
ies
puting
plain-
ations:
ardware)
func-
ween
ming.
ls can
haring
obile

. Nev-
e
ability
obtain

data
ossibly
e sys-

anced
small
ose to

profil-
aphi-
osed
ws full
guar-
iddle-

g and
ith the
f appli-
tional-
ution.
Application Partitioning without Programming
(a White-Paper and Future Work Proposal)

Yannis Smaragdakis and the J-Orchestra Group
College of Computing

Georgia Tech

July 25, 2001

Application partitioningis the task of breaking up the functionality of an application into distinct entit
that can operate independently, usually in a distributed setting. As networking changes the com
landscape, application partitioning is becoming the main kind of distributed programming. Even the
est, non-performance-oriented applications may need to be partitioned due to functional consider
the resources that the application needs (e.g., graphical workstation, database system, sensor h
may be distributed throughout a network. Traditional partitioning entails re-coding the application
tionality so that it uses a middleware mechanism (e.g., CORBA, Java RMI) for communication bet
the different entities. This proposal examines an alternative approach that involves no program
Instead, higher-level tools allow the user to express how the application is to be partitioned. The too
then rewrite the existing application code to replace local data exchange (e.g., function calls, data s
through pointers) with remote communication (e.g., remote function calls, remote pointers or m
objects).

The no-programming approach has the potential to revolutionize the way applications are partitioned
ertheless, no-programming partitioning faces two major challenges. First, it is hard to guarantee thcom-
pletenessof the translation process, by changing the application alone. “Completeness” refers to the
to place any arbitrary subset of application data and code on any site. A second challenge is to
acceptable performancefor a large class of applications. This requires both careful analysis of the
exchange patterns among application entities, and appropriate mechanisms for data migration and p
replication. Nevertheless, doing either of the above with low overhead and no changes to the runtim
tem is a difficult task.

The goal of this proposal is to explore whether no-programming application partitioning can be adv
to “industrial strength” levels. The space of possible design choices is huge, but we will argue that a
segment of the spectrum holds some of the most promising design directions. In particular, we prop
explore no-programming partitioning of Java applications in bytecode format. A separate dynamic
ing phase will be used to supply information to guide both partitioning and distribution decisions. Gr
cal tools will aid the user in describing a correct and efficient partitioning of the application. The prop
rewriting algorithm (a new research result) is far more complete than previous approaches, and allo
mobility of application objects. Static analysis will be used to enlarge the set of partitionings that are
anteed to be correctly distributed by the system and to perform optimizations in the distribution m
ware. Preliminary work in these directions is being conducted at the time of writing this proposal.

1. Introduction

Programming distributed applications used to be a task reserved for high-performance computin
large, geographically separated systems, always designed from scratch with distribution in mind. W
widespread use of the Internet, distribution over the network became an issue for a large number o
cations that before would operate on a single location. Distributing such applications leaves the func
ity they offer to the user virtually unchanged. Physical constraints are the reason dictating the distrib
1



arated

exists
pically,
that the
the user
achine,
plets,

d on the
al pro-
e user
stan-

bjects

strib-
ay to

o use
ertak-

e user
code
unica-

tions

ning
at para-
t very
ation

cuted
M [1],
arty

ting dis-
orating
cessful
good
t of the
ption of

ction

ming
).
lt fail-
odules.
rmat)
For instance, an application should continue to work the same, but now its user is geographically sep
from the data storage facility or the main computing engine. The Javaapplet modelis a good example,
when viewed as an instance of distributed computation. An applet is a piece of code that originally
on a server machine but gets copied on a client machine to be executed on a user’s Web browser. Ty
the applet is executed on the client machine not because this machine is faster than the server
applet came from, but because the applet needs to use a local resource—the graphical screen of
machine. Since the graphics have to reach the user screen and the code is initially on the server m
distribution is inevitable. The main issue is how the distribution should take place. In the case of ap
the answer is hard-coded and it is the same for each applet: the code is downloaded and execute
user side. Nevertheless, one can imagine many other solutions that are customizable for individu
grams. Perhaps, the functionality should be split, with the core part executed on the server, while th
interface is executed on the client. Communication between the two parts could be performed with
dard distributed computing techniques (e.g., CORBA [14], or Java RMI [20] middleware). Perhaps, o
should migrate on demand, or according to an application-specific pattern.

Such circumstances gave rise to application partitioning.Application partitioningis the task of breaking up
the functionality of an application into distinct entities that can operate independently, usually in a di
uted setting. Application partitioning is advocated strongly in computing magazines (e.g., [11]) as a w
use resources more efficiently. Traditional partitioning entails re-coding the application functionality t
a middleware mechanism for communication between the different entities. This is a significant und
ing, often prohibitively so. In this proposal, we promote the idea of partitioning existing centralized1 appli-
cations without manually changing the application source code. Instead, a higher level tool allows th
to express how the application is to be partitioned. The tool can then rewrite the existing application
to replace local data exchange (e.g., function calls, data sharing through pointers) with remote comm
tion (e.g., remote function calls, remote pointers or mobile objects). Thisno-programming2 approach to
application partitioning has significant simplicity advantages and can revolutionize the way applica
are partitioned.

In the spectrum of technologies aimed at facilitating distributed computing, no-programming partitio
is among the most ambitious, because it imposes modest requirements. To elaborate this somewh
doxical statement, no-programming partitioning is an ambitious approach on the technical front, bu
modest on the deployment front. The distinct element of the approach is that only the applic
changes—no changes are required to the runtime environment where the applications are to be exe.
This distinguishes no-programming partitioning from distributed shared memory systems (e.g., CJV
Java/DSM [25]). The deployment advantages include full portability and compatibility under third-p
changes to the runtime system. Typical technical advantages include the compactness of the resul
tributed system and the transparency of the partitioning to other elements of the system (e.g., collab
applications running on the same runtime system). No-programming partitioning aspires to be suc
in distributing a large class of applications semi-automatically, while maintaining correctness and
performance. This is a challenging task but the deployment advantages guarantee that the impac
approach depends only on the technical success of the rewriting process—not on the extent of ado
new infrastructure.

