
pro-
. Java
e its

the
n of
con-
, syn-
irst,

f a
en-
ote
inal

n in a
texes
s is
Portable and Efficient Distributed Threads for Java

Eli Tilevich and Yannis Smaragdakis
College of Computing

Georgia Institute of Technology, Atlanta, GA 30332
{tilevich, yannis}@cc.gatech.edu

http://j-orchestra.org

Abstract. Java middleware mechanisms, such as Java RMI or CORBA imple-
mentations, do not support thread coordination over the network: synchronizing
on remote objects does not work correctly and thread identity is not preserved
for executions spanning multiple machines. The current approaches dealing with
the problem suffer from one of two weaknesses: either they require a new mid-
dleware mechanism, making them less portable, or they add overhead to the exe-
cution to propagate a thread identifier through all method calls. In this paper we
present an approach that works with an unmodified middleware implementation,
yet does not impose execution overhead. The key to our technique is the byte-
code transformation of only stub routines, instead of the entire client application.
We argue that this approach is portable and can be applied to mostly any middle-
ware mechanism. At the same time, we show that, compared to past techniques,
our approach eliminates an overhead of 5.5-12% (of the total execution time) for
applications from the SPEC JVM suite.

1  Introduction

The Java programming language offers high-level support for both distributed
gramming and concurrency, but the two mechanisms are unaware of each other
has an integrated middleware mechanism (Java RMI [15]). Any object can mak
methods remotely accessible by implementing aRemote interface. This enables dis-
tributed programming without separate interface definitions and IDL tools. At
same time, Java supports the easy creation and monitor-style synchronizatio
threads. Any Java object is mapped to a unique monitor, with a single mutex and
dition queue. Java code can synchronize and wait on any object. Nevertheless
chronization does not carry over to remote objects. The problem is dual. F
synchronization operations (likesynchronized , wait , interrupt , etc.) do not get
propagated by Java RMI. For instance, attempting to explicitly lock the mutex o
remote object will lock the mutex of its RMI stub object instead. Second, thread id
tity is not maintained over the network. For instance, a thread that calls a rem
method may self-deadlock if the remote operation happens to call back the orig
site.

In this paper, we present a mechanism that enables Java thread synchronizatio
distributed setting. Our mechanism addresses monitor-style synchronization (mu
and condition variables) which is well-suited for a distributed threads model. (Thi
1
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in contrast to low-level Java synchronization, such as volatile variables and ato
operations, which are better suited for symmetric multiprocessor machines.)

Our work is not the first in this design space. Past solutions fall in two different cam
A representative of the first camp is the approach of Haumacher et al. [5] whe
replacement of Java RMI is proposed that maintains correct multithreaded exec
over the network. If employing special-purpose middleware is acceptable,
approach is sufficient. Nevertheless, it is often not desirable to move away from s
dard middleware, for reasons of portability and ease of deployment. Therefore, the
ond camp, represented by the work of Weyns, Truyen, and Verbaeten [18], advo
transforming the client application instead of replacing the middleware. Unfortuna
clients (i.e., callers) of a method do not know whether its implementation is loca
remote. Thus, to support thread identity over the network,all method calls in an appli-
cation need to be automatically re-written to pass one extra parameter—the th
identifier. This imposes both space and time overhead: extra code is needed to p
gate thread identifiers and adding an extra argument to every call incurs a run
cost. Weyns, Truyen, and Verbaeten [18] quantify this cost to about 3% of the t
execution time of an application. Using more representative macro-benchmarks (
the SPEC JVM suite) we found the cost to be between 5.5 and 12% of the total ex
tion time. A secondary disadvantage of the approach is that the transforma
becomes complex when application functionality can be called by native system c
as in the case of application classes implementing a Java system interface.

