta-programming with concrete syn-
tax [45,51], and, most prominently, in macros [10,17,32,50].

Macros have been the first setting where the question of hygiene has been
examined [32]. In macros, there is a clearly designated part of the generated
program that comes from the input program, and another that comes from
the macro definition. Therefore, the issue of hygiene takes a simple form: a
macro system is hygienic if the familiar lexical scoping rules (i.e., an identifier is
bound to a declaration in its lexical context) are obeyed. Hygienic macros are a
fundamental feature of Scheme [17,46]. Racket, a Scheme descendant, goes even
further by implementing the whole language using code generation via hygienic
macros [50].



Hygienic meta-programming systems enforce their hygiene property
automatically—typically by performing variable renaming to eliminate ambigu-
ity. Therefore, hygiene is a rather orthogonal property to the rest of the mech-
anisms we discuss in this briefing. Most of the research in hygienic mechanisms
has focused on designing and implementing the right scoping mechanisms for
meta-programs, not on finding errors (with no possibility of automatic fixes) in
the generator code.

Full well-formedness. Extrapolating from the above kinds of statically-safe pro-
gram generation, it is reasonable to ask how easy it is to achieve full static safety.
That is, to write generators in such a way that every generated program is guar-
anteed to pass any static check in the target language. This is a hard property
to ensure: static checks beyond the syntax phase (i.e., in type checking or other
semantic analysis) require context information, which is tough to maintain by
merely analyzing the generator. A rich host language can express generators with
arbitrarily complex structure, whose control-flow paths map to different static
contexts of generated programs.

To see the problem in an example, consider a program generator that emits
programs depending on two input-related conditions:

if (pred1())

emit( ‘[int i;] );

...

if (pred2())

emit( ‘[i++;] );

If, for some input, pred2 does not imply pred1 (or if the first if is unreach-
able), then the generator can emit the reference to variable i without having
generated the definition of i. This is an error in the generator and it should
be the responsibility of the infrastructure for generator development to prevent
such errors. (Of course, it is rather easy to catch this error at generation time of
the i++ fragment, but this just shifts the blame: the generator does not produce
an invalid program, but fails to produce anything.)

As the above example shows, static safety for generated programs corre-
sponds to arbitrarily complex properties of the generator’s control- or data-flow.
In our example, determining the reachability of the statement emitting the dec-
laration of variable i is a complex program analysis property.

4 Mechanisms for Fully Structured Generation

In order to achieve guarantees of full static safety for generators, we need to
place restrictions on what generators are expressible in a language or develop-
ment setting. As in any other kind of approach for establishing complex program
properties, the restrictions can take many forms: we can limit the expressiveness
of the host language for generators via disciplined syntactic or type-system con-
structs, we can permit only generators that successfully pass an analysis phase,
and more. We see such mechanisms next.



4.1 Multi-Stage Programming

A simple way to ensure the static safety of generated programs is to map them
one-to-one to fragments of the generator’s code. As a result, the generator and
the generated program can be viewed as one, are type-checked by the same
type system, and some parts of the program are merely evaluated later (i.e.,
generated). This approach is commonly called staging [27] and the program is
called multi-stage or staged. Multi-Stage Programming (MSP) is the general
paradigm for writing staged programs. MSP is a powerful and general approach,
yet with significant limitations—e.g., a statement of the generator code is not
allowed to produce arbitrarily many declarations in the generated program.

MSP views program generation as the addition of extra stages to regular
programs. Instead of a plain execution stage (possibly internally broken into
multiple stages, such as compilation and object execution) we have at least
a generation stage and an execution phase. Programmers make use of a set of
language constructs that introduce more stages for explicitly annotated segments
of their code, so that these segments are evaluated at different times. At a later
time, the previously (partially) evaluated, in earlier stages, parts of the program
can be replaced by simpler constructs, such as constant values and statements
with linear control flow.