1. We will use the term “centralized” for applications designed to run on a single machine. Note that the distin
betweencentralized anddistributed is orthogonal to the distinction betweensequentialandconcurrent. Both cen-
tralized and distributed applications can be either sequential or concurrent. More specifically, the no-program
partitioning approach has nothing to do with concurrency discovery (e.g., work on automatic parallelization

2. As explained later, “no-programming” is a slight misnomer. If application developers want to add non-defau
ure handling to their distributed applications, they need to add code to automatically generated skeleton m
Even in this case, the original application code does not need to be altered (e.g., it can well be in binary fo
and the error handling is no more complex than in the case of traditional application partitioning.
2



nd
lications
ome

stems
ple of
es
muni-
strictly

ution
ction
tribu-

pecific
bject-

a VM,
e of
-ori-
oning.

he dis-
istrib-

erald
ling,

hose of

e pro-
y related
(e.g.,
tion 3.

1] and
cess in
ade

roces-
s. No

gth”
Java

in ele-
upply
ing
where

; static
tions; a
Of course, it is utopian to expect thatall applications can be distributed without code modifications a
attain acceptable performance. Nevertheless, there are good reasons to hope that the class of app
for which no-programming partitioning can yield efficient solutions is large and only getting larger. S
of these reasons are:

• When distribution is dictated by physical constraints (as on the Internet and in embedded sy
environments) communication patterns tend to be very simple. Consider again the exam
applets, or the symmetric case ofJava servlets: surely if the problem admits a solution that execut
the entire code exclusively on the server (servlet) or exclusively on the client (applet), the com
cation requirements cannot be too great. It should be easy for an automatic system to perform
better partitioning than an inflexible solution like applets or servlets.

• The breakdown of applications in objects seems to offer a good granularity for making distrib
decisions and applying them to binary code. Non-object-oriented applications offer abstra
boundaries only at the level of procedures or modules. The former seem too fine-grained for dis
tion decisions, while the latter are too coarse-grained. Binary executables in an architecture-s
format (e.g., x86 machine language) would be hard to process automatically. In contrast, the o
oriented coding style, in combination with more abstract execution environments (e.g., the Jav
or the Microsoft CLR) offer both an appropriate partitioning granularity and significant eas
binary manipulation. Therefore, the current increasing trend of writing applications in object
ented languages with abstract runtime systems (like Java or C#) favors no-programming partiti

• Good techniques for placement, replication, and mobility have been developed and appear in t
tributed systems literature. These include placement and data consistency techniques from D
uted Shared Memory systems (e.g., Orca [2]), object mobility techniques (e.g., from the Em
system [3]), etc. Additionally, with a judicious combination of static analysis and execution profi
distribution decisions can be more educated than in past systems.

2. Technical Issues and Design Choices

No-programming application partitioning faces some serious challenges. The two main issues are t
thecompletenessof the translation process and theperformanceof the partitioned application in a distrib-
uted environment. These are the axes along which we will examine existing systems, as well as th
posed approach. For concreteness, we will contrast the proposed approach to the three most closel
prior art systems—Addistant [21], Pangaea [17][19], and Coign [9]. Other, less closely related, work
distributed shared memory systems and manual partitioning infrastructure) will be discussed in Sec

The past three years have seen a number of efforts to automatically partition Java programs [17][2
COM applications [9]. These prior approaches are limited in scope and have not demonstrated suc
partitioning third-party, pre-written applications. The Coign automatic partitioning system [9] has m
some inroads in this direction, but the applications partitioned successfully (e.g., the Octarine word p
sor) were written explicitly to demonstrate a modular style of programming using COM component
other real-world COM applications are written with such extreme care to ensure binary modularity.

The goal of this proposal is to advance no-programming application partitioning to “industrial stren
levels. The platform of experimentation is Java and we propose to perform the partitioning through
bytecode rewriting. Thus, no source code access to the original application is required. Other ma
ments of the proposed approach include: a test-case profiling phase for the application that will s
information to guide partitioning, placement, and mobility decisions; a powerful rewriting engine allow
correct partitioning of more applications than prior approaches; generating source code skeletons
failure handling code can be added by the user; the ability of objects to move, whenever possible
analysis to enlarge the set of partitionings that are guaranteed to be correct and to perform optimiza
3



allow
n data

of our

ing ave-
scuss
h plan in
h the

n-
e enor-
000, to
xper-

iented
ind)

place.
s are

ase of
ment

Addis-
the pro-
nerality,
a system
M com-
f many
ctarine
ppli-
-spe-
ta are

e
re then
ling is
mon-
g an
and
is repre-
hich

infer-

 mobil-
nd the

process
analogy
by its
graphical interface that will present the results of partitioning and static analysis to the user and will
the user to make distribution decisions; heuristic algorithms for partitioning (data placement) based o
exchange information.

Our group at Georgia Tech already conducts preliminary work in the proposed direction. The name
system isJava-Orchestra, orJ-Orchestra, for short.3

Next, we will argue that the J-Orchestra design decisions are sound and represent the most promis
nue to an industrial-strength no-programming partitioning system. A few of the aspects we will di
have already been implemented, but most either have not or are at an immature stage. The researc
Section 4 will list specifically what the proposed future work is—the current section is concerned wit
overall approach.

Java Bytecodes as a Program Representation.The Java programming language [8] is the dominant la
guage for Internet development and one of the most dominant programming languages overall. Th
mous number of Java developers (conservatively estimated at 500,000 professional developers in 2
grow to over 2 million by 2005, not including students and hobbyists [7]) and the accumulated Java e
tise guarantee the potential for significant impact. Additionally, Java is among the purest object-or
languages. This ensures that “legacy” applications (i.e., applications written with no distribution in m
are fairly modular. Class boundaries offer convenient lines along which the partitioning can take
Objects offer a conveniently fine granularity for code and data mobility. Furthermore, Java program
executed in an abstract execution environment—the Java Virtual Machine (JVM). This enables e
binary manipulation of the application code, as well as the ability to manipulate the runtime environ
(e.g., to transform code at load time, to enable dynamic profiling, etc.).