The technique we describe in this paper addresses both the problem of portabilit
the problem of performance. We follow the main lines of the approach of Wey
Truyen, and Verbaeten: we replace all monitor operations in the bytecode (suc
monitorenter , monitorexit , Object.wait ) with calls to operations of our own
distribution-aware synchronization library. Nevertheless, we avoid instrumenting e
method call with an extra argument. Instead, we perform a bytecode transformatio
the generated RMI stubs. The transformation is general and portable: almost e
RPC-style middleware mechanism needs to generate stubs for the remotely invo
methods. By transforming those when needed, we can propagate thread identity
mation for all remote invocations, without unnecessarily burdening local invocatio
Our approach also has the advantage of simplicity with respect to native system
Finally, our implementation is fine-tuned, making the total overhead of synchron
tion be negligible (below 4% overhead even for empty methods and no network c

Our technique is implemented in the context of the J-Orchestra system [17]. J-Orc
tra is anautomatic partitioningsystem for Java programs: given a Java application a
under user guidance, J-Orchestra can split the application into parts that execute o
ferent machines. For a large subset of Java, the resulting distributed application
behave exactly like the original centralized one. Beyond J-Orchestra, the distrib
synchronization technique described in this paper is applicable to other partitio
systems (e.g., Addistant [16], AdJava [3], FarGo [6]), language tools for distribu
(e.g., Java Party [4][11], Doorastha [2]), or stand-alone mechanisms for distrib
Java threads (e.g., Brakes [18]).
2
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2  Background: Problem and Application Context

2.1  Distributed Synchronization Complications

Modern mainstream languages such as Java or C# have built-in support for co
rency. Java, for example, provides the classjava.lang.Thread for creating and
managing concurrency, monitor methodsObject.wait , Object.notify , and
Object.notifyAll for managing state dependence, andsynchronized methods
and code blocks for maintaining exclusion among multiple concurrent activities.
excellent reference for multithreading in Java is Lea’s textbook [7].)

Concurrency constructs usually do not interact correctly with middleware impleme
tions, however. For instance, Java RMI does not propagate synchronization opera
to remote objects and does not maintain thread identity across different machine

To see the first problem, consider a Java objectobj that implements aRemote inter-
faceRI (i.e., a Java interfaceRI that extendsjava.rmi.Remote ). Such an object is
remotely accessible through theRI interface. That is, if a client holds an interface ref
erencer_ri that points toobj , then the client can call methods onobj , even though it
is located on a different machine. The implementation of such remote access i
standard RPC middleware technique: the client is really holding an indirect refere
to obj . Referencer_ri points to a local RMI “stub” object on the client machine. Th
stub serves as an intermediary and is responsible for propagating method calls
obj object. What happens when a monitor operation is called on the remote ob
however? There are two distinct cases: Java calls monitor operations (locking
unlocking a mutex) implicitly when a method labeledsynchronized is invoked and
when it returns. This case is handled correctly through RMI, since the stub will pro
gate the call of a synchronized remote method to the correct site. Nevertheles
other monitor operations are not handled correctly by RMI. For instance, asynchro-

nized block of code in Java corresponds to an explicit mutex lock operation. T
mutex can be the one associated with any Java object. Thus, when clients try to e
itly synchronize on a remote object, they end up synchronizing on its stub ob
instead. This does not allow threads on different machines to synchronize using re
objects: one thread could be blocked or waiting on the real objectobj , while the other
thread may be trying to synchronize on the stub instead of on theobj object. Similar
problems exist for all other monitor operations. For instance, RMI cannot be use
propagate monitor operations such asObject.wait , Object.notify , over the net-
work. The reason is that these operations cannot be indirected: they are decla
classObject to be final , which means that the methods can not be overridden
subclasses including theRemote  interfaces required by RMI.

The second problem concerns preserving thread identities in remote calls. The
RMI runtime, for example, starts a new thread for each incoming remote call. Thu
thread performing a remote call has no memory of its identity in the system. Fi
demonstrates the so-called “zigzag deadlock problem”, common in distributed
3
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chronization. Conceptually, methodsfoo , bar , andbaz are all executed in the same
thread—but the location of methodbar happens to be on a remote machine. In actu
RMI execution, thread-1 will block untilbar ’s remote invocation completes, and th
RMI runtime will start a new thread for the remote invocations ofbar andbaz . Never-
theless, whenbaz is called, the monitor associated with thread-1 denies entry
thread-3: the system does not recognize that thread-3 is just handling the contro
of thread-1 after it has gone through a remote machine. If no special care is tak
deadlock condition occurs.

