
Deep Static Modeling of invokedynamic
George Fourtounis
University of Athens, Department of Informatics and Telecommunications, Greece
gfour@di.uoa.gr

Yannis Smaragdakis
University of Athens, Department of Informatics and Telecommunications, Greece
smaragd@di.uoa.gr

Abstract
Java 7 introduced programmable dynamic linking in the form of the invokedynamic framework.
Static analysis of code containing programmable dynamic linking has often been cited as a significant
source of unsoundness in the analysis of Java programs. For example, Java lambdas, introduced
in Java 8, are a very popular feature, which is, however, resistant to static analysis, since it
mixes invokedynamic with dynamic code generation. These techniques invalidate static analysis
assumptions: programmable linking breaks reasoning about method resolution while dynamically
generated code is, by definition, not available statically. In this paper, we show that a static analysis
can predictively model uses of invokedynamic while also cooperating with extra rules to handle
the runtime code generation of lambdas. Our approach plugs into an existing static analysis and
helps eliminate all unsoundness in the handling of lambdas (including associated features such as
method references) and generic invokedynamic uses. We evaluate our technique on a benchmark
suite of our own and on third-party benchmarks, uncovering all code previously unreachable due to
unsoundness, highly efficiently.

2012 ACM Subject Classification Software and its engineering→ Compilers; Theory of computation
→ Program analysis; Software and its engineering → General programming languages

Keywords and phrases static analysis, invokedynamic

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.15

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.6

Funding We gratefully acknowledge funding by the European Research Council, grants 307334
(SPADE) and 790340 (PARSE), a Facebook Research and Academic Relations award, and an Oracle
Labs collaborative research grant.

1 Introduction

Object-oriented and functional programming have combined in recent years to produce hybrid
programming languages. Some of these, such as Scala [45], are new languages, designed from
the ground up to incorporate features of both programming paradigms. Others, for instance
Java [23] and C# [25], have adapted to the demand for functional features by carefully
adding them in an existing language design; examples of this evolution are lambdas [49]
and the streams API [74] in the Java platform and the Language Integrated Query (LINQ)
facility in the .NET ecosystem [36].

On another axis, programming languages occupy different places in the spectrum between
static and dynamic typing. At the extremes, programming languages either have to supply
static (“type”) information for every entity in the program, or do away with all such types,
in a completely dynamic coding style. In practice, most programming languages are closer
to the middle, having a fundamental static or dynamic design, while mixing elements from

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© George Fourtounis and Yannis Smaragdakis;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 15; pp. 15:1–15:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gfour@di.uoa.gr
mailto:smaragd@di.uoa.gr
https://doi.org/10.4230/LIPIcs.ECOOP.2019.15
https://dx.doi.org/10.4230/DARTS.5.2.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Deep Static Modeling of invokedynamic

the opposite approach. For example, the Java Virtual Machine (JVM), the best-established
language runtime system, supports dynamic facilities, such as reflection and dynamic class
loading, that offer significant flexibility, outside the control of the static type system.

A recent dynamic facility added to the JVM, in order to combine flexibility with highly
optimized performance, is that of programmable method resolution and dynamic linking,
in the form of the invokedynamic instruction [62]. The invokedynamic instruction and
its accompanying java.lang.invoke framework permit the expression of fully dynamic
behavior, in much the same way as traditional Java reflection. However, whereas reflection
can be thought of as dynamically interpreting dispatch logic, programmable linking can
be thought of as dynamically compiling dispatch logic, transforming call sites at load time
with decisions possibly cached and subsequently executed at full speed. This facility enables
the JVM to support dynamic language patterns with great efficiency. As a result, the
framework has also been used to implement Java lambdas – the newly-added functional
feature of the language.1

Dynamic features are welcome by many programmers as they offer a needed flexibility.
However, they come at a cost: static reasoning is greatly hindered. For instance, static
analysis tools for Java are largely ineffective when faced with invokedynamic code, although
static analysis has long dealt with (statically-typed) dynamic dispatch (a.k.a. virtual dispatch)
facilities. Virtual method resolution in statically-typed bytecode is much easier to analyze,
compared to purely dynamic code that lacks explicit method signatures. (Virtual dispatch
in standard object-oriented languages performs a dynamic lookup of the function, based
on its name, signature, and the type hierarchy. This is still significantly friendlier to static
reasoning than completely dynamic calls, of functions with possibly statically-unknown
names or types.)

These problems of static reasoning for the dynamic features of the JVM (and, by extension,
its functional lambdas) have been well identified. In recent work, Reif et al. [60] and Sui et
al. [68] describe the unsoundness in the construction of call graphs for Java, caused by features
such as lambdas and invokedynamic. These features are not going away: in a recent study,
Mazinanian et al. [35] “found an increasing trend in the adoption rate of lambdas.” Also,
Holzinger et al. found method handles, a core part of the invokedynamic framework, to pose
“a risk to the secure implementation of the Java platform” [26]. This is a design problem: to
control performance overhead, method handles are less secure by design, compared to the
core reflection API [65].

In this paper, we propose a static analysis that can successfully analyze both the
invokedynamic framework and its particular combination with generated code in Java
lambdas. Our analysis cooperates with an existing points-to analysis and an existing re-
flection analysis (when needed), in mutually recursive fashion. The analysis also simulates
parts of the Java API that either do dynamic code generation or call native code, to main-
tain soundness. Finally, we supply a special static analysis extension that can analyze
lambdas and method references, without any reflection support. This last feature permits
the static analysis of large Java code bases without paying the performance overhead of
reflection reasoning.

1 We emphasize again that the concepts of lambdas (a functional language feature) and programmable
linking (a dynamic language implementation technique) are orthogonal. Lambdas could be implemented
via front-end class generation, dynamic code generation plus traditional virtual dispatch, or other similar
techniques. They are implemented using programmable linking in Oracle’s JDK only as a matter of
choice, since the mechanism is flexible, powerful, and efficient.

G. Fourtounis and Y. Smaragdakis 15:3

In more detail, our work makes the following contributions:
We offer the first static analysis that handles general-purpose invokedynamic – the
basis of modern dynamic features of Java. The static analysis operates at a deep level:
it includes full modeling of the underlying java.lang.invoke framework: a DSL-like
facility for capturing and manipulating methods as values.
We present a static modeling of Java lambdas – the main functional feature of Java.
Although lambdas and invokedynamic are conceptually orthogonal, in practice lambdas
are implemented using invokedynamic, making the analyses of the two features closely
interrelated. Still, the analysis of lambdas is not a mere client of the general-purpose
invokedynamic analysis, since it both needs extra modeling (for generated code) and
admits more efficient implementation, due to its specialized use of invokedynamic,
eschewing the need for complex reflection reasoning.
The analysis is accompanied by a micro-benchmarking suite covering many patterns
found in realistic uses of lambdas and invokedynamic. The suite is independently usable
for validation of static support of these features.
The analysis is evaluated on the third-party suite of Sui et al. [68], which was designed
for showcasing the unsoundness of call-graph construction under dynamic and functional
Java features. Our analysis models all general-purpose uses of invokedynamic and fully
models uses of lambdas.

This paper is structured as follows: we first present a set of examples that explain how
the dynamic and functional features of Java work (Section 2) and proceed to give a more
technical background of these features (Section 3). We then present our technique for the
static analysis of these features, in a declarative analysis framework (Section 4). We evaluate
our model (Section 5), connect with related work (Section 6), and conclude (Section 7).

2 Motivation and Illustration

This section introduces invokedynamic and Java lambdas with the help of examples.

2.1 Motivating Example 1: Late Linking
A common use of dynamic linking is for breaking dependencies between pieces of code so that
they do not have to be compiled together. An example of Java code using invokedynamic
to break a compile-time dependency is shown in Figure 1. Since Java does not permit
invokedynamic-equivalent expressions at the source level,2 we use in the example an IN-
VOKEDYNAMIC pseudo-intrinsic that contains the following information:

a dynamic name (print),
a method type ((A)V),
a list of arguments (just this.obj here),
a bootstrap method signature (here: <A: CallSite bootstrap(MethodHandles.Lookup,
String, MethodType)>), and
a list of bootstrap arguments (empty in this example).

While the code without invokedynamic has to explicitly state which version to call
(and thus store an immutable signature in an invokestatic in the bytecode), the code
using invokedynamic looks up the method programmatically, via a “bootstrap” method,
which initializes the call site. (This lookup could be arbitrarily complex, although in this

2 A proposal is underway to allow such expressions via intrinsics [21].

ECOOP 2019

15:4 Deep Static Modeling of invokedynamic

example the outcome is always the same.) Here we note that the programmer could also
use classic Java reflection to do a similar lookup-and-invoke (retrieving a Method metaobject
and calling an invoke method on it), but that would be inefficient, since standard Java
reflection contains an interpretive layer of introspection. In contrast, invokedynamic can be
compiled away: the bootstrap method is executed at load time, not run time (i.e., not when
method run is invoked, but when it is loaded). The bootstrap method effectively acts as
a load-time macro, accepting as arguments load-time constants (e.g., string constants) or
fragments of uninterpreted expression syntax. This bootstrap method returns a “constant
call site”, which the JVM can inline in place of the invokedynamic call as needed, similar to
having the invokestatic call that is missing from the bytecode.

2.2 Motivating Example 2: Lambdas
For a simple program that creates and uses a lambda, we can take the following example
(adapted from the dynamic benchmark of Sui et al. [68]):
import java.util. function . Consumer ;
public class LambdaConsumer {

public void source () {
Consumer <String > c = (input) -> target (input);
c. accept ("input");

}

public void target (String input) { }

}

Here, method source() creates a lambda that consumes a string value. The lambda takes an
input parameter and calls method target() in its body, passing the parameter to the callee.

The arrow syntax declares a lambda function, which is rather a mismatch for object
orientation: it looks like a bare method, without an instance or declaring type. However, that
syntax behind the scenes constructs an object of type Consumer, as shown by the static type
of variable c. This type is one of the “functional interfaces” [16] provided by Java, which are
interface types that have a functional flavor, i.e., declare a single method. Generic typing
helps with annotating uses of such instances (as with the type parameter of Consumer here).

Indeed, the Consumer type declares a single accept method that takes a String. Calling
that method on a lambda should then evaluate the body of the lambda with the appropriate
parameter passed to it. If we were to inline the code in the body of source() to eliminate
the lambda, it would read:
public void source () {

target ("input");
}

However, such inlining cannot happen in the general case: lambdas are often passed to
code or returned by it, to be applied in a location remote to their origin. Reasoning about
the code above is thus based on non-local (possibly whole-program) reasoning about the
“functional object” that was created and assigned to variable c.