Among the three most closely related approaches to the one proposed, two—the Pangaea [17] and
tant [21] systems—are Java based. Pangaea operates at the source code level, while Addistant, like
posed approach, operates at the bytecode level. Operating at the bytecode level is essential for ge
because no access to the source code for the original application is needed, and because Jav
classes also need to be manipulated (although not modified). The Coign system [9] operates on CO
ponents. One disadvantage in this case is that no real-world applications are written as collections o
small COM components. The applications that constitute success cases for Coign (mainly the O
word processor) were written specifically to showcase that COM is a viable platform for developing a
cations from many small components. A second disadvantage is that COM applications (in platform
cific binary format) are hard to rewrite, which is necessary in order to change the way that remote da
accessed. This will be further discussed when examining the rewriting engine design choices.

Using Test-Case Profiling Data for Partitioning Decisions.Test-case profiling consists of examining th
behavior of an application under some sample input. The observations made during the test run a
used to guide decisions that will affect application performance during actual use. Test-case profi
ideal for no-programming application partitioning because it is hard to perform low-overhead online
itoring of application behavior without changing the execution environment. Recall that keepin
unmodified execution environment is one of the main goals of application partitioning, for portability
ease of adoption reasons. Of course, the main assumption of test-case profiling is that the test-case
sentative of general application behavior. For initial partitioning of application classes (i.e., deciding w
classes are strongly coupled with which others), this is likely to be the case. For more complex

3. The motivation behind the name “J-Orchestra” is dual. First, it suggests the kind of orchestration of object
ity that the system aspires to perform. Second, there is a strong analogy between application partitioning a
way orchestral pieces are commonly composed: first a piano score is completed. Then an “orchestration” 
takes place that determines which instrument should play which notes of the completed piano score. The 
extends far. For instance, there are many examples of orchestrating piano music that was never intended 
composer for orchestral performance.
4



icated

isions.

ineer-
a criti-
st no-
ches.

ind is
ly be

call

or a
s and

the

s allow
ddress

te data.
can be
odified
form-
ta are
ntee of
te the
unde-
eason
iasing

ome
mming
m as

ost of
rience
plica-
essarily
ts of the
if the
g, or,
y be

es con-
her the
ences—like deciding when to move an object from a site to another—profiling has to be very sophist
to be adequate. This is one of the most open-ended directions we propose to explore.

Of the three prior art systems discussed, only Coign uses test-case profiling to guide partitioning dec

A General, Efficient Rewriting Engine that Allows Object Mobility. The most important part of a no-
programming partitioning approach is the rewriting it performs. The issues involved range from eng
ing considerations to deep research problems. First, we will present the necessary background and
cal view of prior art—the issues discussed here are generally overlooked in the literature and pa
programming partitioning systems have not documented exactly the limitations of their approa
Although the discussion is often Java-specific, the techniques described are fairly general.

To begin, let us distinguish between different kinds of classes that form a Java application. The first k
application classes. These are part of the original application to be partitioned. As such, they can free
modified (e.g., to refer to other objects through proxies). Next there aresystem classes—the classes form-
ing the Java runtime libraries, which are universally available. For brevity, we will occasionally
instances of system classessystem objects. Many system classes are implemented usingnative code—i.e.,
their functionality is encoded in a platform-dependent binary file, either the JVM executable itself
dynamically linked library. There is a distinction between system classes that invoke native method
ones that do not. The latter may be treated as application classes under some (strict) conditions.

Completenessis the main problem of no-programming application partitioning. Without modifying
runtime system, it is hard to guarantee correct execution forall applications partitioned alongany user-
defined boundary. The problem stems from the fact that most mainstream programming language
data sharing through references (i.e., pointers). Sharing through references is valid on a single a
space. When clients are distributed over a network, however, there is no way to directly access remo
For application code, this may be fine, as long as code modification is possible: application code
rewritten to always access data through indirect references. If, however, references ever leak to unm
code that is unaware of the distribution (e.g., native code in the Java VM, system libraries for a plat
specific executable) disaster will ensue: the code will try to access the data directly, even if the da
remote. Even if care is taken to only pass direct references to unmodified code, there is no guara
correctness: the unmodified code may alias the data, so that replicating or moving them will viola
original application semantics. In general, if an arbitrary subset of the code is unmodifiable, it is an
cidable problem whether a given partition of the application will respect the original semantics. The r
is that the aliasing behavior of the unmodifiable code depends on run-time information. The al
behavior, in turn, determines whether a piece of data can be safely moved to a remote site.

Performanceis the other major issue in no-programming application partitioning. There are certainly s
applications for which performance is secondary. Nevertheless, the ultimate success of no-progra
partitioning depends on the efficiency of the partitioned application. It is tempting to view the proble
one of data locality and apply standard techniques (e.g., from distributed shared memory systems). M
these techniques have to do with data replication and data mobility. A wealth of past research expe
has shown that replication and mobility are essential tools for good performance in distributed ap
tions. Nevertheless, in this case, correctness is the enemy of performance. For instance, it is not nec
the case that a set of data (e.g., a vector) can be moved to a different host or can be replicated. Clien
vector may be unmodifiable, thus needing to access the vector data directly (which is not possible
vector is remote). Unmodifiable system code may hold an alias to the vector, preventing it from movin
rather, violating the semantics of the application if the vector moves. Similarly, replicating data ma
unsafe, as it may lead to inconsistencies between copies. Traditional mechanisms for keeping copi
sistent are not sufficient because there is no way to intercept access to the data without modifying eit
client or the runtime environment.
5



rectness
st such
perfor-

e restric-
ions

inters.
al expe-
tion
oach
nces in
riodi-

Java-
lso lim-
pplied in
in Java

making

nd of
a dif-

refer-
in the
the

t.) Even
roblem
jects

ly way
g
riginal
ithout
ivial
e the
r is lim-

pplica-
ketch a

all the
r in this
system
ment of

g refer-

riant
cess is
The above discussion suggests that good conservative approximations are required to achieve cor
of the partitioning, but these should not sacrifice performance. The proposed approach consists of ju
a conservative approximation. First, though, let us consider how the issues of completeness and
mance have been addressed in prior systems. All three of the examined systems impose very sever
tions on the kinds of partitionings allowed and have little, if any, support for data mobility. The limitat
are such as to render these systems fundamentally unscalable:

• the Coign system does not distribute components when they share data through memory po
Such components are deemed non-distributable and are located on the same machine. Practic
rience with Coign [9] showed that this is a severe limitation for the only real-world applica
included in Coign’s example set (the Microsoft PhotoDraw program). Note that the Coign appr
would be impossible in the case of Java: almost all program data are accessed through refere
Java. No support for synchronous data mobility exists in Coign, but the application can be pe
cally repartitioned based on its recent behavior.