The origins of staging constructs are found in languages like MetaML [49]: a
statically-typed, multi-stage programming language, as an extension of Standard
ML/NJ [1]. MetaML introduced four language constructs:

– the meta-brackets that delay a computation e.g., <40+2>. Evaluation cannot
happen and the computation is considered frozen. These are future-stage
computations, and can be thought of as generated code.

– the escape operator, ~x for some variable x, can be used only inside meta-
brackets—e.g., <40+~x>. This operator permits calculations at the current
stage and splices the result inside the delayed expression for later use. This
allows evaluation steps to take place during program generation, i.e., to vary
the generated code.

– run x forces the evaluation of a meta-bracket expression. Essentially, it com-
piles the computation at run-time and runs it to produce the result.

– lift x allows the conversion of a value—the result of the evaluation of an
expression that does not contain a function—into code.

Consider a function whose body contains a mix of staged and unstaged parts.
What happens when we evaluate that method with an argument list consisting
of some known values and some to-be-supplied at a later stage? MSP evaluates
the unstaged and escaped parts of the program, utilizing information that is
available at the current stage. Then it produces a residual program that is going
to be evaluated at a subsequent stage, when the rest of the parameters are
available. This is similar to a partial evaluation (PE) of the program [11, 25],
where the unstaged and escaped parts are evaluated, with staged parts left for
later evaluation. (Staging and partial evaluation are closely related concepts [24,
27]: staging can be seen as instructing a partial evaluator as to what parts of the



program to partially evaluate. Conversely, automatic partial evaluation can be
seen as computing the staging annotations automatically—a step called binding-
time analysis in the PE literature [26].)

Applications of staging include the implementation of domain-specific lan-
guages [18], building compilers from interpreters [48] and the “finally tagless”
approach to building efficient interpreters [6].

We next review staging in more detail via two modern staging implementa-
tions.

BER MetaOCaml. MetaOCaml [5] is a bytecode MSP compiler for OCaml
and BER MetaOCaml [30] is its continuation: a heavily re-factored version of
the MetaOCaml compiler that is more extensible and easier to integrate with
releases of the regular OCaml compiler.4

We illustrate staging via the folklore example of a simple power function,
which has been used for demonstrating partial evaluation (and staging) since at
least 1977 [14]. The power function is defined recursively using the basic method
of exponentiation by squaring. If the exponent is even we square the result of
raising x to half the given power. Otherwise, we reduce the exponent by one and
we multiply the result by x.

let even n = (n mod 2) = 0;;

let square x = x * x;;

let rec power n x =

if n = 0 then 1

else if even n then square (power (n/2) x)

else x * (power (n-1) x);;

We can stage the above function in the MetaOCaml code below to produce
power functions specialized for a certain n—e.g., 5. The staged version of the
function is identical to the original, with the mere addition of staging annota-
tions/constructs. BER MetaOCaml has three of the four MetaML constructs
mentioned earlier: meta-brackets, escape and run. In this example, although n

is statically known, x remains a variable: its value will only be known at a later
evaluation stage.

open Runcode;;

let even n = (n mod 2) = 0;;

let square x = x * x;;

let rec powerS n x =

if n = 0 then .<1>.

else if even n

then .<square .~(powerS (n/2) x)>.

else .<.~x * .~(powerS (n-1) x)>.;;

let power5 = !. .<fun x -> .~(powerS 5 .<x>.)>.;;

4 More historical details about the evolution path of MetaOCaml can be found at “A
brief history of (BER) MetaOCaml”, http://okmij.org/ftp/ML/MetaOCaml.html#
history .

http://okmij.org/ftp/ML/MetaOCaml.html#history
http://okmij.org/ftp/ML/MetaOCaml.html#history


Note the structure of the above code. The return value of the powerS function
is a staged computation, but it includes a part that can be evaluated, which is the
recursive application. The result (i.e., the code/AST of the result) is spliced back
into the staged computation of the final value, power5: a specialized function, to
be available to later stages.