In Figure 2, we see the bytecode generated for the two statements in the body of source in
our example. For presentation purposes, instead of stack-based bytecode, we use the friendlier

G. Fourtounis and Y. Smaragdakis 15:5

Code without invokedynamic

class C implements Runnable {
A obj;

C(A obj) {
this.obj = obj;

}

void run () {
A.print(this.obj); // Direct call

}
}

class A {
public static void print(A a) { }

}

(new C(new A())). run ();

Code using invokedynamic

class C implements Runnable {
A obj;

C(A obj) {
this.obj = obj;

}

void run () {
INVOKEDYNAMIC "print" "(A)V" [this.obj]

<A: CallSite bootstrap (MethodHandles .Lookup ,String , MethodType)>
[]

}
}

class A {
public static void print(A a) { }
public static CallSite bootstrap (MethodHandles . Lookup caller ,

String name , MethodType type) {
MethodType mt = MethodType . methodType (Void.TYPE , A. class);
MethodHandles . Lookup lookup = MethodHandles . lookup ();
MethodHandle handle = lookup . findStatic (A.class , name , mt);
return new ConstantCallSite (handle);

}
}

(new C(new A())). run ();

Figure 1 Example: using invokedynamic to postpone linking of a method call.

ECOOP 2019

15:6 Deep Static Modeling of invokedynamic

l0 := @this: LambdaConsumer;

l1 = dynamicinvoke "accept" <java.util.function.Consumer (LambdaConsumer)>(l0)
<invoke.LambdaMetafactory: invoke.CallSite metafactory(

invoke.MethodHandles$Lookup,String,invoke.MethodType,
invoke.MethodType,invoke.MethodHandle,invoke.MethodType)>

(class "(Ljava/lang/Object;)V",
handle: <LambdaConsumer: void lambda$source$0(String)>,
class "(Ljava/lang/String;)V");

interfaceinvoke l1.<java.util.function.Consumer: void accept(Object)>("input");

Figure 2 The invokedynamic behind a lambda creation (Jimple syntax for example in Section 2.2).
The package prefix “java.lang” has been removed from all types – e.g., invoke.MethodType is
java.lang.invoke.MethodType.

3-address Jimple intermediate language [75]. (In the Jimple syntax, the invokedynamic
JVM instruction is denoted dynamicinvoke.) We observe that the call that generates the
lambda does the following:

It invokes as a bootstrap method (i.e., the method to execute at load-time over the site
of invokedynamic) a special “lambda metafactory” method. Again, this is a method
executing at load time (i.e., akin to a macro). It processes the call site directly and
returns a CallSite value, not the Consumer value of the user code.
It passes to the lambda metafactory enough information to specify what kind of lambda
needs to be generated: one with an “accept” method, implementing interface Consumer
and capturing from its environment parameter l0. The l0 capture means that the current
value of this escapes to the new code that will construct the lambda. This is to be
expected, as the lambda body needs a receiver to resolve the call to target.
A method handle pointing to a compiler-generated method lambda$source$0 is also
passed as an argument. This method encodes the body of the lambda expression.

Note that invokedynamic is used at the site of lambda generation, not lambda invocation.
The latter (in the final line of Figure 2) is a regular interface call.

From the perspective of a static analysis, the only method call that can be resolved in
the invokedynamic instruction is the call to the metafactory but analysis of that cannot
complete: the metafactory does load-time code generation. The compiler-metafactory
synergy (of generating methods at compile time, yet leaving other code generation and
call-site transformation to load time) is a design that cannot be penetrated by a conventional
static analysis. When, in the next instruction, the static analysis tries to analyze the interface
call on the object returned in the invokedynamic instruction, it cannot resolve the target
method and analysis of this call fails.

2.3 Motivating Example 3: Method References
Java 8 introduced lambdas due to popular demand for the feature but also because they were
needed for scaling stream processing over multicore hardware [17]. Streams were another
new functional feature added to Java, that supported combinator functions over series of
data (“streams”), enabling function composition and higher-order programming idioms. An
example of streams and lambdas is the following snippet from Urma’s streams tutorial [74]:

G. Fourtounis and Y. Smaragdakis 15:7

List <Integer > transactionsIds = transactions
. stream ()
. filter (t -> t. getType () == Transaction . GROCERY)
. sorted (comparing (Transaction :: getValue). reversed ())
.map(Transaction :: getId)
. collect (toList ());

Here, we see that function filter takes a lambda using the arrow syntax. We
also see another higher-order feature added in Java 8: method references, such as
Transaction::getValue and Transaction::getId. These pass regular methods as function
parameters to combinator functions comparing and map.

While the syntax of method references is different compared to lambdas, these expressions
are also implemented by the lambda metafactory in a similar way. Method references may be
a simplified version of lambdas but they still have semantic complexities as they can capture
a value from the environment for their receiver.

2.4 Motivating Example 4: SAM Conversion

The use of lambdas (and, by extension, invokedynamic) in Java is not limited to pure
functional programming patterns. Lambdas are backwards compatible with pre-Java-8 code.
In the following example, we see two Runnable objects being constructed, both with the
same functionality:

public class Main {
public static void main(String [] args) {

// Use anonymous class.
Runnable a = new Runnable () {

public void run () {
System .out. println ("Hello.");

}
};

a.run ();

// Use a lambda .
Runnable b = (() -> System .out. println ("Hello."));
b.run ();

}
}

The Runnable interface is a standard type of the Java platform that happens to have a single
method. It is, thus, a “single abstract method” (“SAM”) type3 and the lambda syntax can
be used to generate an instance of it, which can be passed to code compiled with older Java
versions. This approach makes pre-Java-8 code “forward-compatible to lambdas” [17] by
viewing all existing single-method interfaces as lambdas (“SAM conversion” [14, 49]). In
practice, this ease of constructing many types as lambdas means that, even in a simple “hello
world” Java program, several invokedynamic calls to the lambda metafactory take place.

3 Or a “functional interface” [19].

ECOOP 2019

15:8 Deep Static Modeling of invokedynamic

This has caused a regression in the power of static analysis tools on bytecode: unless
it supports lambdas, an analysis may find fewer facts for the same program under Java 8,
compared to Java 7. Java has become more dynamic and functional under the hood.

3 Technical Background

This section gives a basic background on the technology behind method handles, the
invokedynamic framework, lambdas, and method references. We show as much as needed
for the needs of the model of the static analysis that will follow.

3.1 Method Handles and Method Types
Two important kinds of values that are used in the rest of this section are method handles
and method types.

Method handles are the equivalent of type-safe function pointers [64] and a lightweight
alternative to standard reflective method objects [41]. They represent targets for invocation
that can point to methods, constructors, fields, or other parts of an object [64]. There are
three basic kinds of method handles: direct method handles are very similar to pointers;
bound method handles are partial applications of methods [46, 63], and adapter method
handles perform various adjustments of method parameters (e.g., from a flat list of arguments
to a single argument array) [63].

Method types are type descriptors that help method handle invocations guarantee run-time
type safety. A method type describes the parameter types and the return type that a method
handle can accept. Method types can be modified to produce new method types: for example,
their return type can be changed and types can be dropped, changed, or appended [54].

A method handle can be invoked via two methods called on it:
invokeExact() calls the method handle directly, matching its types against the handle
method type.
invoke() is more permissive: it permits conversions of arguments and return type during
the method handle invocation. Such conversions must be compatible with appropriate
conversions of its method type [52].

The general java.lang.invoke API [47], offers ways to compose method handles, convert,
fill in, or rearrange their arguments, perform conditional logic on them, or manipulate them
in other ways. In practice, the method handles API is an embedded domain-specific language
(DSL), which has the flavor of a combinatorial language over functional types. This DSL
does deep embedding [69], i.e. the API creates an intermediate representation that reflects
the semantics of the intended method handle.

The method handles are translated to an intermediate representation called lambda
forms [48, 27]. (Not to be confused with the synonymous “lambda” high-level functional
language feature of the language that we discuss extensively in this paper.) The lambda
form representations can be cached and reused, interpreted, or compiled (using Just-in-Time
technology). This aspect of method handles argues for a static analysis to model them as
primitive concepts: since they eventually do dynamic code generation, their semantics are
impenetrable to a conventional static analysis.

The compilation of lambda forms creates dynamically-generated bytecode of a special
form, called anonymous classes [61]. This is bytecode that is not even visible to the runtime
system class dictionary and is used for fast lightweight code generation [41]. Not only are
these classes hidden; they also violate the read-only invariant of loaded classes in the VM, as
they can patch other classes on the fly.

G. Fourtounis and Y. Smaragdakis 15:9

This design introduces a complete embedded mini-language on top of bytecode, together
with a small implementation (intermediate representation, interpreter, and compilation
back-end). For static analysis tools to reason about custom dynamic behavior, they must,
thus, reason about this small language, from its front-end API embedding, through the
implementation, to the generated bytecode.

3.2 The invokedynamic Instruction
The JVM was initially used to implement only the Java language. As the virtual machine
became a state-of-the art optimizing Just-in-Time (JIT) compiler and the underlying platform
grew, other statically-typed object-oriented languages (such as Scala [45] and Fortress [1])
chose to reuse it by having a compiler front-end from their syntax to bytecode. At the same
time, the rise of dynamic languages, combined with the desire of their implementers to reuse
the Java platform, led to a proliferation of dynamic languages implemented on top of the
JVM, both existing ones such as Ruby (JRuby [44]), Python (Jython [56]), and JavaScript
(Rhino/Nashorn [5]), and new ones such as Groovy and BeanShell. In the meantime,
functional features entered the mainstream, influencing the object-oriented programming
paradigm; functional languages gained enough traction to warrant implementations on top of
the JVM. Examples of functional languages on the JVM are Clojure [24], the Haskell-inspired
Eta [73] and Frege [76], and the Erjang version of Erlang [72]. Finally, Java itself had to
evolve and incorporate functional features (we describe them in detail in Section 3.3).

To become multi-lingual in an efficient way, the JVM design had to gain two new powers:
the capability to implement diverse dynamic behaviors; and native support for the basic
building block of functional programming, lambdas. In this subsection, we give an overview
of invokedynamic, while on the next subsection, we will see how the functional features are
supported under the hood as an instance of dynamic behavior (Section 3.3).