• the Pangaea system uses the JavaParty [15] infrastructure for application partitioning. Since
Party is designed for manual partitioning and operates at the source code level, Pangaea is a
ited in this respect. Thus, Pangaea cannot be used to make Java system classes (which are su
bytecode format) remotely accessible. This is a very severe limitation as most data exchange
programs happens through system classes (e.g., collection classes, likejava.util.Vector ). If
such classes are not remotely accessible, all their clients need to be located on the same site,
partitioning almost impossible for realistic applications.

• the Addistant system concentrates on functional distribution along library boundaries. The ki
rewrite employed (i.e., the semantics supported) is picked manually (e.g., the user has to pick
ferent rewrite for classes that can be freely replicated, a different rewrite if an application class
ences an unmodifiable system class, etc.). There are certainly some arbitrary limitations
Addistant approach. (For instance,final system classes cannot be accessed remotely due to
subclassing-based rewrite technique. All clients of such classes need to be on the same hos
so, however, the set of partitionings supported is much richer than that of Pangaea. The main p
with the Addistant rewrite, however, is that objects cannot move from site to site. Instead, ob
stay on the site where they were initially allocated but can be accessed remotely. Thus, the on
to get acceptable performance with Addistant is bycopyingobjects. Nevertheless, allowing copyin
semantics is a responsibility left for the user! That is, a user with only bytecode access to the o
application is expected to know whether a class in that application can be safely replicated w
violating the application semantics. This limitation makes Addistant impractical for any but tr
applications, usually partitioned by the original author. Essentially, Addistant does not solv
completeness issues, but shifts the burden to the end user. Even under this restriction, the use
ited to specifying copy semantics for the objects—object mobility is not allowed.

Given the above restrictions, it is easy to see why prior systems have not scaled to industrial level a
tions. The rewriting engine proposed here addresses most of the above concerns. First, we will s
conservative (with respect to Java system classes) approach, which is still much more general than
above techniques. (This constitutes a new, implemented, but yet unpublished, research result.) Late
section, we will discuss how static analysis can be used to enable safe mobility even of some Java
classes. The discussion is simplified (by abstraction but also omission of special cases—e.g., treat
this  references) but maintains all the crucial insights.

The J-Orchestra rewriting engine uses the standard technique (e.g., see JavaParty [15]) of changin
ences to objects (which we will calldirect references) to point to a proxy object instead (indirect refer-
ences).4 The proxy object hides the details of whether the actual object is local or remote. The inva
maintained is that clients never get direct references to objects that can potentially be remote—ac
6



e, all
vented
r

invoke
e of data
oten-

).
ethods)

lasses of
) code

ot really
system
data is

ect, if
if the

e—

en used
e these
, keep a
ystem
ut not
cleaner
at least
ystem
es how
r system
ses can
lication
t to be
Sim-
”. (In

, but it
keep an
will be

, which
rom the

ence
re
irect
sec-
always through a proxy. Application code needs to be rewritten to maintain the invariant: for instanc
new statements have to be rewritten to create a proxy object and return it, an object has to be pre
from passing direct references to itself (as the value of thethis expression) to other objects, etc. If othe
objects need to refer to data fields of a rewritten object directly, the code needs to be rewritten to
accessor and mutator methods, instead. Such methods are generated automatically for every piec
in application classes. (For instance, if the original application code tried to increment a field of a p
tially remote object directly, like in o1.a_field++ , the code will have to change into
o1.set_a_field(o1.get_a_field() + 1) . The rewrite will actually occur at the bytecode level.
Consider now the completeness issues discussed earlier: what if unmodified code (e.g., native m
tries to access object fields directly? What if unmodified code aliases the data?

The main observation is that none of these cases applies to instances of application classes (i.e., c
the original application to be partitioned, as opposed to Java system classes). Unmodified (system
can only access application objects in three ways: through generic (Object ) references, through Java
interfaces, or if their classes are derived from system classes. In the third case, the classes are n
application classes—they represent subtypes of system classes and should be treated just like
classes. In the first and second cases, no problem exists (after careful rewriting). Direct access to the
not allowed, thus the proxy is used. Also, since no object can directly refer to a potentially remote obj
unmodified code is to alias the application object, it will instead alias its proxy object. For instance,
program creates a collection (e.g., aVector ) of instances of application classC, a vector of objects that are
proxies to instances ofC will be created. In this way, instances of application classes can freely mov
their location is entirely transparent to the rest of the system.

Consider now system classes. Objects of system classes will also be accessed through a proxy, wh
in application code. Nevertheless, the problem is that other system classes may need to referenc
objects. For example, system code (or even native code) may create an instance of a system class
reference (alias) to it, and return that reference as the result of a method invocation. Additionally, s
code is for practical purposes unmodifiable. (In reality, some system code is perfectly modifiable, b
all system code is—due to native methods. Treating all system code as unmodifiable code yields a
solution and does not run the danger of possibly violating licensing agreements.) Thus, there are
two modes of operating on system objects: using direct references (from inside other unmodifiable s
classes) or using indirect references/proxies (from inside application classes). The issue then becom
to translate between direct access to system classes and indirect access. Fortunately, the proxies fo
objects offer the only interface between application and system code. The code of these proxy clas
take care of the translation so that system classes can refer to system objects directly but app
classes only do so through proxies. In particular, if a direct reference to a system object is abou
returned to application code, it is first “wrapped” with a proxy object and the proxy object is returned.
ilarly, if a system class is to be passed into system code from application code, it is first “unwrapped
fact, a similar transformation takes place for application classes that implement system interfaces.)