2.2  J-Orchestra

Our technique for correct and efficient monitor-style distributed synchronization
been applied in the context of J-Orchestra. J-Orchestra is a system that rewrites
ing Java programs at the bytecode level into distributed programs that can be exe
on multiple machines. The transformation is done automatically, once the user s
fies (through a GUI) which parts of the code should be available on which mach
The emphasis is on the correctness of the partitioning process: for a large subs
Java, J-Orchestra-partitioned applications behave just like the original centralized
[17]. That is, J-Orchestra emulates many of the language mechanisms of a Jav
over a collection of distinct VMs.

The reason we bring up the context of our work is that the need for correct distrib
synchronization is even more pronounced in the case of J-Orchestra than in the c
regular distributed programming. Since J-Orchestra creates distributed applica
automatically (i.e., without programmer intervention, beyond choosing locations
code parts) it is important to maintain the same synchronization mechanisms o
network as for a single machine. Furthermore, J-Orchestra is mainly applicable w
an application needs to be distributed to take advantage of unique resources of d
ent machines, instead of parallelism. For example, J-Orchestra can be used to pa
a traditional Java application so that its GUI runs on one machine, its computatio
another, sensor input is produced and filtered on a third machine and file storage o
on a fourth. Nevertheless, the entire application may only have a single thread,

Network

thread-1

thread-3

thread-2

synchronized void foo()

synchronized void baz()

 void bar()

thread-2

Fig. 1. The zigzag deadlock problem in Java RMI.
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though it uses libraries that employ synchronization. J-Orchestra will partition
application so that its logic is still single-threaded, yet the implementation consist
multiple Java threads (at least one per machine), only one of which can be active
time. Thus, with J-Orchestra, the deadlock problems resulting from the lack of rem
thread identity can exhibit themselves even for a single-threaded application!

Other than the context and motivation, however, the discussion in the rest of this p
is not specific to J-Orchestra. Indeed, our technique can be applied to any system
literature that supports distributed communication and threading.

3  Solution: Distribution-Aware Synchronization

As we saw, any solution for preserving the centralized concurrency and synchro
tion semantics in a distributed environment must deal with two issues: each rem
method call can be executed on a new thread, and standard monitor methods su
Object.wait , Object.notify , and synchronized blocks can become invalid
when distribution takes place. Taking these issues into account, we maintain pe
“thread id equivalence classes,” which are updated as execution crosses the ne
boundary; and at the bytecode level, we replace all the standard synchronization
structs with the corresponding method calls to a per-site synchronization library.
synchronization library emulates the behavior of the monitor methods, such asmoni-

torenter , monitorexit , Object.wait , Object.notify , andObject.notify-

All , by using the thread id equivalence classes. Furthermore, these synchroniz
library methods, unlike thefinal methods in classObject that they replace, get cor-
rectly propagated over the network using RMI when necessary so that they execu
the network site of the object associated with the monitor.

In more detail, our approach consists of the following steps:

• Every instance of a monitor operation in the bytecode of the application
replaced, using bytecode rewriting, by a call to our own synchronization libra
which emulates the monitor-style synchronization primitives of Java

• Our library operations check whether the target of the monitor operation is a l
object or an RMI stub. In the former case, the library calls its local monitor ope
tion. In the latter case, an RMI call to a remote site is used to invoke the appro
ate library operation on that site. This solves the problem of propagating mon
operations over the network. We also apply a compile-time optimization to
step: using a simple static analysis, we determine whether the target of the mo
operation is an object that is known statically to be on the current site. This is
case for monitor operations on thethis reference, as well as other objects o
“anchored” types [17] that J-Orchestra guarantees will be on the same
throughout the execution. If we know statically that the object is local, we av
the runtime test and instead call a local synchronization operation.

• Every remote RMI call, whether on a synchronized method or not, is extende
include an extra parameter. The instrumentation of remote calls is done by b
code transformation of the RMI stub classes. The extra parameter holds the th
equivalence class for the current calling thread. Our library operations emulate
5
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Java synchronization primitives but do not use the current, machine-spe
thread id to identify a thread. Instead, a mapping is kept between threads and
equivalence classes and two threads are considered the same if they map
same equivalence class. Since an equivalence class can be represented by
its members, our current representation of equivalence classes is compac
keep a combination of the first thread id to join the equivalence class and an id
the machine where this thread runs. This approach solves the problem of m
taining thread identity over the network.

