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Abstract

J-Orchestra is an automatic partitioning system for Java
programs. J-Orchestra takes as input a Java application in
bytecode format and transforms it into a distributed appli-
cation, running across multiple Java Virtual Machines. To
accomplish such automatic partitioning, J-Orchestra uses
bytecode rewriting to substitute method calls with remote
method calls, direct object references with proxy refer-
ences, etc. The partitioning is performed without program-
ming and without making any modifications to the JVM or
its standard runtime classes. To show that our approach
scales, we used J-Orchestra to partition a large commer-
cial application (the JBits FPGA simulator by Xilinx) into
a client-server application, with the client partition run-
ning on a Windows laptop and the server partition running
on a Unix server. Additionally, we define the domain of
“embarrassingly loosely coupled” applications, whose
structure and communication patterns make them easily
amenable to automatic distribution.

1. Introduction

The focus of distributed computing has been shifting
from “distribution for parallelism” to “resource-driven dis-
tribution”, with the resources of an application being natu-
rally remote to each other or to the computation. Because
of this shift, more and more centralized applications need
to be adapted for distributed execution. Examples abound.
A local database that grows too large needs to be moved to
a powerful server and becomes remote from the rest of the
application. An application needs to redirect its output to a
remote graphical display or to receive input from a remote
digital camera. A desktop application needs to execute on
a PDA, where it might not find all the referenced APIs and
their corresponding hardware resources available locally
and will need to access them remotely.

All the aforementioned scenarios give rise toapplica-
tion partitioning: the task of splitting up the functionality
of a centralized application into distinct entities running
across different network sites. To accomplish such parti-
tioning one can modify the source code of the original
application to use a middleware mechanism. This

approach is tedious, error prone, and often simply infea
ble due to the unavailability of source code, which is us
ally the case for commercial programs.

We present an alternative approach that entails usin
tool that under human guidance handles all the tedio
details of distribution. This relieves the programmer of th
necessity to deal with middleware directly and to unde
stand all the potentially complex data sharing throug
pointers. Our tool, J-Orchestra, operates on binary (Ja
bytecode) applications and enables the user to determ
object placement and mobility to obtain a meaningful pa
titioning. The application is then re-written to be parti
tioned automatically and different parts can run o
different machines, on unmodified versions of the Ja
VM. For a large subset of Java, the resulting partitione
application is guaranteed to behave exactly like its orig
nal, centralized version. The requirement that the VM n
be modified is important, mainly because of deployme
reasons (it is easy to run a partitioned application on
standard VM, which can be found pre-compiled an
installed on a large variety of platforms).

The conceptual difficulty of performing application
partitioning in general-purpose languages is that progra
are written to assume a shared memory: an operation m
change data and expect the change to be visible through
other pointers (aliases) to the same data. The conceptua
novelty of J-Orchestra (compared to past partitioning sy
tems [11][17][20] and distributed shared memory system
[1][2][4][21]) consists of addressing the problems resul
ing from inability to analyze and modify all the code unde
the control flow of the application. Code that cannot b
analyzed and modified is usually part of the runtime sy
tem (i.e., the Java VM). If such code accesses a rem
object, a run-time error will occur since the code i
unaware of distribution (e.g., it expects to access fields o
regular object but instead receives a proxy). Prior parti-
tioning systems have ignored the issues arising from nat
system code and have had limited scalability, as a result
Orchestra features a novel rewrite mechanism that ensu
that, at run-time, references are always in the expec
form (“direct” = local or “indirect” = possibly remote) for
the code that handles them. The result is that J-Orches
can split code that deals with system resources, safely r
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ning, e.g., all sound synthesis code on one machine, while
leaving all graphics code on another.

In a previous publication [18] we described J-Orches-
tra’s general partitioning approach and the novelty of its
rewriting engine. The current paper updates the descrip-
tion of our rewrite algorithm with new features that allow
it to scale better (especiallycall-site wrapping, which
enables the user to restrict object mobility by “anchoring”
objects on specific sites). Most importantly, however, the
present paper confirms our claim of scalability of our
approach: J-Orchestra can handle realistic applications, as
it allows arbitrary partitioning without requiring an under-
standing of the internals of the application. We have used
J-Orchestra to partition a commercial, third-party, binary-
only application (the JBits FPGA simulator by Xilinx) so
that it can be remotely controlled and monitored.

Additionally, in this paper we try to identify the general
class of applications to which automatic partitioning is
applicable. We call these applicationsembarrassingly
loosely coupled: they consist of loosely coupled parts that,
furthermore, are clearly reflected in the static structure of
the application (e.g., in the object types).

2. J-Orchestra Mechanisms

2.1. Technical Overview

The J-Orchestra user interacts with the system using a
GUI that lists all application classes and the systems
classes they reference. The user creates different “sites”
and assigns classes to sites. In the end, J-Orchestra
rewrites the application to produce distinct partitions that
can be run on separate machines. No source code access or
explicit programming is required.

Conceptually, the J-Orchestra rewrite of the application
introduces an extra indirection to object references. The
standard technique is to convert all direct references to
indirect references by adding proxies. This creates an
abstraction of shared memory in which proxies hide the
actual location of objects—the actual object may be on a
different network site than the proxy used to access it. This
abstraction is necessary for correct execution of the pro-
gram across different machines because ofaliasing: the
same data may be accessible through different names (e.g.,
two different pointers) on different network sites. Changes
introduced through one name/pointer should be visible to
the other, as if on a single machine. Figure 1 shows sche-
matically the effects of the indirect referencing approach.
This indirect referencing approach has been used in sev-
eral prior systems [16][17][20].