The rewrite algorithm sketched above takes care of unmodified code trying to access data directly
does not address the issue of unmodified code possibly aliasing the data. Indeed, system code can
alias to objects (instances of other system classes). If these objects are later moved, the aliases
invalid. Therefore, in the strictest case, this rewrite only takes care of the case whereall system objects can
only exist on one network site. Nevertheless, Java system classes can be subdivided into libraries
have hierarchical dependencies. For instance, the Swing graphics library may access classes f

4. This point is worth repeating for clarity: we will use the term “direct reference” to indicate a normal Java refer
(i.e., an indirection). This could well be called an “indirect reference” but since Java does not allow any mo
“direct” access to objects, we can “hijack” the term without ambiguity. Summarizing the terminology used, “d
references” offer a single point of indirection, while “indirect references” offer two points of indirection, the 
ond one hiding whether the object is local or remote.
7



er) be
that

rewrite

ppli-
e cor-
s no-
s of
at poten-
ceptual
still
least as

lly alias
sort to
be on
cannot

lasses
tances

ss only
he over-
methods
ents can
rewrite
s change
rguments

alysis to

d
(e.g.,
uted
hich
t suffer
ritten
trib-
orig-
by

nguage
on, it
l par-
atters
n by
java.util package, but not the other way around. Thus, Swing classes can easily (all togeth
assigned to a single host, whilejava.util classes are on a different host. This is the same property
the Addistant system exploits in order to allocate Swing classes on remote hosts.

Now let us summarize the completeness of the J-Orchestra rewrite algorithm and compare it to past
algorithms. The proposed rewrite allows correct distribution forall applications partitioned alonganyuser-
defined boundary across application classes. That is, the user can putany instance ofanyapplication class
onanysite, and the semantics of the original centralized application will be preserved. Additionally, a
cation objects can freely move from site to site during application execution, without endangering th
rectness of the application. Therefore, the rewrite algorithm is much more general than all previou
programming partitioning approaches. The algorithm’s only limitations have to do with partitioning
system classes. System objects have to be located on the same site as any other system objects th
tially alias them. As a conservative approximation, all instances of system classes in the same con
“library” (e.g., Swing classes,java.util classes, etc.) have to be on the same host, although they can
be accessed remotely. Even in the case of system classes, the J-Orchestra rewriting algorithm is at
complete as any previous one.

Static Analysis for Performance Optimizations.The limitation of the rewriting algorithm sketched
above is that system objects have to be on the same site as other system objects that can potentia
them. There is no way to compute exactly what objects will alias other objects. Thus, we have to re
conservative approximations, like enforcing that all instances of classes in the same “library” have to
the same host. This can be too restrictive, even for realistic examples, as it means that such objects
move. This restriction can be relaxed with careful application of static analysis. For instance, many c
in the same library never alias instances of each other in a way that will cause problems if the ins
move. Objects of such classes can freely exist on different sites on the network.

Static analysis can also enable a wealth of optimizations. For instance, if the code of a system cla
accesses other system objects by calling methods through an interface, then we are able to avoid t
head of translating between indirect references and direct references when passing arguments to
of this class. If a certain method is guaranteed to never change some of its arguments, these argum
be passed using “by-copy” semantics instead of the “by-reference” semantics that the proposed
algorithm guarantees in order to emulate Java behavior on a single address space. If a method doe
its arguments, but references to them never escape the body of the method, then we can pass the a
using “by-copy-return” semantics, again resulting in a more efficient implementation.

Of the three prior art systems discussed in this section, only Pangaea has attempted to use static an
infer relationships between objects [18]. This work is still at a preliminary stage.

Enabling the User to Add Failure Handling Code.The overall approach of programming distribute
systems as if they were centralized (“papering over the network”) has been occasionally criticized
see the best known “manifesto” on the topic [23]). The main point of criticism has been that distrib
systems fundamentally differ from centralized systems because of the possibility of partial failure, w
needs to be handled differently for each application. Nevertheless, the proposed approach does no
from this problem: although the input of the system is a binary application, the output is both a rew
binary and thesource codeof new front-end classes (skeletons) required to run the application in a dis
uted environment. These front-end classes offer a wrapper for the rewritten binary functionality of the
inal application. Application-specific (i.e., non-default) partial-failure handling can be effected
manually editing the source code of the front-end classes and handling the corresponding Java la
exceptions. Thus, although the proposed work involves hiding (much of) the complexity of distributi
allows the user to handle distribution-specific failure exactly like it would be handled through manua
titioning. Alternatively viewed, the user can concentrate on the part of the application that really m
for distributed computing: partial failure handling. This part is the only code that needs to be writte
hand in order to partition an application.
8



ral to
inter-
king

s infor-
ow can
ser eas-

or-
e static

ts a few
d. On
adily
of the
sed for
ation
n and
ue suc-
iting of
d: the
of the

lexity.
system

ill dis-
ure for

,
gram-
more,
ds scal-
odified

twork

ach are
lso has
analy-
object-
ed in
tion run

f the
s (syn-
Graphical Front-End for User Interaction and Heuristics for Partitioning. The goal of the proposed
approach is to enable application partitioning at a higher level of abstraction. Therefore, it is natu
include a graphical front-end to allow the user to specify partitioning parameters. Ideally, such a user
face should present all the results of program analysis so far and allow the user full flexibility in ma
further decisions. This presents some challenging user-interface issues. How should static analysi
mation be represented in an approachable form? How can profiling information be represented? H
the user deal with the complexity of hundreds or thousands of classes and methods? How can the u
ily specify object migration policies (e.g., “when methodfoo is called, its third argument should move
permanently to the site offoo if it is not already there”)? How can the user override static analysis inf
mation (e.g., to assert that a method never modifies its arguments, even if this is not apparent to th
analysis algorithm)?