We illustrate the above steps with examples that show how they solve each of the
problems identified earlier. We first examine the problem of propagating monitor o
ations over the network. Consider a method as follows:

//original code
void foo (Object some_remote_object) {

this.wait();
...
some_remote_object.notify();
...

}

At the bytecode level, methodfoo  will have a body that looks like:

//bytecode
aload_0
invokevirtual     java.lang.Object.wait
...
aload_1
invokevirtual     java.lang.Object.notify
...

Our rewrite will statically detect that the first monitor operation (wait ) is local, as it is
called on the current object itself (this ). The second monitor operation, however,
(potentially) remote and needs to be redirected to target machine using an RMI
The result is shown below:

//rewritten bytecode
aload_0
//dispatched locally
invokestatic jorchestra.runtime.distthreads.wait_
...
aload_1
//get thread equivalence info from runtime
invokestatic jorchestra.runtime.ThreadInfo.getThreadEqClass
//dispatched through RMI;
//all remote interfaces extend DistSyncSupporter
invokeinterface jorchestra.lang.DistSynchSupporter.notify_
...

(The last instruction is an interface call, which implies that each remote object nee
6
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support monitor methods, such asnotify_ . This may seem to result in code bloat a
first, but our transformation adds these methods to the topmost class of each in
ance hierarchy in an application, thus minimizing the space overhead.)

Let’s now consider the second problem: maintaining thread identity over the netw
Fig. 2 demonstrates how using the thread id equivalence classes can solve the “z
deadlock problem” presented above. These thread id equivalence classes enab
custom monitor operations to treat all threads within the same equivalence class a
same thread. (We illustrate the equivalence class by listing all its members in the
ure, but, as mentioned earlier, in the actual implementation only a single token
identifies the equivalence class is passed across the network.) More specifically
synchronization library is currently implemented using regular Java mutexes and
dition variables. For instance, the following code segment (slightly simplified) sho
how the library emulates the behavior of the bytecode instructionmonitorenter .
(For readers familiar with monitor-style concurrent programming, our implementa
should look straightforward.) The functionality is split into two methods: the sta
methodmonitorenter finds or creates the correspondingMonitor object associated
with a given object: our library keeps its own mapping between objects and their m
itors. The member methodenter of classMonitor causes threads that are not in th
equivalence class of the holder thread to wait until the monitor is unlocked.

public static void monitorenter (Object o) {
Monitor this_m = null;

 synchronized (Monitor.class) {
this_m = (Monitor)_objectToMonitor.get(o);
if (this_m == null) {

 this_m = new Monitor();
 _objectToMonitor.put(o, this_m);

 }
 } //synchronized
 this_m.enter();
}

Network

{thread-1}

{thread-1, thread-2, thread-3}

{thread-1, thread-2}

synchronized void foo()

synchronized void baz()

 void bar()

{thread-1, thread-2}

Fig. 2. Using thread id equivalence classes to solve the “zigzag deadlock problem” in
Java RMI.
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private synchronized void enter () {
 while (_timesLocked != 0 &&

curThreadEqClass != _holderThreadId)
try { wait(); } catch(InterruptedException e) {...}

 if (_timesLocked == 0) {
_holderThreadId = getThreadID();

 }
_timesLocked++;

}

The complexity of maintaining thread equivalence classes determines the overal
ciency of the solution. The key to efficiency is to update the thread equivalence cla
only when necessary—that is, when the execution of a program crosses the ne
boundary. Adding the logic for updating equivalence classes at the beginning of e
remote method is not the appropriate solution: in many instances, remote method
be invoked locally within the same JVM. In these cases, adding any additional cod
maintaining equivalence classes to the remote methods themselves would be un
sary and detrimental to performance. In contrast, our solution is based on the follo
observation: the program execution will cross the network boundary only after it en
a method in an RMI stub. Thus, RMI stubs are the best location for updating the th
id equivalence classes on the client site of a remote call.

Adding custom logic to RMI stubs can be done by modifying the RMI compiler, b
this would negate our goal of portability. Therefore, we use bytecode engineerin
standard RMI stubs to retrofit their bytecode so that they include the logic for upda
the thread id equivalence classes. This is done completely transparently relative
RMI runtime by adding special delegate methods that look like regular remote m
ods, as shown in the following code example. To ensure maximum efficiency, we p
the thread equivalence class representation into a long integer, in which the less s
icant and the most significant 4 bytes store the first thread id to join the equivale
class and the machine where this thread runs, respectively. This compact repre
tion significantly reduces the overhead imposed on the remote method calls, a
demonstrate later on. Although all the changes are applied to the bytecode directl
use source code for ease of exposition.