Adding indirection without changing the JVM entails
rewriting the code of the partitioned application. Thus,
when the original application would create a new object,

the partitioned application will also create a proxy an
return it; whenever an object in the original applicatio
would access another object’s fields, the correspondi
object in the partitioned application would have to call
method in the proxy to get/set the field data; whenever
method would be called on an object, the same meth
now needs to be called on the object’s proxy; etc.

The difficulty of this rewrite approach is that it needs t
be applied toall code that might hold references to remot
objects. This is not just the code of the original applica
tion, but also the code inside the runtime system. In t
case of the Java VM, such code is encapsulated by sys
classes that control various system resources throu
native code. Java VM code can, for instance, have a ref
ence to a thread, window, file, etc., object created by t
application. Since we cannot modify the runtime syste
code, however, there is no way to make it aware of th
indirection. For instance, we cannot change the code t
performs a file operation to make it access the file obje
correctly for both local and remote files: the file operatio
code is part of the Java VM (i.e., in machine-specifi
binary code) and partly implemented in the operating sy
tem. If a proxy is passed instead of the expected object
runtime system code that is unaware of the distribution
run-time error will likely occur (e.g., because the nativ
code will try to read fields directly from the object). (Fo
simplicity, we assume the application itself does not co
tain native code—i.e., it is a “pure Java” application.)

We distinguish between two different kinds of classe
in J-Orchestra:anchored classes andmobile classes.
Anchored classes create “anchored” objects that will be
a single JVM for their entire lifetime. Mobile classes cre
ate objects that can migrate from site to site at run-time

Anchored classes can be anchored for two reaso
First, the potential of accessing application objec

Run-time view of original application

Run-time view of application with indirect references

Figure 1: Indirect referencing schematically. Proxy
objects could point to their targets either locally or
over the network.
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through native code determines whether and where such
objects should be anchored. If an object can be accessed
by native code running on some machine, the object
should be anchored on that machine. Nevertheless, the
object can still be accessed from other machines and it is
accessed indirectly (through a proxy) by mobile objects
even when these happen to be on the same machine. The
second reason why a class can be anchored is to reduce the
overhead to access its objects from other code on a specific
site. We call thisanchoring by choice. Objects that are
anchored by choice can be accessed in local code without
any indirection overhead (i.e., as quickly as in the original
centralized application). In a typical J-Orchestra partition-
ing, the vast majority of objects are anchored by choice.
We discuss anchoring by choice and its implications on the
rewriting algorithm in Section 2.3.

Due to lack of space and previous publication [18], our
discussion of J-Orchestra in this paper omits some inter-
esting elements. These include:
• a type-based “classification” heuristic that groups

classes whose instances can be accessed by the same
native code. Although this heuristic is not sound (native
code can potentially access all application objects) in
practice it is useful in helping the user decide groupings
for classes that should be co-located. The groupings typ-
ically reflect distinct resources, e.g., classes that deal
with graphics, classes that deal with sound, and classes
that deal with files end up in three distinct groups.

• a profiling tool that helps the user determine the cou-
pling (i.e., volume of data exchange) between different
parts of the application during test runs.

• optimizations for creating remote objects lazily, i.e.,
when the object first gets accessed remotely.

• the handling of Java language features, such as static
methods, inner classes, inheritance, etc.

• limitations of the system: J-Orchestra does not handle
all of the Java language. Unsupported features include
reflective field access, dynamic loading, volatile vari-
ables, and more. Prior limitations [18] with respect to
multithreading and monitor-style synchronization have
been addressed and the J-Orchestra distributed threading
mechanism is described in a recent paper [19].

2.2. The J-Orchestra Rewrite

“Success is 1% inspiration and 99% perspiration”
paraphrasing Thomas Edison

The power of J-Orchestra is not due to any single
abstract idea but to many specific techniques for making
centralized Java applications run over standard middle-
ware. The J-Orchestra “rewrite engine” is responsible for
transforming existing application code and generating new

code to turn a centralized application into a distribute
one. Transformations happen through bytecode manipu
tion. (We use BCEL [5] for bytecode engineering.)

The J-Orchestra rewrite first makes sure that all da
exchange among potentially remote objects is do
through method calls. That is, every time an object refe
ence is used to access fields of a different object and t
object is either mobile or anchored on a different site, th
corresponding instructions are replaced with a meth
invocation that will get/set the required data.

For each mobile class, J-Orchestra generates a pro
that assumes the original name of the class. A proxy cla
has the same method interface as the original class a
dynamically delegates to a remote implementation cla
Remote implementation classes extend the Java RMI cl
UnicastRemoteObject . Subclasses ofUnicastRemoteOb-

ject can be registered as RMI remote objects, whic
means that they get passed by-reference over the netw
That is, when used as arguments to a remote call, R
remote objects do not get copied. A remote reference
created instead and can be used to call methods of
remote object.