The operator !. is aliased to Runcode.run—the “run” functionality of MetaO-
Caml. This function compiles the staged lambda function, and links it back as
the (specialized) code to be executed in the body of the power5 function. Simply
put, !. transfers our code from the world of representations of functions, (int

-> int) code, to the world of functions, (int -> int).
BER MetaOCaml lets us inspect the code that is generated from our staged

algorithm, using the print code function. The result looks like the following
snippet. As the reader observes, the recursive applications are performed at
compile-time, partially evaluating the function. The result is the residue program
below:

fun x -> x * (square (square (x * 1)))

In the example, the square function is referred from a future-stage compu-
tation using an identifier (square) bound at the present stage. This function is
characterized as cross-stage persistent.

Lightweight Modular Staging. Rompf et al. introduced MSP support in
Scala with Lightweight Modular Staging (LMS) [41]. In LMS, the programmer
has just one staging construct available, in the form of a user-level type. To
indicate that, e.g., an expression does not have a current-stage integer value but
a future-stage integer value, the user changes the declared type of the expres-
sion from Int to Rep[Int]. The unary abstract type constructor Rep[ ] indicates
future-stage values. Types for other values, as well as the exact version of (over-
loaded, current or future stage) operators are inferred.

LMS follows a library-based approach, relying on a special and extensible
version of the Scala compiler called Scala-Virtualized [39]. In Scala-Virtualized,
a Scala program is represented in terms of function calls, e.g., the control-flow
construct do b while (c) is represented by the doWhile(b, c) function call. In
this way, all interesting program statements are mapped to function calls. Even
method calls are represented as infix functions—e.g., x.a(y) as infix a(x,y).
This technique permits operations to be added to the type Rep[T] which also
supports every method of a bare T. Staging power in LMS resembles the following
code:

def even (n: Int) = n % 2 == 0

def square (x: Rep[Int]) = x * x

def powerS (n : Int, x : Rep[Int]) : Rep[Int] = {

if (n == 0) 1

else if (even(n)) square(powerS(n/2, x))

else x * powerS(n-1, x)

}



def powerTest(x : Rep[Int]) : Rep[Int] = powerS(5, x)

The input that needs to be designated as future-stage is the base x. This is
the dynamic part of this snippet. All other is static input and will participate
in compile-time evaluation. The type constructor Rep in, e.g., Rep[T] has the
property that all operations on T are applicable to Rep[T] as well and operations
on it will be generated later.

The core difference of LMS from other staging approaches is that binding
times (i.e., stages) are distinguished only by types. The simplicity of the type-
based approach to staging has been a significant boost for LMS, and owes much
to the power of the Scala type system. In LMS applications, regular computa-
tions are routinely switched to staged computations with small, local changes to
declared types.

Practical Notes. The two modern incarnations of staging concepts (BER
MetaOCaml and LMS) integrate several practical enhancements and have seen
significant applications. In both technologies, the user has multiple ways to gen-
erate code. For example, in LMS, CUDA code can be generated instead of Scala,
and in BER MetaOCaml the user can compile directly to native code instead
of the bytecode-generating, Runcode.run function. A notable recent application,
with versions for both BER MetaOCaml and LMS, is the Strymonas library [31],
which offers highly-optimized streaming functionality (e.g., map, filter, zip com-
binators), often over an order-of-magnitude faster than conventional libraries.
More generally, staging, using LMS, has been proposed as a key part of an
ambitious development methodology for high performance without sacrificing
abstraction [40]. The methodology has seen several instances of successful appli-
cation. It centers around the creation of domain-specific languages (DSLs) that
obtain high-performance implementations via interpreters staged to become (ef-
fectively) compilers.

4.2 Class Morphing

Class morphing is a technique for writing program generators that take classes
as input and generate new type-safe classes, based on the structure of the in-
put ones. Morphing has been implemented as MorphJ [16, 19–21]: a language
that adds compile-time reflection capabilities to Java. A programmer is able to
capture compile-time patterns and encode them in (meta-)classes.