//Original RMI stub: two remote methods foo and bar
class A_Stub ... {

...
public void foo (int i) throws RemoteException {...}
public int bar () throws RemoteException {...}

}

//Retrofitted RMI stub
class A_Stub ... {

...
public void foo (int i) throws RemoteException {

foo__tec (Runtime.getThreadEqClass(), i);
}

8
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public void foo__tec (long tec, int i) throws
RemoteException

{...}

public int bar () throws RemoteException {
return bar__tec (Runtime.getThreadEqClass());

}
public int bar__tec (long tec) throws RemoteException {...}

}

Remote classes on the callee site provide symmetrical delegate methods that u
the thread id equivalence classes information according to the receivedlong parame-
ter, prior to calling the actual methods. Therefore, having two different versions
each remote method (with the delegate method calling the actual one) make
change transparent to the rest of the application: neither the caller of a remote m
nor its implementor need to be aware of the extra parameter. Remote methods ca
be invoked directly (i.e., not through RMI but from code on the same network site)
in this case they do not incur any overhead associated with maintaining the th
equivalence information.

4  Benefits of the Approach

The two main existing approaches to the problem of maintaining the centralized
concurrency and synchronization semantics in a distributed environment have invo
either using custom middleware [5] or making universal changes to the distributed
gram [18]. We argue next that our technique is more portable than using custom
dleware and more efficient than a universal rewrite of the distributed program. Fin
we quantify the overhead of our approach and show that our implementation is in
very efficient.

4.1  Portability

A solution for preserving the centralized concurrency and synchronization sema
in a distributed environment is only as useful as it is portable. A solution is portab
it applies to different versions of the same middleware (e.g., past and future versio
Java RMI) and to different middleware mechanisms such as CORBA and .N
Remoting. Our approach is both simple and portable to other middleware mechan
because it is completely orthogonal to other middleware functionality: We rely
bytecode engineering, which allows transformations without source code access
on adding a small set of runtime classes to each network node of a distributed ap
tion. The key to our transformation is the existence of a client stub that redirects l
calls to a remote site. Using client stubs is an almost universal technique in mo
middleware mechanisms. Even in the case when these stubs are generated dy
cally, our technique is applicable, as long as it is employed at class load time.

For example, our bytecode instrumentation can operate on CORBA stubs as wel
does on RMI ones. Our stub transformations simply consist of adding delegate m
9
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ods (one for each client-accessible remote method) taking an extra thread equiva
parameter. Thus, no matter how complex the logic of the stub methods is, we w
apply to them the same simple set of transformations.

Some middleware mechanisms such as the first version of Java RMI also use s
side stubs (a.k.a.skeletons) that dispatch the actual methods. Instead of present
complications, skeletons would even make our approach easier. The skeleton me
are perfect for performing our server-side transformations, as we can take advanta
the fact that the program execution has certainly crossed the network boundary
entered a method in a skeleton. Furthermore, having skeletons to operate on w
eliminate the need to change the bytecodes of the remote classes. Finally, the
argument of the simplicity of our stub transformations being independent of the c
plexity of the stub code itself equally applies to the skeleton transformations.

In a sense, our approach can be seen as adding an orthogonal piece of functio
(concurrency control) to existing distribution middleware. In this sense, one can a
that the technique has an aspect-oriented flavor.

4.2  The Cost of Universal Extra Arguments

Our approach eliminates both the runtime and the complexity overheads of the cl
past techniques in the literature. Weyns, Truyen, and Verbaeten [18][19] have a
cated the use of a bytecode transformation approach to correctly maintain thread
tity over the network. Their technique is occasionally criticized as “incur[ring] gre
runtime overhead” [5]. The reason is that, since clients do not know whether a me
they call is local or remote, every method in the application is extended with an e
argument—the current thread id—that it needs to propagate to its callees. Weyns
argue that the overhead is acceptable and present limited measurements whe
overhead of maintaining distributed thread identity is around 3% of the total execu
time. Below we present more representative measurements that put this co
between 5.5 and 12%. A second cost that has not been evaluated, however, is t
complexity: adding an extra parameter to all method calls is hard when some cl
cannot be modified because, e.g., they are in native code form or access the m
through reflection. In these cases a correct application of the Weyns et al. transfo
tion would incur a lot of complexity. This complexity is eliminated with our approac