The remote implementation class implements a gen
ated interface that defines all the methods of the origin
class and extendsjava.rmi.Remote . This interface
enables proxies to access remote implementation clas
over the network. (RMI creates a “stub” object for suc
remote access.) We show below a simplified version of t
code generated for a classA.
//Original mobile class A
class A {

void foo () { ... }
}

//Proxy for A (generated in source code form)
class A implements java.io.Externalizable {

//ref at different points can point to either
//remote implementation directly or RMI stub.
A__interface ref;
...
void foo () {

try {
ref.foo ();

} catch (RemoteException e) {
//let user provide custom failure handling

}
} //foo

} //A

//Interface for A (generated in source code form)
interface A__interface extends java.rmi.Remote {

void foo () throws RemoteException;
}

//Remote implementation (generated in bytecode
//form by modifying original class A)
class A__remote extends UnicastRemoteObject
implements A__interface {

void foo () throws RemoteException {...}
}

3
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Proxy classes handle several important tasks. One such
task is managing globally unique identifiers, via which J-
Orchestra maintains an “at most one proxy per site” invari-
ant. That is, each proxy maintains a unique identifier that it
uses to interact with the J-Orchestra runtime system. In
addition, all proxies implementjava.io.Externalizable

to take full control of their own serialization. This enables
the support for object mobility: at serialization time prox-
ies can move their implementation objects as specified by
a given mobility scenario. Finally, proxy classes are gener-
ated in source code form, thus enabling the sophisticated
user to supply custom handling code for remote errors.

For anchored classes, proxies provide similar function-
ality but do not assume the names of their original classes.
Anchored classes are accessed directly by their co-
anchored clients (i.e., classes anchored on the same site).
Therefore, anchored classes cannot change their super-
class (toUnicastRemoteObject ) and must use a different
mechanism to enable remote execution. An extra level of
indirection is added through special purpose classes called
translators. Translators implement remote interfaces and
their purpose is to make anchored classes look like mobile
classes as far as the rest of the J-Orchestra rewrite is con-
cerned. Regular proxies, as well as remote implementation
versions are created for translators, exactly like for mobile
classes. Since it is impossible to add classes to system
packages, the code generator puts anchored proxies, inter-
faces and translators into a special package starting with
the prefix remotecapable . Figure 2 shows schematically
what an object graph looks like during execution of both
the original and the J-Orchestra rewritten code. The two
levels of indirection introduced by J-Orchestra for
anchored classes can be seen. Note that proxies may also

refer to their targets indirectly (through RMI stubs) if thes
targets are on a remote machine.

In addition to giving anchored classes a “remote” iden
tity, translators perform one of the most important func
tions of the J-Orchestra rewrite: the dynamic translation
direct references into indirect and vice versa, as these r
erences get passed between anchored and mobile c
Consider what happens when references to ancho
objects are passed from mobile code to anchored code.
instance, in Figure 3, a mobile application objecto holds a
referencep to an object of typejava.awt.Point . Objecto
can pass referencep as an argument to the methodcon-

tains of a java.awt.Component object. The problem is
that the referencep in mobile code is really a referenceto
a proxyfor the java.awt.Point but thecontains method
cannot be rewritten and, thus, expects a direct reference
a java.awt.Point (for instance, so it can assign it or com
pare it with a different reference). In general, the two kind
of references should be implicitly convertible to each oth
at run-time, depending on what kind is expected by th
code currently being run.

Translation takes place when a method is called on
anchored object. The translator implementation of th
method “unwraps” all method parameters (i.e., conver
them from indirect to direct) and “wraps” all results (i.e.
converts them from direct to indirect). Since all dat
exchange between mobile code and anchored code h
pens through method calls (which go through a translato
we can be certain that references are always of the corr
kind. For a code example, consider invoking (from
mobile object) methodsfoo andbar in an anchored classC
passing it a parameter of typeP. ClassesC and P are co-
anchored on the same site. The original classC and its gen-
erated translator are shown below (slightly simplified):
//original anchored class C
class C {

void foo (P p) {...}
P bar () { return new P(); }

}

mobile object

anchored objectmobile object

Run-time view of original application

mobile object

anchored objectmobile object

Run-time view of J-Orchestra rewritten application

proxy
proxy translator

Figure 2: Results of the J-Orchestra rewrite schemati-
cally. Proxy objects could point to their targets either
locally or over the network.

anchored object
java.awt.Component

proxy

proxy

anchored object
java.awt.Point

mobile objecto

p
direct reference
to thePoint

Figure 3: Mobile code refers to anchored objects indi-
rectly (through proxies) but anchored code refers to
the same objects directly. Each kind of reference
should be derivable from the other.
4
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//translator for class C
package remotecapable;
class C__translator extends UnicastRemoteObject

implements C__interface {
C originalClass;
...
void foo(remotecapable.P p) throws
RemoteException {

originalClass.foo ((P) Runtime.unwrap(p));
}

remotecapable.P bar() throws RemoteException {
return (remotecapable.P)Runtime.wrap(

originalClass.bar());
}

}

It is worth noting that past systems that follow a similar
rewrite as J-Orchestra [9][16][17][20] do not offer a trans-
lation mechanism. Thus, the partitioned application is safe
only if objects passed to system code are guaranteed to
always be on the same site as that code. This is a big bur-
den to put on the user. The translation mechanism is one of
the main reasons why J-Orchestra scales to large applica-
tions without knowledge of their internals.