A classic characteristic of dynamically-typed languages is their reliance on runtime opti-
mization for performance, since there are no statically-available types to use for optimization.
Naive implementations of dynamically-typed languages are slow, since they are usually
interpreters that constantly query metadata to discover the runtime types of objects in order
to perform safe operations on them. Runtime optimization systems come to the rescue:
modern high-performance dynamic languages profile the running program and optimize it,
often generating good code at runtime, when more information is known about the behavior
of the program (the “Just-in-Time” or “JIT” approach).

JIT optimization has a long history, for instance one of its techniques to speed up method
calls, “inline caching”, appears in the classic implementation of the Smalltalk object-oriented
dynamic language [8]. Today, the JIT approach forms the basic technology behind successful
implementations as diverse as the cutting-edge Java Virtual Machine [33] or the browser
runtimes of JavaScript that enabled the Web 2.0 wave of applications.

As dynamic languages on the JVM were pushing for more performance on the JVM, Java
7 introduced a new bytecode opcode, invokedynamic [62], together with an API around it,
that could offer the programmer the capability to completely customize dynamic program
behavior. The program could now implement its own method dispatch semantics, for example
perform linking, unlinking, and relinking of code on the fly, add or remove fields and methods
in objects, or implement inline caching using plain Java code. The crucial advantages of this
approach, compared to writing adapter code by hand, are not only in saving engineering effort
through a friendly API, but also in informing the JIT optimizer so that better optimizations
(such as inlining) can happen across dynamic dispatch borders.

Oracle offers this as motivation: “The invokedynamic instruction simplifies and potentially
improves implementations of compilers and runtime systems for dynamic languages on the

ECOOP 2019

15:10 Deep Static Modeling of invokedynamic

JVM. The invokedynamic instruction does this by allowing the language implementer to define
custom linkage behavior. This contrasts with other JVM instructions such as invokevirtual,
in which linkage behavior specific to Java classes and interfaces is hard-wired by the JVM.”4

Dynamic languages on the JVM were naturally the first users of this new functional-
ity (JRuby [40, 77], Jython [3], the Nashorn JavaScript engine [31], Groovy [71], Redline
Smalltalk [43], and a significant subset of PHP [12]), as they could improve their perfor-
mance [55]. The invokedynamic instruction even inspired the creation of at least one new
JVM-based language [58]. Moreover, this new capability was used for other applications, such
as live code modification [59], aspect-oriented programming [39], context-oriented program-
ming [2, 34], multiple dispatch/multi-methods (a generalization of object-oriented dynamic
dispatch to take more than one method arguments into consideration when choosing the
target method of an invocation) [42], lazy computations [42, 15], generics specialization [20],
implementation of actors [38], and dynamically adaptable binary compatibility via cross-
component dynamic linking [28]. This new low-level functionality also became available for
programmable high-level dynamic linking and metaobject protocol implementation via the
Dynalink library [70].

Informally, invokedynamic can be seen as configurable initialization (and possible recon-
figuration) of invocations in Java bytecode. When the JVM loads a class, it resolves every
invokedynamic instruction in it. For every invokedynamic instruction:
1. A special bootstrap method is called. The method reads information either embedded in

the instruction or coming from the constant pool of the class.
2. The bootstrap method returns a call site object. That object belongs to the instruction

location in the bytecode and contains a method handle.
3. Since the call site contains a method handle, the invocation is resolved now and the call

site has been linked. The method handle can be thus invoked (see Section 3.1).
4. The call site is a Java object, so the program can access it and can later mutate its

method handle so that the invocation is effectively re-linked to resolve to another method.
This is essential for modeling fully dynamic behavior (e.g., making an object support an
extra method during run time).

The model above means that the program can now control the linking of method calls.
Moreover, this framework makes dynamically-linked invocations efficient. Since the JVM
internally supports invokedynamic, it can optimize such invocations. For example, if the call
site is a constant call site,5 the invocation can be inlined. The efficiency of invokedynamic
invocations has been confirmed by Kaewkasi [29] and Ortin et al. [55].

3.3 Method References and Lambdas
As seen in the examples of Section 2, method references and lambdas are functional program-
ming features added to Java for more expressive power. Eventually, Java 8 implemented
these two features with invokedynamic [15]. A crucial motivation for this implementation
choice has been compatibility, i.e., to avoiding a commitment to a single bytecode-visible
implementation of lambdas (e.g., as classes). Describing the implementation of lambdas in
terms of invokedynamic gives the Java compiler developers the freedom to later change the

4 https://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.
html#invokedynamic

5 https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/ConstantCallSite.html

https://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html#invokedynamic
https://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html#invokedynamic
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/ConstantCallSite.html

G. Fourtounis and Y. Smaragdakis 15:11

underlying implementation, without breaking binary compatibility [15, 17]. The only trace of
the translation of lambdas inside the bytecode is an invokedynamic call to a specific lambda
metafactory, but the code emitted by that may later change.

Both lambdas and method references use the same implementation technique:
invokedynamic sites that use special bootstrap methods, the lambda metafactories [50]. A
lambda metafactory initializes a call site so that it contains a lambda factory, i.e., it can
generate functional objects. The Java 8 lambda metafactory generates an inner class that
implements the functional interface.6 The functional objects created can either be stateless
or access values from their enclosing environment [18]. The implementation of lambdas is a
thin layer of code that only uses small pieces of dynamically-generated code as glue.

In practice, the Java compiler creates appropriate methods for the bodies of lambdas
(implementing methods) and registers method handles of them in the constant pool. These
method handles are then used in invokedynamic invocations to the lambda metafactories,
together with any values captured from the environment. The lambda metafactories can
then create new anonymous classes that can be used to instantiate the functional objects
and forward method calls to the implementing methods.

4 Static Analysis

We next present our model for handling the java.lang.invoke API (i.e., method handles),
the invokedynamic instruction (in general), as well as Java lambdas. We offer a declarative
set of inference rules that appeal to relations defined and used by an underlying value-
flow/points-to static analysis. Our implementation is on the declarative Doop framework [6],
so it is to a great extent isomorphic to the analysis model presented.

The essence of our analysis approach is threefold:

Our baseline model gives semantics to method handles. (This is also the main novelty of
our approach: the deep modeling of the java.lang.invoke API at its most fundamental
level.) This requires appealing to an existing value flow analysis, since method handles
have no hard-coded signatures in the bytecode: they offer invoke operations that are
“signature-polymorphic”. Therefore, any resolution of method handles requires a static
model of all possible signature arguments to invoke instructions. Modeling the semantics
of method handles is necessary since their implementation is un-analyzable, relying on
run-time code generation (via the aforementioned “lambda forms”). Furthermore, this
model requires static analysis of Java reflection, since method handles can also be looked
up via reflection operations (e.g., by method types generated via reflective class values,
or by “unreflecting” method objects into method handles).

Based on the modeling of method handles, we straightforwardly model invokedynamic
as an invocation of a method handle computed by a bootstrap method.

Reasoning about lambdas appeals to a part of the invokedynamic reasoning. However,
modeling lambdas both requires extra reasoning (because of dynamic code generation) and
can avoid the need for expensive reflection analysis, since the method handles computed
for lambdas do not employ reflection.

6 https://bugs.openjdk.java.net/browse/JDK-8000806

ECOOP 2019

https://bugs.openjdk.java.net/browse/JDK-8000806

15:12 Deep Static Modeling of invokedynamic

4.1 Model Basics
We assume the following domains and (meta)variables, also listing some simple convenience
predicates along the way:

s ∈ S are strings.
n, k ∈ N are numbers.
The symbol ∗ denotes arguments that can be ignored.
v ∈ V are variables, val ∈ Val are values, λ ∈ Val are functional objects.
t ∈ T are types while ti ∈ T I ⊂ T are interface types. Constructor mockc(t, i) creates a
mock object of type t that corresponds to an instruction i. The Class metaobject of a
type t is given by ReifiedC(t) and is a value.
m ∈M are methods. The formal of m at position n is represented as Fmn . The special
“this” variable of an instance methodm is represented asm/this. The Method metaobject
of a method m is given by ReifiedC(m) and is a value. We use the following predicates:

Constr(m): m is a constructor method.
Static(m): m is a static method.
m ∈ t: m is declared in type t.
The return variable v of m is represented as RetVar(v,m).

mt = {t, [t0, . . . , tn−1]} ∈MT , n ≥ 0 are method types, which are pairs of a return type t
and a (possibly empty) list of parameter types. Predicate AsType(m1

t ,m
2
t) holds when

method type m2
t has the same arity as m1

t , and for every pair t, t′ of m1
t and m2

t (at the
same position), it holds that the two types are compatible: t � t′. (t � t′ is one of the
analysis’s main input predicates from Figure 3.) This type compatibility represents the
asType rules of the specification [52]. Function MethodMT (m) maps a method m to its
method type.
i ∈ I are invocation instructions. Predicate i ∈ m means that instruction i belongs to
methodm. The actual parameter that is passed at invocation i in position n is represented
as Ain. For invokedynamic instructions, these are the non-bootstrap parameters of the
bytecode instruction. If instruction i returns a value, Ret(i) is the variable that will hold
the returned value.
h ∈ MH are method handles. A method handle h has the form 〈m,mt〉, which is a pair
of a method m and a method type mt. We also assume predicate DMHLookup(t, s,mt),
which returns the direct method handle that corresponds to a method with name s,
declared in type t, with method type mt. Constructor mockh(t, h) creates a mock object
of type t that corresponds to method handle h.
c ∈ C are call site identifiers. (These are different from mere instructions: because of the
dynamic nature of calls, the same instruction can play the role of distinct call sites.)
We assume lookup objects Lt, one for each type t. These are opaque objects in the
java.lang.invoke API that are used as intermediate values in a lookup: to retrieve,
e.g., a method handle, first one retrieves a lookup object over a type, and subsequently
uses it with method-identifying information.7

The table in Figure 3 lists the main relations that will be used in the analysis rules (i.e.,
all relations other than convenience predicates described earlier). We annotate each relation
with IN if it is consumed by our rules and OUT if our rules inform it. Relation v 7→ val

7 Maintaining a distinct lookup object for each type also shows that our technique can potentially
track access restrictions per type, as mandated by the specification of method lookup objects: https:
//docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.Lookup.html.

https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.Lookup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.Lookup.html

G. Fourtounis and Y. Smaragdakis 15:13

Relation Description Use
v 7→ val Variable v points to val. IN, OUT
f 7→ val Field f points to val. IN
v[∗] 7→ val Variable v is an array and v[i] points to val for some i. OUT
i
h−→ m Instruction i calls method m using method handle h. OUT

i
λ−→ m Instruction i calls method m using functional object λ. OUT

t � t′ Types t and t′ are either subtypes of each other or can IN
be converted to each other via boxing or unboxing.