In MorphJ, a generator Gen taking as input a class C corresponds to a meta-
class Gen parameterized by the input C, similar to Java generics (Gen<C>). From
this perspective, morphing is a strong generalization of generics: for different
values of the type parameters of a class Gen, radically different contents may
be generated, which are the output of the generator. The body of the generator
class then contains regular Java code mixed with MorphJ annotations describing
the reflection (i.e., content-inspection) patterns that guide generation.



Each pattern is associated with a generative scenario. In the following exam-
ple, the LogMe generator accepts as a parameter a class X and produces a subtype
of X that logs the returns of calls to X’s (non-void) methods:

class LogMe<class X> extends X {

<R,A*>[m] for ( public R m(A) : X.methods )

public R m (A a) {

R result = super.m(a);

System.out.println(result);

return result;

}

}

The second line in the above (meta-)class is a static for-loop over methods of
class X (designated X.methods) that match a pattern, public R m(A), where R and
A are type parameters (A can match any number of type parameters, as indicated
by the A* syntax in its declaration) and m is a name parameter, as indicated by
its distinct declaration syntax ([m]). Other facilities for inspecting the contents
of type parameters (e.g., iterating over fields) are defined similarly in MorphJ.

In another example, a morphed class Listify may statically iterate over all
the methods of another, unknown, type, Subj, pick those that have a single ar-
gument, and offer analogous “lifted” methods: whenever Subj has a method with
argument A, Listify accepts a List<A>. (The implementation of every method in
Listify can then, e.g., iterate over all list elements, and manipulate them using
Subj’s methods.)

class Listify<Subj> {

Subj ref;

Listify(Subj s) {ref = s;}

<R,A>[m] for (public R m(A): Subj.methods)

public R m (List<A> a) {

... /* e.g., call m for all elements */

}

}

Observe here that, in contrast to the previous example, this generator does not
generate a subtype of Subj but an unrelated class that internally uses a Subj

object.

In general, MorphJ offers program transformation capabilities but with mod-
ular type-safety guarantees: type-checking (via MorphJ) the code of Listify

guarantees that all the classes it may produce (for any type Subj) also type-
check (via the plain Java type system).

Type-checking a MorphJ program/generator to guarantee the static safety
of all possible generated classes is based on determining the uniquness of decla-
rations and the validity of references. Uniqueness means that for each generated
declaration of a variable or method in morphed code, the MorphJ type system
needs to ensure that the declaration does not conflict with others in the same



scope. Validity means that each reference to an identifier needs to map to an
appropriate, type-correct morphed or pre-existing declaration in the morphed
code. Because of static for-loops, a single identifier in morphed code (e.g., m in
the LogMe class, above) maps to possibly many generated identifiers. Therefore,
the checking of uniquness and validity needs to process the reflection patterns
of static for-loops. This checking is done in MorphJ via the well-known con-
cept of unification in patterns: for uniqueness, any two declaration-generating
patterns in the same scope should never unify, while for validity, the pattern
producing a reference should be a specialization (i.e., one-way unification) of a
pattern producing a corresponding declaration. The pattern-based type-checking
mechanism is mixed with subtyping and conventional type reasoning in the full
MorphJ type checker [20]. The decidability of type-checking also hinges on ex-
pressiveness limitations placed on the MorphJ program: static for-loops cannot
be nested (although a single for-loop can contain a nested, secondary pattern,
with type variables bound in the primary pattern), and there is only a limited
compile-time conditional statement [19].

The generator programmer has several facilities for influencing the result of
MorphJ type-checking. The simplest one is that of stating subtyping constraints
on type parameters (e.g., C<X extends I>), as in regular Java. Additionally, the
programmer can add explicit static prefixes or suffixes to generated identifiers,
to ensure their uniqueness—the a#b notation designates identifier concatenation
with one of a, b being a constant.