It is clear that some run-time overhead will be incurred if an extra argument is ad
and propagated to every method in an application. To see the range of overhea
wrote a simple micro-benchmark, where each method call performs one integer a
metic operation, two comparisons and two (recursive) calls. Then we measure
overhead of adding one extra parameter to each method call. Table 1 shows the r
of this benchmark. For methods with 1-5 integer arguments we measure their ex
10
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tion time with one extra reference argument propagated in all calls. As seen, the
head varies unpredictably but ranges from 5.9 to 12.7%.

Nevertheless, it is hard to get a representative view of this overhead from micro-be
marks, especially when running under a just-in-time compilation model. Therefore
concentrated on measuring the cost on realistic applications. As our macro-be
marks, we used applications from the SPEC JVM benchmark suite. Of course, som
the applications we measured may not be multithreaded, but their method calling
terns should be representative of multithreaded applications, as well.

We used bytecode instrumentation to add an extra reference argument to all me
and measured the overhead of passing this extra parameter. In the process of
menting realistic applications, we discovered the complexity problems outlined ea
The task of adding an extra parameter is only possible when all clients can be mod
by the transformation. Nevertheless, all realistic Java applications present exam
where clients will not be modifiable. An application class can be implementing a s
tem interface, making native Java system code a potential client of the class’s met
For instance, using class frameworks, such as AWT, Swing, or Applets, entails ext
ing the classes provided by such frameworks and overriding some methods with
goal of customizing the application’s behavior. Consider, for example, a system in
face java.awt.TextListener , which has a single methodvoid textVal-

ueChanged (TextEvent e) . A non-abstract application class extending th
interface has to provide an implementation of this method. It is impossible to add
extra parameter to the methodtextValueChanged since it would prevent the class
from being used with AWT. Similarly a Java applet overrides methodsinit , start ,
andstop that are called by Web browsers hosting the applet. Adding an extra a
ment to these methods in an applet would invalidate it. These issues can be addr
by careful analysis of the application and potentially maintaining two interfaces (
original, one extended with an extra parameter). Nevertheless, this would resu
code bloat, which could further hinder performance.

Since we were only interested in quantifying the potential overhead of adding
maintaining an extra method parameter, we sidestepped the complexity problem
avoiding the extra parameter for methods that could be potentially called by na
code clients. Instead of changing the signatures of such methods so that they w
take an extra parameter, we created the extra argument as a local variable tha
passed to all the callees of the method. The local variable is never initialized to a u

Table 1: Micro-benchmark overhead of method calls with one more argument

#params 1 (base) 1+1 2+1 3+1 4+1 5+1

Execution time
(sec) for 10^8 calls

1.945 2.059 2.238 2.523 2.691 2.916

Slowdown relative
to previous

- 5.9% 8.7% 12.7% 6.7% 8.4%
11
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value, so no artificial overhead is added by this approach. This means that our
surements are slightly conservative: we do not really measure the cost of corr
maintaining an extra thread identity argument but instead conservatively estimat
cost of passing one extra reference parameter around. Maintaining the correct va
this reference parameter, however, may require some extra code or interface du
tion, which may make performance slightly worse than what we measured.

Another complication concerns the use of Java reflection for invoking methods, w
makes adding an extra argument to such methods impossible. In fact, we could no
rectly instrument all the applications in the SPEC JVM suite, exactly because som
them use reflection heavily and we would need to modify such uses by hand.

The results of our measurements appear in Table 2. The table shows total exec
time for four benchmarks (compress—a compression utility, javac—the Java comp
mtrt—a multithreaded ray-tracer, and jess—an expert system) in both the origina
instrumented versions, as well as the slowdown expressed as the percentage of t
ferences between the two versions, ranging between 5.5 and 12%. The measure
were on a 600MHz Pentium III laptop, running JDK 1.4.