2.3. Call-Site Wrapping for Anchoring By Choice

Wrapping and unwrapping need to also take place
when anchored objects call other objects anchored on dif-
ferent sites. This case is important in practice, as it enables
anchoring by choice. The mechanism is analogous to the
mechanism of the previous section, and only differs in the
specifics of the code transformation for wrapping/unwrap-
ping. (Readers who are not interested in the low-level
mechanisms for wrapping/unwrapping in J-Orchestra can
safely skip to the next section.)

Anchoring by choice is beneficial because it can elimi-
nate the J-Orchestra indirection overhead: objects can
access co-anchored objects directly. That is, fields can be
read/written directly and methods are called as fast as in
the centralized application. In practice this usually allows
an application to execute with no slowdown, except for
calls that are truly remote. Anchoring by choice is particu-
larly successful when most of the processing in an applica-
tion occurs on one network site and only some resources
(e.g., graphics, sound, keyboard input) are accessed
remotely.

As discussed in the previous section, translators of
anchored classes are the only avenue for data exchange
between mobile and anchored objects. Translators are a
simple way to perform the wrapping/unwrapping opera-
tion because there is no need to analyze and modify the
bytecode of the caller: the call is just indirected to go
through the translator, which always performs the neces-
sary translations. This approach is sufficient, as long as all

the control flow (i.e., the method calls) happensfrom the
outsideto anchored objects, but an anchored object nev
calls methods of objects that are not co-anchored with
This was the case for applications of J-Orchestra befo
anchoring by choice was supported. If the only anchor
classes are system classes (whose objects can be tou
by native code) then if they access each other they need
be co-anchored and they never access application obje
directly (they can only call their methods through supe
classes or interfaces, in which case no wrapping/unwra
ping is required).

When anchoring by choice is introduced, however, th
control-flow patterns become more complex. Since code
classes anchored by choice is regular application code
can access any other application object. Thus, an ancho
object can call a remote anchored object, requirin
dynamic wrapping/unwrapping. The problem is that a
anchored object has direct references to all its co-ancho
objects, but may need to pass those direct references
objects that are not anchored on the same site (they
either mobile or anchored elsewhere). For instance, ima
ine a scenario with co-anchored classesA andB, and class
C anchored on a different site. The original applicatio
code may look like the following:
class A {

B b;
C c;
void baz () {

c.foo (b);
B b = c.bar ();

}
}

class B {...}

class C {
void foo (B b) {...}
B bar () {...}

}

If we were to perform a straightforward rewrite of clas
A to refer toB directly but toC by proxy we would get:
class A {

B b;
remotecapable.C c;
void baz  () {

c.foo (b);
//incorrectly passing a direct reference to B!
B b = c.bar();
//incorrectly returning an indirect ref. to B!

}
}
//proxy for class C
package remotecapable;
class C {

...
void foo (remotecapable.B b) {...}
remotecapable.B bar () {...}

}

5
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As indicated by the comments in the code, this rewrite
would result in erroneous bytecodes: direct references are
passed to code that expects an indirection and vice versa.
There are two places where a fix could be applied: either at
the call site (e.g., the codec.bar() in classA) or at the
indirection site (i.e., at the proxyC, or at some other inter-
mediate object, analogous to the translators we saw in the
previous section). If we were to do the wrapping/unwrap-
ping inside the proxy, the proxy forC would look like:
// This is imaginary code! Irrelevant details
// (e.g., exception handling) omitted
class C {

C__interface ref;
...
// used if caller is not co-anchored with B
void foo (remotecapable.B b) {

ref.foo ((B) Runtime.unwrap(b));
}
// used when caller is co-anchored with B
void foo (B b) {

ref.foo((remotecapable.B) Runtime.wrap(b));
}
// used if caller is not co-anchored with B
remotecapable.B bar() {

return ref.bar();
}
// used when caller is co-anchored with B
B bar() {

return ((B) Runtime.unwrap(ref.bar());
}

}

Unfortunately, the last two methods differ only in their
return type, thus overloading cannot be used to resolve a
call to bar . (This could be done if the proxies were created
in bytecode form, which we avoided because it would pre-
vent the user from adding custom failure handling code.)
We perform a call-site rewrite instead. Since the client is in
bytecode form, the action is not trivial. We need to analyze
the bytecode, reconstruct argument types, see if a conver-
sion is necessary, and insert code to wrap and unwrap
objects. The resulting code for our example classA is
shown below (in source code form, for ease of exposition).
class A {

B b;
remotecapable.C c;
void baz  () {

c.foo ((remotecapable.B)Runtime.wrap (b));
//wrap b in the call to foo
B b = (B) Runtime.unwrap (c.bar());
//unwrap b after the call to bar

}
}

A special case of the above problem is self-reference.
An object always refers to itself (this ) directly. If it
attempts to pass such references outside its anchored
group (or, in the case of a mobile object, to any other
object) the reference should be wrapped.

3. Applicability Discussion

“It’s not how well the bear dances,
it’s that it can dance at all.”

J-Orchestra can handle a large subset of Java and, th
can correctly partition a large class of realistic unsuspe
ing applications. Nevertheless, among these, J-Orches
will be useful only in a few well-defined cases. Automati
partitioning is not a substitute for general distributed sy
tems development. The striking element of the approach
not that it is widely applicable but that it is at all applica
ble, given how automated it is.