Morphing enables great expressiveness when added to a conventional lan-
guage. In fact, morphing can even simulate inheritance by offering safe delega-
tion over classes. This requires some extra functionality, namely the addition of a
single keyword (subobject) [16]. To see why such an extension might be needed,
consider this example of a logger generator similar to LogMe given above:

class Logger<Subj> {

Subj ref;

Logger(Subj s) {ref = s;} // initialize

<R,A*>[m] for (public R m(A) : Subj.methods)

public R m (A a) {

System.out.println("method " + m.name + " called with arg " + a);

return ref.m(a);

}

}

The morphed methods defined here report when they are called but the
delegation will occur only during external-client calls to methods of Logger<C>,
for some C. Any further calls happening inside the parent are not logged and
thus the morphed class does not behave like a class that would override each
method with a logged one. The problem is the lack of the late binding property.
To remedy this, the object targeted by delegation must be identified using the
subobject keyword:



class Logger<Subj> {

subobject Subj ref;

... // as before

}

This small change ensures that method calls are late-bound so that a gener-
ated class, Logger<C> behaves like a true subclass of the original, C. However,
the addition of subobjects has significant repercussions. For instance, two refer-
ences to the same subobject (i.e., aliases), via different access paths can behave
differently [16].

4.3 Shortcomings and More Power

Staging and morphing are broad approaches that can ensure statically-safe pro-
gram generation, by focusing on specific (albeit broad) classes of program gen-
eration tasks. For more power, there have been several approaches that allow
arbitrary program generation constructs, yet impose a discipline (based on type-
checking or other analysis) over how these constructs are composed. We see some
interesting such mechanisms next, noting the differences from staging and mor-
phing, both in style and in expressive power.

SafeGen. SafeGen [22] is a meta-programming language for writing generators
of Java code that are statically guaranteed to produce type-safe code.

The SafeGen language targets generators that can be written as transforma-
tions using reflection, i.e., inspection of the structure of existing code. SafeGen
can thus be used for tasks similar to those that class morphing targets. SafeGen
handles generated names and can guarantee that generated definitions have fresh
names, not clashing with existing ones.

Compared to multi-stage languages and class morphing, SafeGen is more
expressive in principle, as it permits the specification of a generator via arbitrary
constructs. For example, it permits generators that generate and use names more
freely than the scoping of multi-stage languages allows; it also enables generators
that test arbitrary logic formulas over reflective properties, compared to the more
constrained way of handling the same properties in morphing.

However, the type system of SafeGen is undecidable and it depends on an
automated theorem prover for discharging proof goals for common cases. This
means that more generators can be written and proved correct in SafeGen, but
the user can also write generators that SafeGen cannot prove correct automati-
cally and will report a “possible error”.

A simple example in SafeGen (that could also be written using morphing) is
that of a generator that takes a Java class as input and produces a Java interface
of void methods that have the same name as the methods in the input class:

#defgen MakeInterface (Class c) {

interface I { #foreach(Method m : MethodOf(m,c)) { void #[m] (); } }

}



In the code above, #defgen declares the generator, the #foreach syntax iterates
over the methods of the input class, and #[m] uses the name of the meta-variable
m in the generated code. This generator may seem too simple, but is buggy: since
Java permits method overloading, two methods of the input class can have the
same name and thus the generator may generate an interface with duplicate
method declarations. SafeGen catches this error as it cannot prove that the
generated output will always be type-safe.

A working SafeGen example is that of a generic delegator, which was also
given in Section 4.2, using morphing:

#defgen MakeDelegator ( input(Class c) => !Abstract(c) ) {

#foreach( Class c : input(c) ) {

public class Delegator extends #[c] {

#foreach(Method m : MethodOf(m, c) & !Private(m)) {

#[m.Modifiers] #[m.Type] #[m] ( #[m.Formals] ) {

return super.#[m](#[m.ArgNames]);

} } } } }

Although this is essentially a morphing example, the flavor of operators offers
a glimpse of actual program manipulation with SafeGen. Static reflective iter-
ation is supported, as well as arbitrary generation-time nesting of primitives
(e.g., nesting of #foreach loops), compile-time conditionals, identifier manipula-
tion, etc. The type system of the target language is fully encoded in input for
the automated theorem prover that SafeGen employs as part of its checking.
Part of this input is constant and encodes assumptions of the language (e.g.,
the single-inheritance nature of Java), while another part is custom-generated
by translation of the generator specification, to encode the structure of the gen-
erated code. Finally, the generator specification is used to produce a logical
sentence that establishes the generated program’s well-formedness for unknown
generator inputs. The automated theorem prover then attempts to prove this
sentence.