Although we cannot provide complete answers to these questions, preliminary experience sugges
good directions. First, the user should always be in full control of the distribution process, if neede
the other hand, heuristics for distribution (e.g., a flow-based static partitioning algorithm) should be re
available to provide some automatic decision making. In this way, the user can be sure that most
“don’t-care” cases are handled in an acceptable way. If a structured language (e.g., XML-based) is u
externalizing the distribution information, then an editor for the more complex structures (e.g., migr
policies) can be integrated directly in the graphical user interface. In this way, graphical informatio
complex structures with no direct graphical representation are integrated smoothly. This is a techniq
cessfully employed in development environments like Visual Basic. The advantage over separate ed
the complex structures is that the hierarchical capabilities of the graphical environment are exploite
user can click on a class, choose one of its methods, then edit the migration policy for arguments
method. In general, a hierarchical philosophy in the user interface is a good way to deal with comp
The user should be able to group classes together to form larger entities that are used as a unit. The
should then be able to summarize profiling and static analysis information for the entire group.

3. Related Work

The most closely related pieces of work were discussed in detail in the previous section. Here we w
cuss other work that is less directly related to the proposed approach. The spectrum of infrastruct
distributed computing is huge so presentation will be selective.

Distributed shared memory systems(DSMs) like Munin [4], Orca [2], and, in the Java world, CJVM [1]
and Java/DSM [25], can be used to offer transparent distribution, but they are different from no-pro
ming partitioning in that what changes is the runtime environment and not the application. Further
distributed shared memory systems are typically used in local environments, and are geared towar
able high-performance applications. Thus, unlike the proposed approach, most programs do get m
to run efficiently on a distributed shared memory system, and little opportunity exists for handling ne
failures intelligently at the application level.

Among distributed shared memory systems, the ones most closely resembling the proposed appro
object-based DSMs, like Orca [2]. The Orca system has a dedicated language and runtime, but a
similarities to the proposed approach in its treatment of data at the object level, and its use of static
sis. In fact, a no-programming partitioning approach in Java can be viewed as a way to simulate an
based DSM using traditional middleware and application rewriting. The rewriting algorithm describ
Section 2 essentially causes an appropriate mobile object environment to be maintained at applica
time, even though the runtime environment remains unchanged.

Mobile object systems, like Emerald [3][10] have similarities with the proposed approach. Some o
ideas on implementing mobile objects and choosing appropriate semantics for method invocation
chronous object migration) are identical in the proposed approach and in Emerald.
9



rtition-
ation.
class

otations
ulated.

may

ommu-
con-

ructure
much

ents.

ndus-
ance.
s. Thus,
parti-
ace for

s on
neral

tation
mes a
re is a
ter-

of all
n of a
reach a
inter-
’ meth-
nted in
) parti-

evel-

and

r? Is

s a
per-

tant
ming
The Doorastha system [6] represents another piece of work closely related to no-programming pa
ing. Doorastha allows the user to annotate a centralized program to turn it into a distributed applic
Unfortunately, all the burden is shifted to the user to specify what semantics are valid for a specific
(e.g., whether objects are mobile, whether they can be passed by-copy, etc.). The Doorastha ann
are quite expressive in terms of how method arguments, different fields of a class, etc., are manip
Nevertheless, programming in this way is tedious and error-prone: a slight error in an annotation
cause insidious inconsistency errors.

The need for infrastructure to support application partitioning has been recognized in the systems c
nity. Proposals for such infrastructure (most recently, Protium [24]) usually try to address different
cerns from those covered in this proposal. High performance is an essential element, with the infrast
trying to hide the latency of remote accesses. The no-programming partitioning approach aims at a
higher degree of automation, but for applications with more modest network performance requirem

4. Research Plan

The main goal will be to evaluate whether no-programming application partitioning can become an i
trial-strength technique, scaling to large third-party applications and providing acceptable perform
Previously (Section 2) we argued that the proposed approach makes the right general design choice
the proposed approach is capable of demonstrating or disproving the potential of no-programming
tioning. Nevertheless, the design choices outlined in Section 2 are general enough that significant sp
exploration exists. This section describes a specific research plan covering this space.

Some preliminary work has already taken place, but only just started yielding fruit. (No publication
this preliminary work exist.) In particular, at this point, the J-Orchestra system implements the ge
rewrite algorithm outlined in Section 2 using Java RMI [20] as the target middleware. The implemen
is currently inefficient—completeness has been the primary goal so far. Now performance beco
major consideration. Other aspects of the proposed approach have primitive implementations. The
rudimentary profiler, constructed by instrumenting Sun’s Java VM using JVMPI (the JVM Profiler In
face) [22]. The profiler currently only records the total amount of data exchanged during all calls
methods of a class. Static analysis is at an early stage with only a preliminary Java implementatio
published alias analysis algorithm [12]. The static analysis part of the approach is one that needs to
high level of maturity before it can be integrated with the rest of the components. A simple graphical
face allows the user to see a list of classes together with call-graph information (what other classes
ods call/are called by methods of the class). Simple profiling information can be input and is represe
a weighted-graph view of the application classes. An implementation of a greedy static (class-based
tioning algorithm is available to aid the user in object placement.

Most of the elements of the approach that will enable it to achieve industrial strength are still to be d
oped. Our specific research agenda will include exploration along the following axes:

• Powerful profiling: the profiler should be the main source of information for object placement
migration.

• Static analysis: is static analysis accurate enough to help? Are more complex algorithms bette
static analysis essential? How should static analysis interact with profiling information?

• Supporting Technology: how important is the underlying middleware for performance? What i
good middleware infrastructure for no-programming partitioning? What optimizations can be
formed at the bytecode level to eliminate the overhead of the rewriting process?

• Applications and Evaluation: what applications can be successfully partitioned? Are there impor
practical benefits of the approach? What application domains most benefit from no-program
10



es it

-pro-
ort
sed on
t will

o
t as
s and

), the
project.
nta-
the
was
ost
of

ment
to the

ject on

that a

ture
rom-
g on

anal-

tasks.
priate

. Test

can be
chieve
partitioning? Is no-programming partitioning suitable to high-performance applications? How do
compare to traditional Distributed Shared Memory systems?