We use the termembarrassingly loosely coupledto
describe the kinds of applications to which J-Orchestra
applicable. An embarrassingly loosely coupled applicatio
satisfies two criteria:
• it has components that exchange little data with the re

of the application, and
• these components are statically identifiable by lookin

at the structure of the application code at the class or t
module level.
That is, by looking at static relations among applicatio

classes, the user of J-Orchestra (aided by our analy
tools) should be able to identify distinct components com
prising multiple classes. Then, during run-time, the da
coupling among distinct components should be very sma

Embarrassingly loosely coupled applications can b
partitioned automatically without significant loss in per
formance due to network communication. In order to g
any benefit, however, the application needs to have a r
son to be distributed. The foremost reason for distributin
an application with J-Orchestra is to take advantage
remote hardware or software resources (e.g., a processo
database, a graphical screen, or a sound card). There
special-purpose technologies that do this already: distr
uted file systems allow storage on remote disks; remo
desktop applications (e.g., VNC, X) allow transferrin
graphical data from a remote machine; network print
protocols let users print remotely. Nevertheless, the adva
tage of automatic partitioning is that it can put the cod
near the resource that it controls. For instance, if a grap
cal representation can be computed from less data tha
takes to transfer the entire graphical representation o
the network, then J-Orchestra has an advantage. Of cou
there are already technologies for putting code near
resource: Java applets are used to move graphics-prod
ing code from a server to a client with the screen where t
graphics will be displayed. Nevertheless, this solution
inflexible: the whole program moves. In contrast, auto
matic partitioning can split an application so that any pa
of it can become a “virtual applet” and can run on a clien
machine.
6
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Of course, one reason to partition an application is to
take advantage of parallelism. Distinct machines will have
distinct CPUs. If the original centralized application is
multi-threaded, we can use multiple CPUs to run threads
in parallel. Although distribution-for-parallelism is a
potential application of J-Orchestra, we have not examined
this space so far. The reason is that parallel applications
either are written to run in distributed memory environ-
ments in the first place, or their concurrent computations
are tightly coupled.

To summarize, we can characterize the domain of J-
Orchestra aspartitioning embarrassingly loosely coupled
applications for resource-driven distribution.

4. Scalability of J-Orchestra

In a previous paper [18], we claimed that J-Orchestra is
scalable relative to other automatic partitioning systems.
In this context, “scalable” means that a correct partitioning
is possible forprograms of realistic size without intimate
knowledge of their internals. As mentioned earlier, the
main problem of past automatic distribution systems has
been that references to remote data can leak to code that is
unaware of the distribution, thus causing a run-time error.
Past systems have put the burden of ensuring correctness
on the user. For instance, consider Addistant [20], the clos-
est system to J-Orchestra in design terms. Addistant has no
counterpart of the J-Orchestra dynamic wrapping-unwrap-
ping of references. Thus, the user has to have excellent
knowledge of the internals of the application being rewrit-
ten. This approach is intrinsically unscalable: it means that
any object accessed remotely can never be passed to sys-
tem code. In practice, the only safe approach would be to
keep all system code (e.g., graphics, files, threads, etc.) in
one partition and only place application objects that never
access system objects in other partitions.

4.1. Case Study: Distributing JBits

To demonstrate the scalability of J-Orchestra, we used
it to partition a commercial, third-party, binary-only appli-
cation. The application is the JBits FPGA simulator by
Xilinx [8]. JBits is a true industrial application—a web
search reveals many cases of industrial use. The partition-
ing was requested by one of our colleagues who is an
active user of the software. The desired partitioning sce-
nario is one where all the user interaction through a GUI is
performed on one machine (a home machine with a slow
link, possibly) while the simulation computations are per-
formed on a central server.

The JBits GUI (see [8] for a picture of an older version)
is very rich with a graphical area presenting the results of
the simulation cells, as well as multiple smaller areas pre-

senting the simulated components. The GUI allows co
necting to various hardware boards and simulators a
depicting them in a graphical form. It also allows steppin
through a simulation offering multiple views of a hard
ware board, each of which can be zoomed in and o
scrolled, etc. The JBits GUI is quite representative of CA
tools in general.

JBits was given to us as a bytecode-only applicatio
The installed distribution (with only Java binary cod
counted) consists of1,920 application classesthat have a
combined size of7,577 KBytes. These application classes
use a large number of system classes—a significant par
the Java system libraries. We have no understanding of
internals of JBits, and only limited understanding of it
user-level functionality.

JBits is a good candidate for automatic partitionin
because its locality patterns are well defined and t
“split” is conceptually quite simple: all graphics-related
code has to reside on a single machine, while most of t
rest of the code resides on a different machine. At th
implementation level, however, the conceptual simplici
breaks down as objects can be referenced from all diffe
ent parts of the code.

4.1.1.  Partitioning Specifics.To obtain an efficient parti-
tioned version of JBits, we needed to use many of the
Orchestra features. Specifically, we anchored most obje
by choice, we experimented with different static place
ments, and we experimented with migration policies fo
objects. J-Orchestra features simple profiling tools to he
with the trial-and-error partitioning task by showing th
number of remote calls and data exchange patterns.