In all, despite its power, the SafeGen approach suffers from lack of program-
mer control, due to the undecidable nature of the checking process. It is not easy
to know when a generator fails to type-check due to a bug vs. due to limitations
in automated formal reasoning.

Ur. Instead of translating a generator specification into a logical sentence for an
automated theorem prover (as in SafeGen), one can attempt to enlist a powerful
type system that can simultaneously express conventional type-level properties
of a program and the logical structure of a generator under unknown inputs.
This typically entails the use of dependent types: types that can use program
expressions as terms. An advantage of this approach is that the user can im-
prove the theorem proving ability of the system by just applying better type
annotations (though these can be arbitrarily complex).

The Ur system [7] for program generation adopts this principle. Ur permits
the declaration of generators that can be generic on their input while still produc-



ing only well-formed output. Ur’s metaprogramming model is based on type-level
computation and type-level records, following a functional programming style.
The input of a generator defined in Ur can contain records of values or types and
such records can be taken apart or built in the body of the generator, in a safe
way, using functional programming machinery (e.g., higher-order functions such
as map and fold). The type system keeps track of the origin and manipulation
structure of records and values, much like the SafeGen type system, earlier, kept
track of the patterns used to produce definitions and references to identifiers.

Targeting pragmatic applications and ease of use, Ur is using a restricted
form of dependent types, combined with ad-hoc logic for common cases (such as
special provers for the inference of intermediate proofs of a particular shape or
automatic code transformations, such as map fusion). The safety guarantees of
Ur assume that the writer of the generator dedicates some effort in writing type
annotations and reasoning about output safety using the record-specific features
of the language. On the other hand, the user of the generator can be spared this
effort as Ur’s heuristics fill in many holes, resulting in simple-to-use generators.

Although Ur offers type safety based on its records reasoning, the data format
output by a generator may be subject to additional well-formedness constraints,
such as the need for sanitization in HTML and SQL to address code injec-
tion attacks. In the case of HTML and SQL, Ur has been extended with addi-
tional functionality that guarantees this well-formedness, resulting in Ur/Web, a
domain-specific language for web application development, implemented on top
of Ur as a special library with extra rules for parsing and optimization [7, 9].
Other generated data formats and their needs would need a similar extension of
Ur.

As an example, consider a dynamic webpage that defines a generic sum func-
tion that sums an arbitrary list (record) of integers and then calls it to sum three
lists of integers (one of them being the empty list):5

fun sum [fs ::: {Unit}] (fl : folder fs) (x : $(mapU int fs)) =

@foldUR [int] [fn _ => int]

(fn [nm :: Name] [rest :: {Unit}] [[nm] ~ rest] n acc => n + acc)

0 fl x

fun main () = return <xml><body>

{[sum {}]}<br/>

{[sum {A = 0, B = 1}]}<br/>

{[sum {C = 2, D = 3, E = 4}]}

</body></xml>

In this example, main is the entry point of the dynamic web page, which calls sum

three times. (The nm and ~ syntax found in the body of sum is part of the Ur/Web
support for record manipulation.) The results of sum calls are then embedded
in well-formed XML. The sum function is declared using a fold, as in standard

5 The two pieces of code here are contained in Ur/Web distribution version 20150520
as demos sum and tcSum.



functional programming practice. The interesting part is the ability to iterate
over the (unknown) fields of any record and to modularly assert that the iteration
(i.e., sum) is well-defined, no matter what record is supplied as input. What sets
Ur/Web apart from other Web frameworks is the amount of type information
inferred: only x is explicitly given in the calls to the function; everything else
is inferred. In particular, Ur/Web manages to infer the folding mechanism used
(the folder). While in principle the type inference of Ur/Web is not complete, in
practice it addresses many common cases encountered during Web development.