CSite(c, i, t) Instruction i creates call site c with INTER
dynamic return type t.

CSiteC(c, h,m) Call site c contains meth. handle h pointing to INTER
method m.

MetafactoryInvo(i, s, ti) Lambda metafactory invocation at instruction i, with INTER
dynamic method name s and functional interface ti.

Lambda(λ,m, s, i) Functional object λ with implementing method m, INTER
dynamic method name s and invokedynamic
source instruction i.

Capture(i, n, val) Instruction i captures environment value val at INTER
position n.

InstanceImpl(i,m, λ) Functional object λ, generated at instruction i, uses INTER
non-static method m as implementing method.

Figure 3 Analysis relations.

is both IN and OUT, since our analysis is mutually recursive with the existing points-to
analysis. Relations annotated with INTER are intermediate relations used in the analysis,
that may not be externalized.

4.2 Model: Method Types and Method Handles
We show how the analysis can understand the APIs of method types and method handles.
This includes handling the polymorphic signatures of Java bytecode.

A fundamental problem in the static analysis of method handles is that they contain
native code, for example their “invoke” methods that must be used to do the method call
are native.

The basic relation in this model is i h−→ m which is a call-graph edge from instruction i to
method m annotated with a method handle h. This relation is both created by rules (that
discover method handle invocations) and consumed by rules (that handle argument passing
and value returns).

The method handle invocation rules are shown in Figure 4 while Figure 5 shows the rules
that simulate part of the method handles API. For clarity, we omit packages from qualified
types (e.g., we write MethodHandle instead of java.lang.invoke.MethodHandle).

The rules of Figure 4 are relatively straightforward, capturing regular calling semantics
for method handle invocations, once a method handle value has been determined. Interesting
elements include the mutual recursion with an existing points-to analysis, as well as the
construction of new (mock) objects, per the API specification, when a method handle that
corresponds to a constructor is invoked.

ECOOP 2019

15:14 Deep Static Modeling of invokedynamic

mt = MethodMT(m)
〈m,mt〉

MHMethod

i = v.<MethodHandle.invokeExact>(. . .) v 7→ h h = 〈m, ∗〉

i
h−→ m

MHCGE

i
h−→ m Ain 7→ val

Fmk 7→ val MHArgs
i
h−→ m RetVar(v,m) v 7→ val Ret(i) = v′

v′ 7→ val RetH

i
h−→ m Constr(m) val = mockh(t, h) Ret(i) = v

m/this 7→ val v 7→ val MHConstr

Figure 4 Rules for handling method handle invocations.

Rule MHMethod. This rule creates a method handle h and a method type mt for every
method found in the program.

Rule MHCGE. This rule informs the method handles call graph relation that an invocation
i calls method m using method handle h (notation: i h−→ m).

Rules RetH and MHArgs. These rules pass arguments and return parameters.
Rule MHConstr. For method handles that correspond to constructors, a mock value is

constructed and both the this variable in it and the return value of the invocation point
to this value.

The rules of Figure 5 are a bit more demanding, since they capture precisely the semantics
of the java.lang.invoke API, including lookup objects, using reflection to retrieve method
handles, and more.

Rule AsType. This rule models the asType() method of the MethodHandle API using
predicate AsType(m1

t ,m
2
t).

Rule MHLookup. This rule models the per-type lookup object needed to find method
handles. The lookup() method modeled in this rule is caller-sensitive [53], thus the caller
type t characterizes the returned lookup object and is available for future uses of the
object.

Rule MHLookupC. This rule models the connection between a lookup object and its type
(e.g., to be used in the code for accessibility checks).

Rule Unreflect. This rule models the API methods that bridge the Reflection API with the
java.lang.invoke API. These methods convert reified methods/constructors to method
handles.

Rule Find. This rule models the API methods that look up a virtual or static method via a
lookup object, returning a method handle.

Rule MType. This rule models the two-argument method methodType() of class
MethodHandle. The other overloaded versions of methodType() are modeled similarly.
The rule needs access to reflection support, since it takes advantage of points-to informa-
tion that points to reified Class objects.

Reflection Support. A useful subset of these rules does not need reflection support in the
analysis. For some programs, method types and method handles may come from the constant

G. Fourtounis and Y. Smaragdakis 15:15

i = v.<MethodHandle.asType>(v′) v 7→ 〈m,m1
t 〉

v′ 7→ m2
t AsType(m1

t ,m
2
t) Ret(i) = v′′

v′′ 7→ 〈m,m2
t 〉

AsType

i = <MethodHandles.lookup>() i ∈ m m ∈ t Ret(i) = v

v 7→ Lt MHLookup

i = v.<MethodHandles.Lookup.lookupClass>() v 7→ Lt Ret(i) = v′

v′ 7→ ReifiedC(t) MHLookupC

Ret(i) = v′ MethodMT(m) = mt i = <MethodHandles.Lookup.s>(v)
v 7→ ReifiedM (m) s ∈ {unreflect, unreflectSpecial, unreflectConstructor}

v′ 7→ 〈m,mt〉
Unreflect

i = v.<MethodHandles.Lookup.s>(v0, v1, v2) s ∈ {findVirtual, findStatic} v 7→ Lt
Ret(i) = v′ v0 7→ ReifiedC(t′) v1 7→ s v2 7→ mt DMHLookup(t′, s,mt) = h

v′ 7→ h
Find

i = v.<MethodType.methodType>(v0, v1)
v0 7→ ReifiedC(t0) v1 7→ ReifiedC(t1) Ret(i) = v

v 7→ {t0, [t1]} MType

Figure 5 Rules for handling part of the method handles API.

pool instead of being looked up by the java.lang.invoke API; for such code, our rules do
not require reflection support.

invoke() vs. invokeExact(). As mentioned in Section 3.1, the method handle API offers
two different ways to invoke a method handle. The most fundamental is invokeExact(),
which assumes the arguments and the return value have types that exactly match the method
type of the method handle. In contrast, invoke() permits conversions in arguments and
return values, as if the method handle could successfully change its method type via the
asType() method. For presentation purposes, we only show the rules for invokeExact
in Figure 4 and the rules for asType() in Figure 5. The handling of invoke() follows
directly from these rules, accounting for autoboxing in the case of primitive conversions. The
handling of invokedynamic (shown in Section 4.3) is not affected, since that only needs the
functionality of invocations via invokeExact [33].

Generalized method handles. Method handles are also able to represent fields; we don’t
model this behavior here since it is not important for the invokedynamic analysis (that
follows in the next section) but it is a simple extension of our model.

4.3 Generic Handling of invokedynamic

We next discuss the static modeling of invokedynamic instructions. The model effects the
dynamic linking that eventually computes a method handle and invokes it. The key concept
employed is call sites (c ∈ C). These are the return objects of invokedynamic bootstrap
methods (as determined by regular points-to analysis) and internally use method handles to
determine the calling behavior.

ECOOP 2019

15:16 Deep Static Modeling of invokedynamic

Our rules model the invokedynamic framework in order to discover the method handles
contained in each call site. When a method handle h that maps to a method m is discovered
to be contained in the call site of instruction i, a new call-graph edge i h−→ m is created
and the rules of the previous section analyze the method handle invocation. The rules for
handling invokedynamic invocations are shown in Figure 6. Evaluation-wise, these rules
precede the earlier rules that give semantics to method handles: The purpose of the rules in
Figure 6 is to express what an invokedynamic does in terms of method handles, so that the
earlier reasoning can take over.

We extend the earlier domains and predicates with:

Id ⊂ I are invokedynamic instructions. Predicate i 99Kb m holds when an
invokedynamic instruction i calls bootstrap method m.8 We also assume the following
invokedynamic projections:

Boot : Id →M returns the bootstrap method.
Bp : Id → n→ V returns the bootstrap parameter at position n.
Dyn : Id → (S ×MT) returns the dynamic method name / method type pair.

The rules are explained below:

Rules Bargs, Bargs0, and BargsV. The first rule passes arguments to the boot method,
shifted by three positions, since the first three arguments are filled in by the JVM (and
handled by rule Bargs0). Boot methods such as the alt metafactory may also take
varargs that require special handling by the JVM, thus we also have rule BargsV. Note
the introduction of an artificial (mock) array object to maintain the vararg values.

Rule RetB. This is the standard rule that returns value from a method call. It is adapted
here for completeness, for the case of bootstrap method invocations.

Rule CSite. This rule stores information about a call site object computed at an
invokedynamic instruction.

Rules CSite1 and CSite2. These two rules relate a call site object with its method handle
and the method it points to.

Rule MHCGEDyn. This rule relates the invokedynamic call site and its method handle to
create call-graph edges with method handle semantics. From this point on, the rules in
the previous section take over and complete the method handle invocation.

Reflection Support. The rules presented in the subsection do not require reflection. For
example, a program which contains an invokedynamic instruction that passes a method
handle constant (read from the class constant pool) to its bootstrap method, can be analyzed
without reflection support. In practice, however, bootstrap methods often employ reflective
reasoning to compute the method handle that will be returned in the call site return value,
and thus reflection support should be provided.

4.4 Model: Method References and Lambdas
Both method reference expression and lambdas are implemented by the same machinery,
a “lambda metafactory” [50]. At a very high level, the metafactory takes two arguments,

8 We assume that all invokedynamic instructions call their bootstrap methods when their containing
type is loaded.

G. Fourtounis and Y. Smaragdakis 15:17

i 99Kb m Dyn(i) = 〈s,mt〉
Fm0 7→ Lt Fm1 7→ s Fm2 7→ mt

Bargs0
i 99Kb m Bp(i, n) 7→ val

Fmn+3 7→ val Bargs

i 99Kb m val ′ = mockc(java.lang.Object[], i) Bp(i, n) 7→ val n > 2
Fm3 7→ a val ′[∗] 7→ val BargsV

i 99Kb m RetVar(v,m) v 7→ val Ret(i) = v′

v′ 7→ val RetB

Dyn(i) = 〈∗,mt〉 mt = {t, ∗} Boot(i) = m RetVar(v,m) v 7→ c

CSite(c, i, t) CSite

CSite(c, ∗, t) c.target 7→ h h = 〈m, {t, ∗}〉
CSiteC(c, h,m) CSite1

CSite(c, ∗, t) c.target 7→ h h = 〈m, ∗〉 Constr(m) m ∈ t
CSiteC(c, h,m) CSite2

CSite(c, i, t) CSiteC(c, h,m) h = 〈∗, {t, ∗}〉

i
h−→ m

MHCGEDyn

Figure 6 Rules for generic handling of invokedynamic.