For our final partitioning, the vast majority (abou
1,800) of the application’s classes are anchored by cho
on the server. Thus co-anchored objects can access e
other directly and impose no overhead on the application
execution. This is particularly important in this case, as th
main functionality of JBits is the simulation, which is
compute-intensive. With the anchoring by choice, the sim
ulation steps of JBits incurno measurable overheadin its
execution time.

259 classes are always anchored on the client (i.
GUI) site. Of these, 144 are JBits application classes a
the rest are classes from the Java system’s graphical pa
ages (AWT and Swing). The rest of the classes a
anchored on the server site. We discuss a variation wh
we allow mobile objects in Section 4.1.3. The total exper
mentation time before we arrived at our “good” partition
ing was in the order of 1-2 days. This is certainly muc
less than the effort a developer would need to expend
change an application with about 2,000 classes, more th
200 of which need to be modified to be accessed remote
7
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It is worth noting that for practical scalability reasons
(disk space and rewrite time), we performed a special-case
optimization that is not yet part of the J-Orchestra arsenal.
We implemented a domain-specific heuristic that deter-
mines what application classes in a Swing/AWT applica-
tion will never interact with the GUI aspect of the
application (e.g., will never be passed to a GUI class as

call-backs).1 Then J-Orchestra can avoid creating proxies
and translators for these server-anchored classes, since
they will never be called remotely. This optimization does
not enhance the conceptual scalability of the J-Orchestra
approach (useless code would be created but never loaded)
but cuts down rewrite time from hours to minutes.

Knowing the design principles of the Swing/AWT
libraries allowed us to reduce the set of rewritten classes
even further. The Swing/AWT event model distinguishes
between event producers and event listeners. Event objects
get passed from event producers to events listeners. Event
producers keep lists of event listeners that can be updated
at any time. Event listeners tend to use event objects as
read-only objects since the programming model makes it
very difficult to determine in what order event listeners
receive events. A read-only object can be safely passed by-
copy to a remote call—there is no danger of it being modi-
fied through aliases. This allowed us to use a special
rewrite on all the event objects. We simply made all the
event objects serializable by making them implement
java.io.Serializable and adding a default no argu-
ments constructor if it is not already present. (Both of
these modifications were performed by bytecode rewrites.)
This not only provides a nice optimization but also further
reduces the number of classes that need to be considered
for all the standard J-Orchestra functions. Additionally,
knowing only the JBits execution from the user perspec-
tive, we speculated that the integer arrays transferred from
the server towards the GUI part of JBits could safely be
passed by-copy. These arrays turned out to never be modi-
fied at the GUI part of the application. Passing immutable
objects by-copy is a standard optimization for J-Orchestra.
Instances of well-known immutable classes (e.g.,
java.lang.String , java.awt.Color ) are always passed
by-copy.

4.1.2.  Partitioning Benefits.To demonstrate the benefits
of the J-Orchestra partitioning, we analyze the partitione
application behavior in comparison with using the X win
dow system to remotely control and monitor the applic
tion. Overall, J-Orchestra showed significant benefits. W
discuss them and analyze different contributing facto
below. Since JBits is an interactive application and w
could not modify what it does, we mainly got measure
ments of the data transferred and not the total time taken
update the screen (i.e., we measured bandwidth consum
tion but not latency, except subjectively). Thus, this num
ber would not change in a different measureme
environment. For reference, however, our environme
consisted of a SunBlade 1000 (two UltraSparc III 750MH
processors and 2GB of RAM) and a Pentium III, 600MH
laptop connected through 10Mbps ethernet.

Local GUI operations. The overall responsiveness of the
J-Orchestra partitioned application is much better th
using a remote X-Window display. From the perspectiv
of the interactive user, the latency of GUI operations
very short in the J-Orchestra partitioned version. Indee
many GUI operations require no network transfer. Thu
any real usage scenario can be made to show the J-Orc
tra partitioned application perform arbitrarily better than
remote X-Window display. For instance:
• JBits has multiple views of the simulation results (“Stat

View”, “Power View”, “Core View”, and “Routing Den-
sity View”). Switching between views is a completely
local operation in the J-Orchestra partitioned version—
no network transfers are caused. In contrast, the X w
dow system needs to constantly refresh the graphics
screen. For cycling through all four views and returnin
to the original, 3.4MBytes needed to be transferred ov
the network under the X window system.

• JBits has deep drop-down menus (e.g., a 4-level de
menu under “Board->Connect”). Navigating these dro
down menus is again a local operation for the J-Orche
tra partitioned application, but not for remote acces
with the X window system. For interactively navigating
4 levels of drop-down menus, X transferred 1.8MByte
of data.