The example above was the definition of summing for integer records. The
following example shows how to define a generic sum in a similar fashion:

fun sum [t] (_: num t) [fs ::: {Unit}] (fl: folder fs) (x: $(mapU t fs)) =

@foldUR [t] [fn _ => t]

(fn [nm :: Name] [rest :: {Unit}] [[nm] ~ rest] n acc => n + acc)

zero fl x

fun main () = return <xml><body>

{[sum {A = 0, B = 1}]}<br/>

{[sum {C = 2.1, D = 3.2, E = 4.3}]}

</body></xml>

This example uses type classes, another feature of functional programming [55],
to define sum on number-like data, i.e., values of types in the num type class. In
this way, sum can be applied to records of integers and floats, with the same ease
of development (inference) as before.

4.4 Other Techniques

There are several other techniques that are close relatives of the ones we discussed
in the previous sections. We mention some of them for completeness and as
starting points for further study.

The Genoupe system [13, 34] allows expressing generators in an extended
version of C#, using constructs similar to the static #foreach of SafeGen. Like
SafeGen, the system allows arbitrary expressiveness (e.g., nesting of static for
loops, static conditionals, and more) but, in contrast to SafeGen, does not encode
the full complexity of the meta type-safety question in its type-checking. In
SafeGen, this complexity mandated the use of a rich logic and an automated
theorem prover. In contrast, the Genoupe checking is done through standard
type-system techniques and is even more restrictive than MorphJ’s. For instance,
there is no way to generate declarations under a set of conditions and generate
references to them under stricter conditions—the type system treats expressions
in static constructs as opaque values that can only be compared for equality.

The compile-time reflection (CTR) facility [15] is a close relative of morphing,
yet presents a different tradeoff in the design space. It introduces the concept of
a self-contained transformation (instead of merging meta-programming features
inside generic classes, as in MorphJ) and sacrifices some modular type safety:
the system catches invalid references, though not duplicate definitions. The work



has been recently extended with addition of features from morphing, and applied
to several different program elements, such as pattern-based traits and reflection
at the statement level [36,37].

In recent work on active libraries, Servetto and Zucca propose MetaFJig*, a
rich meta-language for safe reflection with nested class support and composition
operators [42]. These new features do not have a counterpart in classical morph-
ing. In Section 4.5 we discuss interesting research avenues that incorporate such
features.

Concepts of static safety have also arisen in the context of refactoring trans-
formations, with work by Steimann and von Pilgrim [47]. An interesting aspect
of this work is that it treats the program as a constant (i.e., does not guaran-
tee the safety of a refactoring for all possible input programs) yet attempts to
solve a hard problem—namely, to compute the constraints that need to hold in
the post-transformation state of the program for the refactoring to have been
semantics-preserving.

Recent work in the literature has focused on offering static safety guaran-
tees for macro systems and other syntactic extension mechanisms. Lorenzen
and Erdweg [33] propose a syntactic language extension facility that offers type-
based syntax desugaring (allowing the desugaring specifications to employ type
information) while guaranteeing automatically that desugarings only generate
well-typed code. Chlipala’s Bedrock system [8] is a relative of the Ur approach
of Section 4.3. Bedrock introduces “certified low-level macros”, for an assembly-
level target language. These are highly expressive macros, allowing the imple-
mentation of a full C-like language stack. However, safety guarantees carry the
cost of some manual verification effort by the programmer. The host language in
Bedrock is the functional programming language of the Coq proof assistant [3].
In this setting, safety properties are also low level, guaranteeing the absence of
invalid jumps or bad memory reads/writes in the resulting machine code.