The best way to interpret these results is as the overhead of pure computation (w
communication) that these programs would incur under the Weyns et al. techniq
they were to be partitioned with J-Orchestra so that their parts would run correctl
distinct machines. We see, for instance, that running jess over a network would i
an overhead of 12% in extra computation, just to ensure the correctness of the e
tion under multiple threads. Our approach eliminates this overhead completely: o
head is only incurred when actual communication over distinct address spaces
place. As we show next, this overhead is minuscule, even when no network comm
cation takes place.

4.3  Maintaining Thread Equivalence Classes Is Cheap

Maintaining thread equivalence classes, which consists of obtaining, propagating
updating them, constitutes the overhead of our approach. In other words, to mai
the thread equivalence classes correctly, each retrofitted remote method invoc
includes one extra local method call on the client side to obtain the current clas
extra argument to propagate it over the network, and another local method call o

Table 2: Macro-Benchmarks

Benchmark compress javac mtrt jess

Original ver-
sion (sec)

22.403 19.74 6.82 8.55

Instrumented
version (sec)

23.644 21.18 7.49 9.58

Slowdown 5.54% 7.31% 9.85% 12.05%
12
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server side to update it. The two extra local calls, which obtain and update th
equivalence classes, incur virtually no overhead, having a hash table lookup as
most expensive operation and causing no network communication. Thus, the co
propagating the thread equivalence class as an extra argument in each remote m
call constitutes the bulk of our overhead.

In order to minimize this overhead, we experimented with different thread equivale
classes’ representations. We performed preliminary experiments which showed
the representation does matter: the cost of passing an extra reference argumen
subclass ofjava.lang.Object in Java) over RMI can be high, resulting in as muc
as 50% slowdown in the worst case. This happens because RMI accomplishes the
shalling/unmarshalling of reference parameters via Java serialization, which invo
dynamic memory allocation and the use of reflection. Such measurements led
implement the packed representation of thread equivalence class information i
long integer, as described earlier. Along is a primitive type in Java, hence the add
tional cost of passing one over the network became negligible.

To quantify the overall worst-case overhead of our approach, we ran sev
microbenchmarks, measuring total execution time taken by invoking empty rem
methods with zero, one java.lang.String , and twojava.lang.String parame-
ters. Each remote method call was performed 10^6 times. The base line show
numbers for regular uninstrumented RMI calls. To measure the pure overhead o
approach, we used an unrealistic setting of collocating the client and the server o
same machine, thus eliminating all the costs of network communication. The mea
ments were on a 2386MHz Pentium IV, running JDK 1.4. The results of our meas
ments appear in Table 3.

Since the remote methods in this benchmark did not perform any operations, the
bers show the time spent exclusively on invoking the methods. While the overhe
approaching 4% for the remote method without any parameters, it diminishes gr
ally to half a percent for the method taking two parameters. Of course, our setting
this benchmark are strictly worst-case—had the client and the server been separa
a network or had the remote methods performed any operations, the overhead w
strictly decrease.

Table 3: Overhead of Maintaining Thread Equivalence Classes

No. of Params Base Line (ms)
Maintaining Thread
Equivalence Classes

(ms)
Overhead (%)

0 145,328 150,937 3.86%

1 164,141 166,219 1.27%

2 167,984 168,844 0.51%
13
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5  Discussion

As we mentioned briefly earlier, our distributed synchronization technique only s
ports monitor-style concurrency control. This is a standard application-level con
rency control facility in Java, but it is not the only one and the language is activ
evolving to better support other models. For example, high-performance applica
may usevolatile variables instead of explicit locking. In fact, use of non-monito
style synchronization in Java will probably become more popular in the future.
upcoming JSR-166 specification will standardize many concurrent data structure
atomic operations. Although our technique does not support all the tools for mana
concurrency in the Java language, this is not so much a shortcoming as it is a re
able design choice. Low-level concurrency mechanisms (volatile variables and
derivatives) are useful for synchronization in a single memory space. Their purpo
to achieve optimized performance for symmetric multiprocessor machines. In con
our approach deals with correct synchronization over middleware—i.e., it explic
addresses distributed memory. The technique we presented in this paper is likely
employed in a cluster or even a more loosely coupled network of machines. In this
ting, monitor-style synchronization makes perfect sense.