(1) a method handle pointing to a method m and (2) a SAM type t, and returns a functional
object implementing t whose (single) method calls m.

The functional object may be an instance of a new dynamically-generated class, thus
a naive points-to analysis cannot penetrate the object to analyze calls on it. Our analysis
understands the semantics of the functional objects created by the dynamic linking and
method resolution of the metafactory, and creates a mock value in place of the functional
object. That value can be propagated in the program as usual by the underlying points-to
analysis. Appropriate metadata on the value help the analysis compute intended semantics
such as the invocation target or the captured values of the environment.

The Three Phases of invokedynamic for Lambdas. When used for lambdas, functional
object creation by the lambda metafactory works in three phases [50]:
1. Linkage. The bootstrap method is called and a call site object is returned, at the location

of the invokedynamic instruction. The bootstrap method being the “metafactory”, the
call site is then a “lambda factory”, which must be invoked to produce a functional object.

2. Capture. The method handle in the call site object is invoked, possibly with some
arguments. This permits different behavior for different contexts by capturing values of
the enclosing environment. The result is the functional object.

3. Invocation. The functional object can then be passed around in the code and the
method of its functional interface can be eventually called.

The rules that enable analysis of method references are shown in Figure 7. The basic
idea is to create mock values in the analysis for functional objects and simulate all three
phases so that calls are correctly resolved. We assume the following domains, (meta)variables,
and predicates:

The Lλ constant stands for the lambda metafactory [50] of the OpenJDK.

ECOOP 2019

15:18 Deep Static Modeling of invokedynamic

λ ∈ Val ranges over functional objects.
#i returns the arity of instruction i (the number of actual parameters passed to the
functional object).

The rules are explained below:

Rule Metafactory. This rule marks an invokedynamic invocation as a lambda metafactory
invocation.

Rule Lambda. This rule creates the mock functional object λ that will propagate in the
program and behave (in the analysis) as if it was an object created by the metafactory.
The object keeps related metadata in relation Lambda(λ,m, s, i): its implementing method
m (found in a constant method handle argument of the metafactory), the name of the
functional interface method it implements, and the invokedynamic instruction i that
created the functional object.

Rule Capture. This rule records possibly captured values from the enclosing environment.
(All arguments are eagerly recorded as possible captured values and the appropriate
capture arguments are recognized in later rules CaptArgsand LambdaThis.)

Rule CGEL. This rule creates call-graph edges to the actual implementing method of the
functional object. Following these edges bypasses the dynamically-generated classes and
lets the static analysis discover the code of method references and lambdas.

Rule RetL. This is the standard rule for return values from methods.
Rule InstImpl. This rule records that a functional object is implemented by a non-static

method. This means that further rules should discover the receiver and pass it to the
method.

Rules Shift1, Shift2, and Shift3. These rules populate relation Shift(λ,m, n, k), which
records if the arguments passed to the functional object must be shifted to make room for
a receiver. This is because instance methods may implicitly consume one of the actual
arguments of the invokedynamic or of the functional interface invocation, to use as the
receiver. Static methods take all invokedynamic-actual arguments before the ones passed
to the functional object during method invocation.

Rule LArgs. This passes arguments to the implementing method, from the method invocation
on the functional object. The shifting of parameters addresses a number of patterns that
the metafactory follows to capture and pass values from the environment.

Rule CaptArgs. This rule passes captured arguments to the implementing method.
Rule LambdaThis. This rule handles the pattern of captured receiver parameters.
Rule MRefThis. This rule handles the pattern where a method reference to an instance

method has not captured a receiver, but will receive it during invocation as an extra
argument.

Rule CCall. This handles the special case where a method reference points to a constructor
(is thus a “constructor reference”). Since constructor methods are void and assume an
already constructed (but not initialized) object, this rule creates such an object and binds
it both to the ’this’ variable of the constructor and the return variable of the invocation.

Additional Features. The JDK also has a second metafactory, the “alt metafactory”: a
generalization of the lambda metafactory that provides additional features, such as bridging,
support for multiple interfaces, and serializability. We do not model such extra properties of
its lambdas here, but these features are type-based so they are amenabe to handling in a
similar way to the rules we already present.

G. Fourtounis and Y. Smaragdakis 15:19

Reflection Support. The method handles passed to the metafactory are statically known:
either the programmer provided them as method references or the compiler generated them
for lambdas. Thus our rules for handling lambdas and method references do not need
reflection support; the only method handles used come from the constant pool. This means
that our approach can integrate with the baseline configuration of a points-to analysis, in
order to analyze programs without overhead due to reflection support.

Context sensitivity. The analysis, as presented, has a context-insensitive formulation, to
avoid unnecessary complication of the rules. Careful (but conceptually standard) addition of
context elements to predicates (as shown, e.g., in reference [66]) produces a context-sensitive
version. Our implementation is fully context sensitive.

5 Evaluation

We evaluate our analysis on two test suites: a microbenchmark suite of our own (Section 5.1)
and the test suite of Sui et al. [68] (Section 5.2).

Our analysis is implemented in the declarative static analysis framework Doop [6]. All
analyses are run on a 64-bit machine with an Intel Xeon CPU E5-2667 v2 3.30GHz with 256
GB of RAM. We use the Soufflé compiler (v.1.4.0), which compiles Datalog specifications
into binaries via C++ and run the resulting binaries in parallel mode using four jobs.
Doop uses the Java 8 platform as implemented in Oracle JDK v1.8.0_121. All running
times and precision numbers are for Doop’s default context-insensitive analysis. (Context
sensitivity adds no precision to the high-level metrics shown.) For benchmarks of generalized
invokedynamic features (i.e., not lambdas and method references), we enable reflection
support in Doop.

5.1 Microbenchmark Suite
To evaluate our technique, we have built our own suite of microbenchmarks. These bench-
marks capture a large number of idioms found in realistic uses of method references (Sec-
tion 5.1.1), lambdas (Section 5.1.2), and method handles combined with invokedynamic
(Section 5.1.3), including most of the patterns shown in the examples of Section 2. (Other
patterns are captured in the Sui et al. suite, discussed later.) The suite is freely available.

Analysis times for the three component benchmarks are shown in Figure 8. As can
be seen, enabling reflection analysis, for fully general handling of invokedynamic, incurs
higher cost.

Our static analysis fully models all behavior in the microbenchmark suite. Although the
suite was developed in tandem with the analysis, it still provides partial validation of analysis
completeness, given the effort to encode many variations of operations, as detailed next.

5.1.1 Microbenchmark: Method References
This benchmark includes Oracle’s tutorial code MethodReferencesTest [51]. We capture
the behavior of all four kinds of methods references (found in the tutorial table): to static
methods, to instance methods of a particular object, to instance methods of an arbitrary
object of a particular type, and to constructors.

The microbenchmark also contains code that showcases the following features:
1. Construction of functional objects directly from method references.
2. Use of functional objects together with Java 8 stream API methods.

ECOOP 2019

15:20 Deep Static Modeling of invokedynamic

LINKAGE

i 99Kb m m ∈ Lλ Dyn(i) = 〈s,mt〉 mt = {ti, ∗}
MetafactoryInvo(i, s, ti)

Metafactory

MetafactoryInvo(i, s, ti) Bp(i, 1) 7→ 〈m, ∗〉 Ret(i) = v λ = mockc(ti, i)
v 7→ λ Lambda(λ,m, s, i) Lambda

CAPTURE

MetafactoryInvo(i, ∗, ∗) Ain 7→ val
Capture(i, n, val) Capture

INVOCATION

Lambda(λ,m, s, ∗) v 7→ λ i = v.<s>(. . .)

i
λ−→ m

CGEL

i
λ−→ m Rmn = v v 7→ val Ret(i) = v′

v′ 7→ val
RetL

∗ λ−→ m ¬Static(m) Lambda(λ, ∗, ∗, i)
InstanceImpl(i,m, λ) InstImpl

Lambda(λ,m, ∗, ∗) Static(m)
Shift(λ,m, 0, 0) Shift1

InstanceImpl(i,m, λ) #i = 0
Shift(λ,m, 0, 1) Shift2

InstanceImpl(i,m, λ) #i > 0
Shift(λ,m, 1, 0) Shift3

i
λ−→ m Shift(λ,m, k, n) Lambda(λ,m, ∗, i)

Ain′ = v′ Fmn′′ = v n′′ = #i− (k + n) + n′ v′ 7→ val
v 7→ val LArgs

∗ λ−→ m Shift(λ,m, k, ∗) Lambda(λ,m, ∗, i) Capture(i, n, val) k + n ≤ #i
Fmn−k 7→ val CaptArgs

Shift(λ,m, 1, 0) InstanceImpl(i,m, λ) Capture(i, 0, val)
m/this 7→ val LambdaThis

i
λ−→ m Shift(λ,m, 0, 1) Ai0 7→ val

m/this 7→ val MRefThis

i
λ−→ m Constr(m) m ∈ t Ret(i) = v val = mockc(t, i)

v 7→ val m/this 7→ val CCall

Figure 7 Rules for handling method references and lambdas.

G. Fourtounis and Y. Smaragdakis 15:21

Benchmark Time (sec)
Method References 27
Lambdas 23
Method Handles and invokedynamic 378

Figure 8 Microbenchmark times.

3. Auto-boxing conversions.

5.1.2 Microbenchmark: Lambdas
This benchmark shows the handling of the following features:
1. Creating lambdas with arrow notation. This includes nested lambdas.
2. Creating lambdas that can access values of the outside environment (forming closures).

5.1.3 Microbenchmark: Method Handles and invokedynamic

Java currently does not support the direct representation of invokedynamic in source code,
although such a feature is considered for inclusion in future versions of the language [21]. For
this reason, this benchmark uses the ASM bytecode manipulation library9 to dynamically
generate and load a class with invokedynamic invocations.

The benchmark captures the following patterns:
1. Lookup of a MethodHandles.Lookup object via MethodHandles.lookup().
2. Construction of method type values via MethodType.methodType() methods.
3. Look-up of virtual and static methods via MethodHandles.Lookup.findVirtual() and

MethodHandles.Lookup.findStatic().
4. Calling method handles with MethodHandle.invokeExact().
5. Passing a receiver for non-static methods (thus handling places where the signature of the

target method differs from the signature of the MethodHandle.invokeExact() signature
found in the bytecode).