4.5 Remarks and Future

The techniques we saw in the previous sections cover several points in the space
of expressiveness/static safety tradeoffs. Perhaps the techniques with the easiest
path to mainstream adoption are the ones that enforce clear, up-front expres-
siveness restrictions, yet support general as well as popular program generation
patterns. Staging and morphing (Sections 4.1 and 4.2) are the clearest such in-
stances. Both of them have significant expressiveness limitations and addressing
such limitations is the topic of active research.

Staging requires a one-to-one mapping between code fragments of the gen-
erator and the generated code. In multi-stage languages, one cannot escape an
identifier in a binding position. For instance, it is not possible to generate the
definition of a variable whose name will be determined at generator run-time, as
in:

emit( ‘[ int #name; ] );



In a recent position paper [23], Inoue et al. argue that the “next stage of
staging” will need to lift constructs to the type level. Allowing the generation of
binding instances with variable names (“splicing binders”) is identified as a major
challenge. This is indeed the focus of morphing mechanisms: reasoning about
generated declarations and their references, without knowing what the declared
names will be until generator run-time. Therefore, an interesting direction for
both morphing and staging are to combine forces, in language designs that enable
meta type-safety for some of the most common kinds of program generation.

At the same time, morphing is evolving to acquire further functionality, for
reflecting over classes. Recent work [4] presents universal morphing : an extension
of morphing to permit patterns iterating over types. This ability captures mor-
phing functionality at a much larger granularity than before, and enables several
interesting programming abstractions. Examples include iterating over all super-
types of a class, over all its nested classes, over all classes in a given set, etc.
Such static iteration can generate new classes that subclass or reference input
classes, emulate a subset of their supertypes while adding new ones, morph over
their members (via standard morphing patterns), etc. This enables, for instance,
highly generic mixin layers [44]: parametric components containing classes that
each inherit from a corresponding class in an unknown super-component sup-
plied as a parameter. The ability to iterate over classes can also be used to
support type constructor polymorphism and higher-kinded types, as in the work
of Moors et al. [38].

In Section 4.4 we mentioned MetaFJig* as a source of features that are still
not satisfactorily handled by other meta-programming systems. MetaFJig* de-
fines a language that supports reflection over classes: the user can write reflective
code that generates expressions of a “class” type (i.e., class definitions are seen
as expressions) and there are operators over classes (such as sum). Universal
morphing can also support versions of these concepts: it supports safe reflection
over nested classes, and class operators can be encoded through morphing. For
an example of this encoding, the sum operator can be defined as a class Sum<A,B>
that contains methods of both A and B, guarantees the absence of method name
clashes, and supports recursive summing.

5 Conclusions

Programming language design evolves with the invention of new kinds of ab-
straction. Procedural abstraction was introduced in the 50s and 60s and ushered
in the era of structured programming languages. Type abstraction or polymor-
phism, in the 70s and 80s, brought about modern functional and object-oriented
languages. These advances were foreshadowed by program generation techniques
that attempted to achieve the same expressiveness benefits with much lower-level
concepts and no safety guarantees. Before there were structured procedures,
there were macros that achieved similar benefits in many cases. Before there
was polymorphism, there were generators that produced isomorphic code for
different types, or copied one type’s definitions into another. Generators are in-



evitable every time existing abstraction mechanisms are not enough. Conversely,
getting generators to support an abstraction pattern with full static safety means
that they are no longer “generators”: it becomes a mere implementation detail
whether a program is indeed generated as part of supporting an abstraction.

Therefore, the question of how to make generators statically type safe (i.e.,
statically checkable for all possible, unknown, inputs) is central to the future
of programming language design. A technique from this solution space may be
behind the next major evolution of programming languages. For instance, the
morphing approach exemplifies structural abstraction: code can be agnostic of
the structure of other program elements, yet interface with them correctly. This
matches the widespread low-level practice of generating code via reflecting over
existing classes or modules.

Given the importance and appeal of the underlying problem, it is no sur-
prise that the field is active and diverse. This briefing gave an overview from a
viewpoint that we hope illuminates rather different and typically disconnected
approaches.
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