On the other hand, in the future we can use the lower-level Java concurrency co
mechanisms to optimize our own library for emulating Java monitors. As we saw
Section 3, our current library is itself implemented using monitor-style programm
(synchronized blocks, Object.wait , etc.). With the use of optimized low-level
implementation techniques, we can gain in efficiency. We believe it is unlikely, ho
ever, that such a low-level optimization in our library primitives will make a differen
for most client applications of our distributed synchronization approach.

Finally, we should mention that our current implementation does not handle all
nuances of Java monitor-style synchronization, but the issue is one of straightfor
engineering. Notably, we do not currently propagateThread.interrupt calls to all
the nodes that might have threads blocked in an invocation of thewait method. Even
though it is not clear that theinterrupt functionality is useful for distributed threads
our design can easily support it. We can replace all the calls toThread.interrupt

with calls to our synchronization library, which will obtain the equivalence class of
interrupted thread and then broadcast it to all the nodes of the application. The
(there can be only one) that has a thread in the equivalence class executing thewait

operation of our library will then stop waiting and the operation will throw theInter-

ruptedException .

6  Related Work

The technique described in this paper was applied in the context of J-Orchestra
can be re-used in multiple different contexts. For instance, our implementation of
rect synchronization can be combined with a mechanism for capturing and migra
threads, as in the Brakes system [18]. So far, we have not explored thread migrat
all in the context of J-Orchestra. In fact, J-Orchestra prohibits the migration of
14
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objects that can be potentially passed to native code (based on a heuristic analy
an effort to ensure the correctness of the resulting partitioned application. Thus, th
objects explicitly cannot be mobile in a J-Orchestra-partitioned application: a thr
always executes on the site where it was created. This fits well the requirements o
system, i.e., to ensure correct distributed execution even for completely unsuspe
centralized Java applications.

Several projects have concentrated on offering distributed capabilities for Java app
tions. Examples include CJVM [1] and Java/DSM [21]. Nevertheless, most of th
approaches are in the Distributed Shared Memory (DSM) space, instead of in ex
middleware support for synchronization. As a result, communication is not exp
and the programming model is one of shared memory with relaxed consistency se
tics, instead of one of communicating distributed objects. Furthermore, DSMs do
support the portability and ease of deployment goal of our technique. An applica
deployed on a DSM will require a specialized run-time system and system library.
distributed synchronization approach adds correct synchronization handling on to
traditional Java middleware.

Our technique has wide applicability in the space of automatic partitioning syste
Several such systems have been proposed recently, including Addistant [16], Ad
[3], FarGo [6], and Pangaea [13][14]. To our knowledge, J-Orchestra is the first a
matic partitioning system to concentrate on the correctness of partitioning m
threaded programs. It is worth noting that a partitioning system cannot
transparently inherit distributed synchronization capabilities from its underlying m
dleware. Even with specialized middleware that tries to handle distributed synchr
zation issues (e.g., KaRMI [10][12]), a partitioning system will need to transform
application so that Java monitor commands, likemonitorenter , are propagated to a
remote site.

Language tools for distribution, such as JavaParty [4][11], can also benefit from
technique. JavaParty already supports distributed synchronization [5] through a co
nation of language-level transformation (to intercept monitor actions) and specia
middleware [12]. As discussed earlier, our approach enables the same function
over standard Java middleware, such as RMI.

Our technique also complements work on offering versions of RMI optimized for p
allel computing on cluster machines [8][9]. In a parallel computing setting, it is adv
tageous to have distributed synchronization as a technique that can be transpa
added to a middleware implementation.

Finally, there are approaches to richer middleware that would simplify the implem
tation of our technique. For instance, DADO [20] enables passing custom informa
between client and server of a remote call. This would be an easy alternative to
custom bytecode transformations of stubs and skeletons. Nevertheless, using D
would not eliminate the need for bytecode transformations that replace monitor co
methods and synchronization blocks.
15
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7  Conclusions

In this paper we presented a technique for correct monitor-style synchronization o
tributed programs in Java. Our technique addresses the lack of coordination bet
Java concurrency mechanisms and Java middleware. We argue that the techni
important because it comprehensively solves the problem and combines the bes
tures of past approaches by offering both portability and efficiency. Furthermore
believe that the value of our technique will strictly increase in the future. With
increased network connectivity of all computing resources, we expect a need for
tributed programming models that look more like centralized programming models
such a setting, the need for correct and efficient distributed synchronization
become even greater.
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