6. Bootstrapping calls to another class in a manner similar to the motivating example in
Section 2.1.

5.2 Sui et al. Test Suite
We also evaluate our technique using the dynamic features test suite of Sui et al. [68]. This is a
test suite that examines the soundness of call-graph construction and is written to specifically
test the static analysis of features such as lambdas and invokedynamic, by authors with
extensive experience in systematic Java benchmarking efforts (e.g., XCorpus [9]).

The benchmark suite contains three benchmarks for lambdas, plus a benchmark for
invokedynamic in general (Dynamo). Dynamo is a realistic software artifact [28] that has
been configured in the benchmark suite to specifically evaluate the analysis of invokedynamic.
The Dynamo library exercises all features of dynamic invocation sites (static vs. non-
static, constructors, signature adaptation, interaction with plain Java reflection). It injects
invokedynamic calls in unsuspecting code to address cross-component linking errors. Thus,
if these invokedynamic sites are not analyzed, then the static analysis cannot find calls from
code to a library.

The Dynamo test program in the suite contains two invokedynamic sites:

9 https://asm.ow2.io/

ECOOP 2019

https://asm.ow2.io/

15:22 Deep Static Modeling of invokedynamic

Benchmark Reachable Unreachable Time (sec)
expected analysis expected analysis

LambdaConsumer 1 � 1 � 21
LambdaFunction 1 � 2 � 21
LambdaSupplier 1 � 1 � 22
Dynamo 1 � 1 – 242

Figure 9 Dynamic benchmark results.

1. A site that looks up a constructor method and creates an object. Since it is a constructor
method handle, the analysis also recognizes that an object must also be allocated for this
invocation.

2. A site that looks up an instance method and calls it. The original signature of the method
accepts an object and is adapted to also accept the receiver.

In both cases, Dynamo retrieves the method via reflection and then proceeds to “unreflect”
it. The test program does not test lookup of static methods.

For every benchmark, the following ground truth is provided: one or more methods are
expected to be found reachable, while one or more different methods are expected to be
found unreachable. The results of applying our analysis to these benchmarks are shown in
Figure 9.

Notably:
All lambda benchmarks are analyzed precisely: the expected methods are found reachable
or unreachable.
For Dynamo, our analysis over-approximates reachability. Dynamo uses invokedynamic
as a layer between components to ensure binary compatibility with evolving code. As
seen in Figure 9, our analysis over-approximates reachability: it discovers the expected
method as reachable but also discovers the expected unreachable method. This problem
is not fundamental to the technique that we present, but is caused by the lack of flow
sensitivity in the underlying points-to analysis, provided by the Doop framework. Dynamo
code creates method handles by gathering reflectively all members of classes and then
selectively filtering out the ones that do not match; Doop’s flow insensitivity causes it to
ignore this filtering. Coupled with flow sensitivity, our technique should be able to ignore
the expected unreachable method.
The efficiency of a lambda-specialized analysis vs. a general-purpose invokedynamic
analysis that requires reflection support is again demonstrated in the running times.

6 Related work

Static Analysis of Java Lambdas and Dynamic Calls. Some recent work has attempted
to treat lambdas and their static analysis, mostly in isolation, as another high-level feature
for practical tools. Cifuentes et al. [7] perform a pattern-based vulnerability analysis (i.e.,
not a full low-level analysis of value flow) and recognize code patterns containing lambdas.
There has also been work on dynamic analyses that understand Java-style lambdas [11].

Reflection and programmable dynamic calls are subtle features that should be formalized
in order to be addressed. However, the bibliography is lacking: we only know of the work
of Landman et al. [30], who give a syntax of the DSL behind the standard Java Reflection
API. They do not treat its semantics, as they did not need to (their work was on mining big
codebases for the existence of specific patterns).

G. Fourtounis and Y. Smaragdakis 15:23

To the best of our knowledge, no formal semantic model of invokedynamic and its
API exists. Other Java APIs that cannot be easily analyzed statically have also been
candidates for static semantic modeling. Smaragdakis et al. model the reflection API [67] and
Fourtounis et al. model dynamic proxies [13]. Our approach differs in two aspects: (a) we
do not necessarily incur performance overheads (our handling of functional objects does not
require expensive reflection support) and (b) we model the lower-level java.lang.invoke
API, which requires handling of JVM features such as signature polymorphism, caller
sensitivity, and reasoning about code running at class-loading time.

The IBM WALA static analysis framework [10] has limited support for invokedynamic,
specifically for call-graph edges over lambdas by generating synthetic classes.10 WALA also
lacks full support for constructor method references [60].

Transforming Away invokedynamic. Lambdas are not easy to work with; Soot, a popular
Java manipulation and analysis framework, even considers statically transforming them
away [4], since invokedynamic has been too difficult to analyze: “Soot does not fully support
dynamic invokes ... could not find an easy workaround and instead decided that it would
be best to change Schaapi such that dynamic invokes (and thus lambdas) are ignored
completely.”11

Along the same lines, but more completely, the OPAL bytecode rectifier12 removes
instances of invokedynamic as used in Java lambdas. This is a general alternative static
treatment of lambdas, but not of other instances of invokedynamic. Similar removal
of stylized uses of invokedynamic, without handling the general case, are performed by
RetroLambda13 and Google’s D8.14 These tools cannot, e.g., make the Dynamo benchmark
analyzable by analyses that do not understand invokedynamic.

Other Platforms. Apart from the popular OpenJDK and its VM, used on servers or desk-
tops, the other mainstream Java platform is Android. The implementation of invokedynamic
on Android posed some complications because dynamic code generation is restricted on
Android due to resource constraints [57, 64]. invokedynamic was prototyped for Android [64]
and, eventually, became officially supported when the latest “Android N” switched to Java
8. Our work is, thus, applicable to Android as well. Android is a platform that commands
special attention due to its popularity. invokedynamic enables new optimizations and analy-
ses [78, 79, 80]. However, the instruction is also a security threat, since it is so powerful that
it can, for example, hide method calls and make malware undetectable (as demonstrated
by the DexProtector tool [32] or the survey of Gorenc and Spelman [22]) and provides less
security by-design compared to classic reflection [65].

The .NET platform also has functionality similar to method handles and anonymous
classes, called “dynamic methods” [37]. We, thus, expect that our approach can be ported to
other runtimes and to their implementation of dynamic features.

7 Conclusion

We presented a static analysis modeling of programmable dynamic linking in Java, i.e., the
invokedynamic instruction and accompanying framework. The approach addresses the most

10 https://groups.google.com/forum/#!topic/wala-sourceforge-net/omsGtp_ow7I,
https://github.com/wala/WALA/blob/f2b1e9fec0627e221427404cb7ba194c4a89cd9e/com.ibm.wala.
core/src/com/ibm/wala/ipa/summaries/LambdaSummaryClass.java#L42

11 https://github.com/cafejojo/schaapi/pull/295
12 http://www.opal-project.de/DeveloperTools.html
13 https://github.com/luontola/retrolambda
14 https://jakewharton.com/androids-java-8-support/

ECOOP 2019

https://groups.google.com/forum/#!topic/wala-sourceforge-net/omsGtp_ow7I
https://github.com/wala/WALA/blob/f2b1e9fec0627e221427404cb7ba194c4a89cd9e/com.ibm.wala.core/src/com/ibm/wala/ipa/summaries/LambdaSummaryClass.java#L42
https://github.com/wala/WALA/blob/f2b1e9fec0627e221427404cb7ba194c4a89cd9e/com.ibm.wala.core/src/com/ibm/wala/ipa/summaries/LambdaSummaryClass.java#L42
https://github.com/cafejojo/schaapi/pull/295
http://www.opal-project.de/DeveloperTools.html
https://github.com/luontola/retrolambda
https://jakewharton.com/androids-java-8-support/

15:24 Deep Static Modeling of invokedynamic

fundamental level of the language feature, fully modeling method handles, while at the same
time it maintains high efficiency and completeness for common uses of invokedynamic in
Java lambdas. This is the first thorough handling of the invokedynamic feature, which had
so far resisted static analysis.

References
1 Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu,

Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund, et al. The Fortress language
specification. Sun Microsystems, 139:140, 2005.

2 Malte Appeltauer, Michael Haupt, and Robert Hirschfeld. Layered Method Dispatch with
INVOKEDYNAMIC: An Implementation Study. In Proceedings of the 2nd International
Workshop on Context-Oriented Programming, COP ’10, pages 4:1–4:6, New York, NY, USA,
2010. ACM. doi:10.1145/1930021.1930025.

3 Shashank Bharadwaj. Optimizing Jython using invokedynamic and Gradual Typing. Master’s
thesis, University of Colorado at Boulder, 2012.

4 Eric Bodden. Develop transformer that gets rid of indy calls for lambda capture #226, 2014.
URL: https://github.com/Sable/soot/issues/226.

5 Norris Boyd et al. Rhino: Javascript for Java. Mozilla Foundation, 2007.
6 Martin Bravenboer and Yannis Smaragdakis. Strictly Declarative Specification of Sophisticated

Points-to Analyses. In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’09, New York, NY,
USA, 2009. ACM.

7 Cristina Cifuentes, Andrew Gross, and Nathan Keynes. Understanding Caller-sensitive Method
Vulnerabilities: A Class of Access Control Vulnerabilities in the Java Platform. In Proceedings
of the 4th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis,
SOAP 2015, pages 7–12, New York, NY, USA, 2015. ACM. doi:10.1145/2771284.2771286.

8 L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80
System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’84, pages 297–302, New York, NY, USA, 1984. ACM.
doi:10.1145/800017.800542.

9 Jens Dietrich, Henrik Schole, Li Sui, and Ewan D. Tempero. XCorpus - an executable corpus
of Java programs. Journal of Object Technology, 16(4):1:1–24, 2017. doi:10.5381/jot.2017.
16.4.a1.

10 Julian Dolby, Stephen J. Fink, and Manu Sridharan. T.J. Watson libraries for analysis
(WALA). http://wala.sourceforge.net.

11 Sebastian Erdweg, Vlad Vergu, Mira Mezini, and Eelco Visser. Finding Bugs in Program
Generators by Dynamic Analysis of Syntactic Language Constraints. In Proceedings of the
Companion Publication of the 13th International Conference on Modularity, MODULARITY
’14, pages 17–20, New York, NY, USA, 2014. ACM. doi:10.1145/2584469.2584474.

12 Rémi Forax. JSR 292 / PHP.reboot. https://www.lrde.epita.fr/dload/seminar/2010-12-
08/forax.pdf, 2010.

13 George Fourtounis, George Kastrinis, and Yannis Smaragdakis. Static Analysis of Java
Dynamic Proxies. In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, pages 209–220, New York, NY, USA, 2018. ACM.
doi:10.1145/3213846.3213864.