These directions are analyzed below in detail:

Powerful Profiling. Test-case profiling is a major element of the proposed approach. The needs of no
gramming partitioning will likely test the limits of profiling. The profiler should not just be able to rep
cumulative information about data exchange, but also to extract a model of the application (e.g., ba
temporal patterns of application behavior). For instance, the profiler could recognize situations tha
enable object migration strategies, such as “whenever methodm is called, its arguments should migrate t
the site where methodm is executed”. Because of the dual nature of the profiler, it is best to think of i
two tools: one that will record program actions in great detail, and one that will analyze the action
infer strategies from them.

Specifically, we will do the following:

• Build a scalable profiler that records synchronous events in the system (mainly method calls
amount of data exchanged, and any other information deemed necessary in the course of the
Producing a scalable profiler tool is not trivial and may require modifying a Java VM impleme
tion. (The modified JVM will only be used for profiling and will never need to be deployed with
partitioned application.) Our past experience with a profiler based on the JVM Profiling Interface
not entirely satisfactory: application profiling is slower than normal execution by a factor of alm
1,000. This may be sufficient for infrequent profiling, but it is a problem if multiple profiling runs
each application are needed.

• Build a tool to analyze the information from the test-case execution of an application. Experi
with different strategies to draw high-level inferences. For each method and each argument
method, collect information about the use of arguments. Example questions include:
“Is the client of a method call more tightly coupled to the data passed as arguments than the ob
which the method is called?”
“When a reference is passed as an argument, how deep are the paths from this reference
method traverses?”
“Does a method typically change its n-th argument?”

• Explore how to extract “representative” information from profiling runs. Profiling can never cap
the full complexity of all application executions, but can we get an acceptable approximation? P
ising approaches include combining inferences from different profiling runs and concentratin
static elements (e.g., object creation statements) instead of specific objects.

Static Analysis.Properties of the partitioned application can be discovered automatically using static
ysis. The static analysis space is fairly open ended, leaving many possibilities for exploration.

Specifically, we will:

• Implement published alias analysis algorithms as the first step to the required static analysis
We will also explore a new alias analysis algorithm that we have designed and believe is appro
for the domain.

• Implement escape and modifiability analysis algorithms on top of the alias analysis techniques
the difference in accuracy when different alias analysis information is used.

• Perform analysis of Java system classes. A challenge will be to see if safe and useful results
extracted without analyzing native code. Some simple results of this kind should be easy to a
(e.g., many system classes can be referenced only by very few other classes).
11



ere is
a spe-
initial
ative.
ents)
lace-

ient

dif-
tech-

es to
e used to
rences
ent of

t of
l be
ning.
plica-
rofiler

eor-
mbed-
te in a
ay be
ver. Java
e great
hones
re not

se con-
ication
ntral

other
ell—a
yed
key-
telnet
done
e sys-
Tech

oal is
Win-
• Explore how static analysis results affect the profiling process and vice versa. To see why th
interaction, recall that part of the interesting information is whether an object can be aliased at
cific site. The answer to this question depends on what other objects are on the same site. An
distribution of objects based on profiling information can make the static analysis less conserv
Similarly, static analysis information (e.g., the fact that a method does not change its argum
affects how much data is transferred during a method invocation, which, in turn, affects the p
ment and migration decisions made in the profiling phase.

Supporting Technology.The performance of a partitioned application depends on having an effic
runtime system. In this direction we will:

• Explore what middleware technology is appropriate for no-programming partitioning. Compare
ferent middleware technologies for performance and services offered. Application partitioning
nologies, like JavaParty, have often used optimized middleware to improve performance [13].

• Explore optimizations specific to the rewriting algorithm proposed. Rewriting application class
access other objects through indirect references imposes overhead. Several techniques can b
limit the overhead to the absolutely necessary cases. Lazy conversion of direct to indirect refe
may be possible. Allowing direct field access to local objects seems promising. Efficient treatm
the this  expression by changing the local variable array may be an option.

Applications and Evaluation.A large part of the proposed work has to do with evaluating the impac
no-programming partitioning. Although not all applications can be partitioned automatically, it wil
beneficial to have a classification of applications that are amenable to no-programming partitio
Clearly this evaluation process is closely coupled with the rest of the exploration. If some class of ap
tions proves to be hard to partition well, this may motivate adding new capabilities to the back-end, p
tools, or static analyzer.

Specifically we will do the following:

• Collaborate with colleagues implementing applications for naturally distributed environments. G
gia Tech has particularly active research groups designing and implementing applications for e
ded systems and alternative computing environments. Applications in these domains opera
heterogeneous, distributed environment with functional distribution constraints: cameras m
connected to one machine, sensors to another, while a database system runs on a central ser
is often used to hide the platform specific elements of each environment. (Lately, Java has mad
inroads to the embedded systems domain, in general—tens of millions of Java-enabled cell p
are in use in Japan [5].) Ease of application development is paramount, as the applications a
developed by systems experts. Therefore, the proposed approach has a lot of potential in the
texts. Lots of small machines (like Java-enabled cell phones) can be running parts of an appl
originally intended only for centralized execution, while the rest of the application runs on a ce
server, or even on other small machines.