• GUI operations like resizing the virtual display, scroll
ing the simulated board, or zooming in and out (four o
the ten buttons on the JBits main toolbar are for resizin
operations) do not result in network traffic with the par
titioned version of JBits. In contrast, the remote X dis
play produces heavy network traffic for such operation
With our example board, one action each of zooming-
completely and zooming-out results in 3.5MBytes o
data transferred. Scrolling left once and down once pr
duces about 2MBytes of data over the network with X
but no network traffic with the J-Orchestra partitione

1. The heuristic is type-based—it would not be safe if type information
were completely obscured in the Swing API (e.g., if a method
accepted anObject type and used reflection to determine if the
object is suitable). First, we compute a set of all the application
classes that are subclasses of system classes with package names
starting with java.awt.* or javax.swing.* . Then we com-
pute the set of classes that reference or are referenced by any of the
classes in the first set. The union of those two sets consists of the
classes that have to be considered for rewriting. The rest of applica-
tion classes can be considered anchored by choice and we simply
omit generating any of the supporting classes for them.
8



e
r-
s-
s

ile
ut
of
se
ters
in

ke
o
s.
s
e

d
r-
er
-

ves
e-

r-
-
te
n
o-
ich
nt
of

i-
s

y.
J-
e
ed

ne

Is

-
-

a
h

version. Continuous scrolling over a 10Mbps link is
unusably slow with the X window system. Clearly, a
dial-up modem link is too slow for remote interactive
use of JBits with X and even a DSL connection is quite
slow.
Although there could be ways (e.g., compression, or a

more efficient protocol) to reduce the amount of data
transferred by X, the important point is that some data
transfer needs to take place anyway. In contrast, J-Orches-
tra only needs to transfer a data object to the remote site,
and all GUI operations presenting the same data can then
be performed locally.

Data transferred for board updates.Even for a regular
board redraw, where J-Orchestra needs to transfer data
over the network, less data get transferred than in the X
version. Specifically, the J-Orchestra partitioned applica-
tion needs to transfer about 1.28MB of data in total for a
complete simulation step (with the middle-of-three in
complexity simulator provided with JBits) including a
redraw of the view. The X window system transfers about
1.68MBytes for the same task. Furthermore, J-Orchestra
transfers these data using five times fewer total TCP seg-
ments, suggesting that for a network where latency is the
bottleneck, X would be even less efficient.

Although the amounts of data transferred for a board
update can certainly be reduced by compression (or a
more efficient representation) the same argument applies
both to X and to Java RMI. Currently J-Orchestra does not
in any way try to optimize communication. The only bene-
fits obtained are because of moving the code close to the
resource it manages.

4.1.3.  More Experiments and Discussion.In the previ-
ous discussion we did not discuss the effects of mobility.
In fact, very few of the mobile objects in our partitioning
actually need to move in an interesting way. The one
exception is JBits View Adaptor objects (instances of four
*ViewAdaptor classes). View adaptors seem to be logical
representations of visual components and they also handle
different kinds of user events such as mouse movements.
During our profiling we noticed that such objects are used
both on the server and the client partition and in fact can
be seen as carriers of data among the two partitions. Thus,
no static placement of all view adaptor objects is opti-
mal—the objects need to move to exploit locality. We
specified a mobility policy that originally creates view
adaptors on the client site, moves them to the server site
when they need to be updated, and then moves them back
to the client site. We discuss this case next.

Mobility for reduction of remote calls and latency.Our
first observation from measuring the effect of mobility is

that it actually results in more data transferred over th
network! With mobile view adaptor objects and an othe
wise indistinguishable partitioning, J-Orchestra tran
ferred more than 2.59MBytes per simulation step (a
opposed to 1.28MBytes without a mobility policy for view
adaptor objects). The reason for this is that the mob
objects are quite large (in the order of 300-400KBytes) b
only a small part of their data are read/written. In terms
bytes transferred it would make sense to leave the
objects on one site and send them their method parame
remotely. Nevertheless, mobility results in a decrease
the total number of remote calls: 386 remote calls ta
place instead of 484 for a static partitioning, in order t
start JBits, load a file and perform 5 simulation step
Thus, the partitioned version of JBits with mobile object
may perform better for fast networks where latency is th
bottleneck instead of bandwidth.

Mobility for tolerance of bad partitioning. An impor-
tant benefit of mobility is that it provides tolerance to ba
partitionings. When it is unclear whether objects of a ce
tain type are referenced more on the client or the serv
site, it is good to make them mobile. A good mobility sce
nario in this case is to move an object as soon as it recei
a method call from a remote site or is passed as a param
ter to a remote site. As a simple example, the very first pa
titioning of JBits that we attempted was grossly sub
optimal. This resulted in an enormous number of remo
calls (over 200,000) for a few simulation steps. We the
tried a partitioning where 49 of the application classes pr
duced mobile objects. The 49 classes were those for wh
it was not clear whether they should be placed on the clie
or the server. By making the objects mobile, the number
remote calls dropped to 183 for the same execution.

4.2. Other examples

JBits is not the only example of an application part
tioned with J-Orchestra, but it is certainly the largest, a
well as being commercially available and bytecode-onl
(Several example applications are available on the
Orchestra web site for tutorial purposes.) Some of th
most representative other applications we have partition
and we use to demonstrate J-Orchestra include:
• A Java Speech API demo. Speech is produced on o

machine while the application GUI is running on a
handheld (IPaq machine). In general, Java sound AP
can easily be separated from an application’s logic.

• JShell: a third-party command shell for Java. The com
mand parsing is done on one machine, while the com
mands are executed on another.

• PowerPoint controller: we have written a small Jav
GUI application that controls MS PowerPoint throug
9
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its COM interface. We partitioned the GUI of this appli-
cation from its back-end. We run the GUI on a IPaq
PDA with a wireless card and use it to control a Win-
dows laptop. We have given multiple presentations
using this tool.