14 Brian Goetz. One VM, Many Languages. https://gotocon.com/dl/jaoo-aarhus-2010/
slides/BrianGoetz_OneVMManyLanguages.pdf, 2010. GOTO Aarhus 2010 Conference.

15 Brian Goetz. From lambdas to bytecode. http://wiki.jvmlangsummit.com/images/1/1e/
2011_Goetz_Lambda.pdf, 2011. JVM Language Summit.

16 Brian Goetz. Implementing lambda expressions in Java. http://wiki.jvmlangsummit.com/
images/7/7b/Goetz-jvmls-lambda.pdf, 2012. JVM Language Summit.

http://dx.doi.org/10.1145/1930021.1930025
https://github.com/Sable/soot/issues/226
http://dx.doi.org/10.1145/2771284.2771286
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://wala.sourceforge.net
http://dx.doi.org/10.1145/2584469.2584474
https://www.lrde.epita.fr/dload/seminar/2010-12-08/forax.pdf
https://www.lrde.epita.fr/dload/seminar/2010-12-08/forax.pdf
http://dx.doi.org/10.1145/3213846.3213864
https://gotocon.com/dl/jaoo-aarhus-2010/slides/BrianGoetz_OneVMManyLanguages.pdf
https://gotocon.com/dl/jaoo-aarhus-2010/slides/BrianGoetz_OneVMManyLanguages.pdf
http://wiki.jvmlangsummit.com/images/1/1e/2011_Goetz_Lambda.pdf
http://wiki.jvmlangsummit.com/images/1/1e/2011_Goetz_Lambda.pdf
http://wiki.jvmlangsummit.com/images/7/7b/Goetz-jvmls-lambda.pdf
http://wiki.jvmlangsummit.com/images/7/7b/Goetz-jvmls-lambda.pdf

G. Fourtounis and Y. Smaragdakis 15:25

17 Brian Goetz. Lambda: A peek under the hood. https://www.slideshare.net/
jaxlondon2012/lambda-a-peek-under-the-hood-brian-goetz, 2012. JAX London 2012.

18 Brian Goetz. Translation of Lambda Expressions, April 2012. Accessed: June 11, 2019. URL:
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html.

19 Brian Goetz. State of the Lambda, September 2013. Accessed: June 11, 2019. URL:
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html.

20 Brian Goetz. Project Valhalla Update. https://www.oracle.com/technetwork/java/
jvmls2016-goetz-3126134.pdf, 2016. JVM Language Summit.

21 Brian Goetz. JEP 303: Intrinsics for the LDC and INVOKEDYNAMIC Instructions, 2018.
URL: https://openjdk.java.net/jeps/303.

22 Brian Gorenc and Jasiel Spelman. Java Every-Days – Exploiting Software Running on 3
Billion Devices. https://media.blackhat.com/us-13/US-13-Gorenc-Java-Every-Days-
Exploiting-Software-Running-on-3-Billion-Devices-WP.pdf. HP Security Research Zero
Day Initiative.

23 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification, Java SE 8 Edition (Java Series), 2014.

24 Stuart Halloway. Programming Clojure. Pragmatic Bookshelf, 1st edition, 2009.
25 Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language Specification. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
26 Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. An In-Depth Study

of More Than Ten Years of Java Exploitation. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages 779–790, New York,
NY, USA, 2016. ACM. doi:10.1145/2976749.2978361.

27 Vladimir Ivanov. Invokedynamic: Deep Dive. http://cr.openjdk.java.net/~vlivanov/
talks/2015-Indy_Deep_Dive.pdf. Accessed: June 11, 2019.

28 Kamil Jezek and Jens Dietrich. Magic with Dynamo – Flexible Cross-Component Linking for
Java with Invokedynamic. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th
European Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 12:1–12:25, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2016.12.

29 Chanwit Kaewkasi. Towards Performance Measurements for the Java Virtual Machine’s
Invokedynamic. In Virtual Machines and Intermediate Languages, VMIL ’10, pages 3:1–3:6,
New York, NY, USA, 2010. ACM. doi:10.1145/1941054.1941057.

30 Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges for Static Analysis
of Java Reflection – Literature Review and Empirical Study. In Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, 2017.

31 Jim Laskey. Adventures in JSR-292 or How To Be A Duck Without Really Trying. http:
//wiki.jvmlangsummit.com/images/c/ce/Nashorn.pdf, 2011. JVM Language Summit.

32 Licel. DexProtector. URL: https://dexprotector.com/docs.
33 Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine

Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.
34 Baptiste Maingret, Frédéric Le Mouël, Julien Ponge, Nicolas Stouls, Jian Cao, and Yannick

Loiseau. Towards a Decoupled Context-Oriented Programming Language for the Internet of
Things. In Proceedings of the 7th International Workshop on Context-Oriented Programming,
COP’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM. doi:10.1145/2786545.2786552.

35 Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Understanding the
Use of Lambda Expressions in Java. Proceedings of the ACM on Programming Languages,
1(OOPSLA):85:1–85:31, October 2017. doi:10.1145/3133909.

36 Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling object, relations and
XML in the .NET framework. In Proceedings of the 2006 ACM SIGMOD International

ECOOP 2019

https://www.slideshare.net/jaxlondon2012/lambda-a-peek-under-the-hood-brian-goetz
https://www.slideshare.net/jaxlondon2012/lambda-a-peek-under-the-hood-brian-goetz
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html
https://www.oracle.com/technetwork/java/jvmls2016-goetz-3126134.pdf
https://www.oracle.com/technetwork/java/jvmls2016-goetz-3126134.pdf
https://openjdk.java.net/jeps/303
https://media.blackhat.com/us-13/US-13-Gorenc-Java-Every-Days-Exploiting-Software-Running-on-3-Billion-Devices-WP.pdf
https://media.blackhat.com/us-13/US-13-Gorenc-Java-Every-Days-Exploiting-Software-Running-on-3-Billion-Devices-WP.pdf
http://dx.doi.org/10.1145/2976749.2978361
http://cr.openjdk.java.net/~vlivanov/talks/2015-Indy_Deep_Dive.pdf
http://cr.openjdk.java.net/~vlivanov/talks/2015-Indy_Deep_Dive.pdf
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.12
http://dx.doi.org/10.1145/1941054.1941057
http://wiki.jvmlangsummit.com/images/c/ce/Nashorn.pdf
http://wiki.jvmlangsummit.com/images/c/ce/Nashorn.pdf
https://dexprotector.com/docs
http://dx.doi.org/10.1145/2786545.2786552
http://dx.doi.org/10.1145/3133909

15:26 Deep Static Modeling of invokedynamic

Conference on Management of Data, SIGMOD ’06, pages 706–706, New York, NY, USA, 2006.
ACM. doi:10.1145/1142473.1142552.

37 Microsoft. DynamicMethod Class. URL: https://msdn.microsoft.com/en-us/library/
system.reflection.emit.dynamicmethod(v=vs.110).aspx.

38 Behrooz Nobakht and Frank S. de Boer. Programming with Actors in Java 8. In Tiziana Mar-
garia and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation. Specialized Techniques and Applications: 6th International Symposium, ISoLA
2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings, Part II, pages 37–53. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014. doi:10.1007/978-3-662-45231-8_4.

39 S. Nopnipa and C. Kaewkasi. Aspect-aware bytecode combinators for a dynamic AOP system
with invokedynamic. In The 2013 10th International Joint Conference on Computer Science and
Software Engineering (JCSSE), pages 246–251, May 2013. doi:10.1109/JCSSE.2013.6567353.

40 Charles Nutter. A First Taste of InvokeDynamic. URL: http://blog.headius.com/2008/09/
first-taste-of-invokedynamic.html.

41 Charles Nutter. The Power of the JVM. URL: http://blog.headius.com/2008/05/
power-of-jvm.html.

42 Charles Nutter. invokedynamic: You Ain’t Seen Nothing Yet, 2012. Proceedings
of the JAX Conference (JAX 12). URL: https://www.slideshare.net/CharlesNutter/
jax-2012-invoke-dynamic-keynote.

43 Charles Nutter. GOTO Night with Charles Nutter Slides, 2014. GOTO 2014. URL:
https://www.slideshare.net/AlexandraMasterson/goto-night-with-charles-
nutter-slides.

44 Charles O. Nutter, Thomas Enebo, Nick Sieger, Ola Bini, and Ian Dees. Using JRuby: Bringing
Ruby to Java. Pragmatic Bookshelf, 1st edition, 2011.

45 Martin Odersky and Tiark Rompf. Unifying Functional and Object-oriented Programming
with Scala. Communications of the ACM, 57(4):76–86, April 2014. doi:10.1145/2591013.

46 OpenJDK Compiler Team. Bound method handles - HotSpot - OpenJDK Wiki. URL:
https://wiki.openjdk.java.net/display/HotSpot/Bound+method+handles.

47 Oracle. java.lang.invoke (Java Platform SE 7). URL: https://docs.oracle.com/javase/7/
docs/api/java/lang/invoke/package-summary.html.

48 Oracle. JEP 160: Lambda-form representation for method handles. URL: http://openjdk.
java.net/jeps/160.

49 Oracle. JSR 335: Lambda Expressions for the Java™ Programming Language. URL: https:
//jcp.org/en/jsr/detail?id=335.

50 Oracle. LambdaMetafactory (Java Platform SE 8). URL: https://docs.oracle.com/javase/
8/docs/api/java/lang/invoke/LambdaMetafactory.html.

51 Oracle. Method References (The Java™ Tutorials > Learning the Java Language >
Classes and Objects), 2017. URL: https://docs.oracle.com/javase/tutorial/java/
javaOO/methodreferences.html.

52 Oracle. MethodHandle (Java Platform SE 8), 2018. URL: https://docs.oracle.com/javase/
8/docs/api/java/lang/invoke/MethodHandle.html.

53 Oracle. MethodHandles (Java Platform SE 8), 2018. URL: https://docs.oracle.com/
javase/8/docs/api/java/lang/invoke/MethodHandles.html.

54 Oracle. MethodType (Java Platform SE 8), 2018. URL: https://docs.oracle.com/javase/
8/docs/api/java/lang/invoke/MethodType.html.

55 F. Ortin, P. Conde, D. Fernandez-Lanvin, and R. Izquierdo. The Runtime Performance of
invokedynamic: An Evaluation with a Java Library. IEEE Software, 31(4):82–90, July 2014.
doi:10.1109/MS.2013.46.

56 Samuele Pedroni and Noel Rappin. Jython Essentials: Rapid Scripting in Java. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1 edition, 2002.

57 Jerome Pilliet, Remi Forax, and Gilles Roussel. DualStack: Improvement of invokedynamic
implementation on Android. In Proceedings of the 13th International Workshop on Java

http://dx.doi.org/10.1145/1142473.1142552
https://msdn.microsoft.com/en-us/library/system.reflection.emit.dynamicmethod(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.reflection.emit.dynamicmethod(v=vs.110).aspx
http://dx.doi.org/10.1007/978-3-662-45231-8_4
http://dx.doi.org/10.1109/JCSSE.2013.6567353
http://blog.headius.com/2008/09/first-taste-of-invokedynamic.html
http://blog.headius.com/2008/09/first-taste-of-invokedynamic.html
http://blog.headius.com/2008/05/power-of-jvm.html
http://blog.headius.com/2008/05/power-of-jvm.html
https://www.slideshare.net/CharlesNutter/jax-2012-invoke-dynamic-keynote
https://www.slideshare.net/CharlesNutter/jax-2012-invoke-dynamic-keynote
https://www.slideshare.net/AlexandraMasterson/goto-night-with-charles-nutter-slides
https://www.slideshare.net/AlexandraMasterson/goto-night-with-charles-nutter-slides
http://dx.doi.org/10.1145/2591013
https://wiki.openjdk.java.net/display/HotSpot/Bound+method+handles
https://docs.oracle.com/javase/7/docs/api/java/lang/invoke/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/lang/invoke/package-summary.html
http://openjdk.java.net/jeps/160
http://openjdk.java.net/jeps/160
https://jcp.org/en/jsr/detail?id=335
https://jcp.org/en/jsr/detail?id=335
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/LambdaMetafactory.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/LambdaMetafactory.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandle.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandle.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodType.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodType.html
http://dx.doi.org/10.1109/MS.2013.46

G. Fourtounis and Y. Smaragdakis 15:27

Technologies for Real-time and Embedded Systems, JTRES ’15, pages 4:1–4:8, New York, NY,
USA, 2015. ACM. doi:10.1145/2822304.2822310.

58 Julien Ponge, Frédéric Le Mouël, and Nicolas Stouls. Golo, a Dynamic, Light and Efficient
Language for Post-invokedynamic JVM. In Proceedings of the 2013 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, PPPJ ’13, pages 153–158, New York, NY, USA, 2013. ACM. doi:10.1145/2500828.
2500844.

59 Julien Ponge and Frédéric Le Mouël. JooFlux: Hijacking Java 7 invokedynamic to support
live code modifications. CoRR, abs/1210.1039, 2012. arXiv:1210.1039.

60 M. Reif, F. Kübler, M. Eichberg, and M. Mezini. Systematic evaluation of the unsoundness of
call graph construction algorithms for Java. In Proceedings of SOAP 2018. ACM, 2018.

61 John R. Rose. Anonymous classes in the VM, January 2008. URL: https://blogs.oracle.
com/jrose/entry/anonymous_classes_in_the_vm.

62 John R. Rose. Bytecodes Meet Combinators: Invokedynamic on the JVM. In Proceedings
of the Third Workshop on Virtual Machines and Intermediate Languages, VMIL ’09, pages
2:1–2:11, New York, NY, USA, 2009. ACM. doi:10.1145/1711506.1711508.

63 John R. Rose. Method Handles and Beyond... Some basis vectors. http://wiki.
jvmlangsummit.com/images/8/88/Rose-2011-FutureDirections.pdf, 2011. JVM Summit.

64 Gilles Roussel, Remi Forax, and Jerome Pilliet. Android 292: Implementing Invokedynamic
in Android. In Proceedings of the 12th International Workshop on Java Technologies for
Real-time and Embedded Systems, JTRES ’14, pages 76:76–76:86, New York, NY, USA, 2014.
ACM. doi:10.1145/2661020.2661032.

65 Security Explorations. Security Vulnerabilities in Java SE. http://www.
security-explorations.com/materials/se-2012-01-report.pdf. Technical Report.

66 Yannis Smaragdakis and George Balatsouras. Pointer Analysis. Foundations and Trends in
Programming Languages, 2(1):1–69, 2015. doi:10.1561/2500000014.

67 Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. More
Sound Static Handling of Java Reflection. In Proceedings of the Asian Symposium on Pro-
gramming Languages and Systems, APLAS ’15. Springer, 2015.

68 L. Sui, J. Dietrich, M. Emery, S. Rasheed, and A. Tahir. On the Soundness of Call
Graph Construction in the Presence of Dynamic Language Features - A Benchmark
and Tool Evaluation. https://sites.google.com/site/jensdietrich/publications/
preprints/On%20the%20Soundness%20of%20Call%20Graph%20Construction%20in%20the%
20Presence%20of%20Dynamic%20Language%20Features.pdf?attredirects=0&d=1. Accepted
for APLAS’18.

69 Josef Svenningsson and Emil Axelsson. Combining Deep and Shallow Embedding of Domain-
specific Languages. Computer Languages, Systems and Structures, 44(PB):143–165, December
2015. doi:10.1016/j.cl.2015.07.003.

70 Attila Szegedi. Dynalink - Dynamic Linker Framework for JVM Languages. http:
//medianetwork.oracle.com/video/player/1113272541001, July 2011. JVM Language Sum-
mit.

71 The Apache Groovy Project. Invoke dynamic support. URL: http://groovy-lang.org/indy.
html.

72 Trifork. erjang. URL: https://github.com/trifork/erjang/wiki.
73 TypeLead. The Eta Programming Language. URL: http://eta-lang.org/.
74 Raoul-Gabriel Urma. Processing Data with Java SE 8 Streams, Part 1.

Java Magazine, 2014. URL: http://www.oracle.com/technetwork/articles/java/
ma14-java-se-8-streams-2177646.html.

75 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a Java Bytecode Optimization Framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON ’99, pages
13–. IBM Press, 1999. URL: http://dl.acm.org/citation.cfm?id=781995.782008.

ECOOP 2019

http://dx.doi.org/10.1145/2822304.2822310
http://dx.doi.org/10.1145/2500828.2500844
http://dx.doi.org/10.1145/2500828.2500844
http://arxiv.org/abs/1210.1039
https://blogs.oracle.com/jrose/entry/anonymous_classes_in_the_vm
https://blogs.oracle.com/jrose/entry/anonymous_classes_in_the_vm
http://dx.doi.org/10.1145/1711506.1711508
http://wiki.jvmlangsummit.com/images/8/88/Rose-2011-FutureDirections.pdf
http://wiki.jvmlangsummit.com/images/8/88/Rose-2011-FutureDirections.pdf
http://dx.doi.org/10.1145/2661020.2661032
http://www.security-explorations.com/materials/se-2012-01-report.pdf
http://www.security-explorations.com/materials/se-2012-01-report.pdf
http://dx.doi.org/10.1561/2500000014
https://sites.google.com/site/jensdietrich/publications/preprints/On%20the%20Soundness%20of%20Call%20Graph%20Construction%20in%20the%20Presence%20of%20Dynamic%20Language%20Features.pdf?attredirects=0&d=1
https://sites.google.com/site/jensdietrich/publications/preprints/On%20the%20Soundness%20of%20Call%20Graph%20Construction%20in%20the%20Presence%20of%20Dynamic%20Language%20Features.pdf?attredirects=0&d=1
https://sites.google.com/site/jensdietrich/publications/preprints/On%20the%20Soundness%20of%20Call%20Graph%20Construction%20in%20the%20Presence%20of%20Dynamic%20Language%20Features.pdf?attredirects=0&d=1
http://dx.doi.org/10.1016/j.cl.2015.07.003
http://medianetwork.oracle.com/video/player/1113272541001
http://medianetwork.oracle.com/video/player/1113272541001
http://groovy-lang.org/indy.html
http://groovy-lang.org/indy.html
https://github.com/trifork/erjang/wiki
http://eta-lang.org/
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
http://dl.acm.org/citation.cfm?id=781995.782008

15:28 Deep Static Modeling of invokedynamic

76 Ingo Wechsung. The Frege Programming Language (Draft). http://www.frege-lang.org/
doc/Language.pdf, 2014.

77 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to Rule Them
All. In Proceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2013, pages 187–204, New York, NY,
USA, 2013. ACM. doi:10.1145/2509578.2509581.

78 Shijie Xu, David Bremner, and Daniel Heidinga. Mining Method Handle Graphs for Efficient
Dynamic JVM Languages. In Proceedings of the Principles and Practices of Programming
on The Java Platform, PPPJ ’15, pages 159–169, New York, NY, USA, 2015. ACM. doi:
10.1145/2807426.2807440.

79 Shijie Xu, David Bremner, and Daniel Heidinga. MHDeS: Deduplicating method handle graphs
for efficient dynamic JVM language implementations. In Proceedings of the 11th Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and
Systems, ICOOOLPS ’16, pages 4:1–4:10, New York, NY, USA, 2016. ACM. doi:10.1145/
3012408.3012412.

80 Shijie Xu, David Bremner, and Daniel Heidinga. Fusing Method Handle Graphs for Efficient
Dynamic JVM Language Implementations. In Proceedings of the 9th ACM SIGPLAN Interna-
tional Workshop on Virtual Machines and Intermediate Languages, VMIL 2017, pages 18–27,
New York, NY, USA, 2017. ACM. doi:10.1145/3141871.3141874.

http://www.frege-lang.org/doc/Language.pdf
http://www.frege-lang.org/doc/Language.pdf
http://dx.doi.org/10.1145/2509578.2509581
http://dx.doi.org/10.1145/2807426.2807440
http://dx.doi.org/10.1145/2807426.2807440
http://dx.doi.org/10.1145/3012408.3012412
http://dx.doi.org/10.1145/3012408.3012412
http://dx.doi.org/10.1145/3141871.3141874

	Introduction
	Motivation and Illustration
	Motivating Example 1: Late Linking
	Motivating Example 2: Lambdas
	Motivating Example 3: Method References
	Motivating Example 4: SAM Conversion

	Technical Background
	Method Handles and Method Types
	The invokedynamic Instruction
	Method References and Lambdas

	Static Analysis
	Model Basics
	Model: Method Types and Method Handles
	Generic Handling of invokedynamic
	Model: Method References and Lambdas

	Evaluation
	Microbenchmark Suite
	Microbenchmark: Method References
	Microbenchmark: Lambdas
	Microbenchmark: Method Handles and invokedynamic

	Sui et al. Test Suite

	Related work
	Conclusion