• A remote load monitoring application: machine load
statistics are collected and filtered locally with all the
results forwarded to a handheld (IPaq) machine over a
wireless connection and displayed graphically. The orig-
inal application was written to run on a single Windows
machine.

• The new version (complete re-engineering) of Kimura
[14]: a system for future computing environments
research, managing multiple “working contexts” (virtual
desktops on multiple machines) and the interactions
among them. Although Kimura is a large application, it
was rewritten with the explicit purpose to develop a cen-
tralized version that will later become distributed using
J-Orchestra. Thus, it showcases a very different use of J-
Orchestra than JBits does.

5. Related Work

Much research work is closely related to J-Orchestra,
either in terms of goals or in terms of methodologies. We
discuss some of this work next.

Several recent systems other than J-Orchestra can also
be classified as automatic partitioning tools. In the Java
world, the closest approaches are the Addistant [20] and
Pangaea [17] systems. The Coign system [11] has pro-
moted the idea of automatic partitioning for applications
based on COM components. All three systems do not
address the problem of distribution in the presence of
unmodifiable code.

Coign is the only one of these systems to have a claim
at scalability, but the applications partitioned by Coign
consist of independent components to begin with. Coign
does not address the hard problems of application parti-
tioning, which have to do with pointers and aliasing: com-
ponents cannot share data through memory pointers. Such
components are deemed non-distributable and are located
on the same machine. Practical experience with Coign
[11] showed that this is a severe limitation for the only
real-world application included in Coign’s example set
(the Microsoft PhotoDraw program). The overall Coign
approach would not be feasible for applications in a gen-
eral purpose language (like Java, C, C#, or C++) where
pointers are prevalent, unless a strict component-based
implementation methodology is followed.

The Pangaea system [17] has very similar goals to J-
Orchestra. Pangaea, however, includes no support for
making Java system classes remotely accessible. Thus,
Pangaea cannot be used for resource-driven distribution,

as most real-world resources (e.g., sound, graphics,
system) are hidden behind system code. Pangaea utili
interesting static analyses to aid partitioning tasks (e.
object placement) but these analyses ignore unmodifia
(system) code.

JavaParty [9][16] itself is closely related to J-Orchestr
The similarity is not so evident in the objectives, since Ja
aParty only aims to support manual partitioning and do
not deal with system classes. The implementation tec
niques used, however, are very similar to J-Orchest
especially for the newest versions of JavaParty [9]. Simil
comments apply to the FarGo [10] and AdJava [7] sy
tems. Notably, however, FarGo has focused on groupi
classes together and moving them as a group. Far
groups are similar to J-Orchestra anchored groups. In fa
groups of J-Orchestra objects that are all anchored
choice could well move, as long as they do it all togethe
We have not yet investigated such mobile groups, howev

Automatic partitioning is essentially a Distributed
Shared Memory (DSM) technique. Nevertheless, aut
matic partitioning differs from traditional DSMs in severa
ways. First, automatic partitioning systems like J-Orche
tra do not change the runtime system, but only the applic
tion. Traditional DSM systems like Munin [4], Orca [2],
and, in the Java world, cJVM [1], and Java/DSM [21] use
specialized run-time environment in order to detect acce
to remote data and ensure data consistency. Also, DS
have usually focused on parallel applications and requ
programmer intervention to achieve high-performance.
contrast, automatic partitioning concentrates on resour
driven distribution, which introduces a new set of prob
lems (e.g., the problem of distributing around unmodifi
able system code, as discussed). Among distributed sha
memory systems, the ones most closely resembling the
Orchestra approach are object-based DSMs, like Orca [2

Mobile object systems, like Emerald [3][12] have
formed the inspiration for many of the J-Orchestra ide
on object mobility scenarios.

Both the D [13] and the Doorastha [6] systems allo
the user to easily annotate a centralized program to turn
into a distributed application. Although these systems a
higher-level than explicit distributed programming, the
are significantly lower-level than J-Orchestra. All the bu
den is shifted to the programmer to specify what semant
is valid for a specific class (e.g., whether objects a
mobile, whether they can be passed by-copy, etc.). P
gramming in this way requires full understanding of th
application behavior and can be error-prone: a slight err
in an annotation may cause insidious inconsistency erro
10



r
ive

n

”,
s

-

:

d
r

d
f

6. Conclusions

As the advent of the Internet has changed the comput-
ing landscape, the need for new distributed applications
will only keep growing. Accessing remote resources has
now become one of the primary motivations for distribu-
tion. In this paper we have shown how J-Orchestra allows
the partitioning of programs onto multiple machines with-
out programming. Although J-Orchestra allows program-
matic control of crucial distribution aspects (e.g., handling
errors related to distribution) it neither attempts to change
nor facilitates changing the structure of the original appli-
cation. Thus, J-Orchestra is applicable in cases where the
original application has loosely coupled parts, as is com-
monly the case when multiple resources are controlled.

Although J-Orchestra is certainly not a “naive end-
user” tool, it is also not a “distributed systems guru” tool.
Its ideal user is the system administrator or third-party
programmer who wants to change the code and data loca-
tions of an existing application with only a superficial
understanding of the inner workings of the application.

We hope that partitioning tools will become main-
stream in the future and that the techniques of J-Orchestra
will prove of value in such efforts.
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