• Experiment with interactive applications to make them receive input or produce output on sites
than where computation occurs. Example applications include command shells (e.g., the JSh
Unix shell look-alike for the Java VM), and Swing applications (where the graphics will be displa
remotely). The goal is to enable a better partitioning than what would happen if individual
strokes, or entire graphics windows were transferred over the network (as, for instance, in the
or X-Windows protocols). In the case of JShell, for example, the parsing of commands can be
on the client side and only their execution needs to take place on the server side. Eventually th
tem should scale to industrial-strength applications and examples should abound. A Georgia
colleague has already requested a partitioning of the JBits 2.5 FPGA simulator by Xilinx. The g
to use this heavy-duty application over a network link without incurring as much overhead as X-
dows.
12



l exe-
osed
out

appli-
erfor-
sting

inter-
mory

ind.
when
will
trib-
eral
ake

munity.
solu-

iding in
such

biqui-

eploy
rfor-
output

ake the
may

plica-
envi-
more

ioned

n a

nd M.

ract

nin”,
• Experiment with high-performance applications to see how the approach can deal with paralle
cution and contention for resources. Replication is limited to immutable objects in the prop
approach. Lifting this limitation seems hard without modifying the runtime system and with
incurring a lot of extra overhead on each write operation. Furthermore, pre-written concurrent
cations, designed to execute on a multiprocessor machine, are unlikely to achieve optimal p
mance in a distributed environment without extensive manual rewriting. Nevertheless, it is intere
to see if some well behaved applications are suitable for no-programming partitioning. It is also
esting to quantify the overhead of the approach relative to traditional Distributed Shared Me
systems.

• Explore the possibilities for application development with no-programming partitioning in m
Although the approach is aimed at pre-written applications, perhaps it can yield great benefits
used simultaneously with the development of the application. In this way, the application writer
be shielded from distribution concerns, but all the testing of the application will be done in a dis
uted environment. Having distribution in mind when writing the application should reveal sev
opportunities for optimization. We will try to specify guidelines for application authors to help m
their applications amenable to no-programming partitioning.

5. Impact of the Proposed Work

Ease of application development has emerged as a primary concern of the Computer Science com
Nevertheless, facilitating application development is a very hard problem, that has generally defied
tion for many decades. The hope is now that select, domain-specific solutions can be developed, a
the development of particular classes of applications. No-programming partitioning is exactly one
solution, aiming to facilitate developing a class of distributed applications. As networking becomes u
tous and computing enters every field of life, this class of applications will only grow.

No-programming partitioning can reduce drastically the development time and effort required to d
applications in a distributed environment. Additionally, no-programming partitioning can improve pe
mance over traditional techniques that enable applications to accept remote input or produce remote
(e.g., X-Windows, Java applets, Java servlets). In some cases, no-programming partitioning may m
difference that will enable running the application in a distributed environment: traditional techniques
be too slow or heavyweight, and manual rewriting may be impossible or not cost-effective. For ap
tions amenable to no-programming partitioning, the tedious details of programming for a distributed
ronment can be completely eliminated. This will enable application developers to concentrate on the
interesting aspects of distribution (e.g., handling partial failure) and produce higher-quality partit
applications.

References Cited

1 Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM o
Cluster”, in Proc.ICPP’99.

2 Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, a
Frans Kaashoek, “Performance Evaluation of the Orca Shared-Object System”,ACM Trans. on
Computer Systems, 16(1):1-40, February 1998.

3 Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Abst
Types in Emerald”, inIEEE Trans. Softw. Eng., 13(1):65-76, 1987.

4 John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Mu
Proc. 13th ACM Symposium on Operating Systems Principles, pp. 152-164, October 1991.
13



2001

note,

rald

, in

”, in

ation,

Java”,

und

r for
d

g”,
5 Ben Charny, “Cell phone industry infiltrates JavaOne show”, Special to CNET News.com, June 4,
http://news.cnet.com/news/0-1004-200-6163270.html  .

6 Markus Dahm, “Doorastha—a step towards distribution transparency”,JIT, 2000. See
http://www.inf.fu-berlin.de/~dahm/doorastha/  .

7 M. Driver, “Where Are Java Programmers When You Need Them?”, Gartner Group research
4 April, 2000,
http://gartner11.gartnerweb.com/public/static/hotc/hc00087599.html  .

8 James Gosling, Bill Joy, Guy Steele, and Gilad Bracha,The Java Language Specification, 2nd Ed., The
Java Series, Addison-Wesley, 2000.

9 Galen C. Hunt, and Michael L. Scott, “The Cogin Automatic Distributed Partitioning System”,3rd
Symposium on Operating System Design and Implementation (OSDI’99), pp. 187-200, New Orleans,
1999.

10 Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-Grained Mobility in the Eme
System”, ACM Trans. on Computer Systems, 6(1):109-133, February 1988.

11 Nelson King, “Partitioning Applications”,DBMS and Internet Systems magazine, May 1997. See
http://www.dbmsmag.com/9705d13.html  .

12 Donglin Liang and Mary Jean Harrold, “Efficient Points-to Analysis for Whole-Program Analysis”
7th ACM Symposium on Foundations of Software Engineering, pp 199-215, Sept. 1999.

13 Christian Nester, Michael Phillipsen, and Bernhard Haumacher, “A More Efficient RMI for Java
Proc.ACM Java Grande Conference, 1999.

14 Object Management Group, “The Common Object Request Broker: Architecture and Specific
rev. 2.2”, Technical Report, February 1998.

15 Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in
Concurrency: Practice and Experience, 9(11):1125-1242, 1997.

16 Robert W. Scheifler, and Jim Gettys, “The X Window System”,ACM Transactions on Graphics, 5(2):
79-109, April 1986.

17 Andre Spiegel, “Pangaea: An Automatic Distribution Front-End for Java”, 4thIEEE Workshop on
High-Level Parallel Programming Models and Supportive Environments (HIPS '99), San Juan, Puerto
Rico, April 1999.

18 Andre Spiegel, “Object Graph Analysis”, Technical Report B-99-11, FU Berlin, FB Mathematik
Informatik, July 1999.

19 Andre Spiegel, “Automatic Distribution in Pangaea”,CBS 2000, Berlin, April 2000. See also
http://www.inf.fu-berlin.de/~spiegel/pangaea/  .

20 Sun Microsystems, Remote Method Invocation Specification,
http://java.sun.com/products/jdk/rmi/ , 1997.

21 Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translato
Distributed Execution of ‘Legacy’ Java Software”,European Conference on Object-Oriente
Programming (ECOOP), Budapest, June 2001.

22 Deepa Viswanathan, and Sheng Liang, “Java Virtual Machine Profiler Interface”,IBM Systems
Journal, 39(1):82-95, 2000.

23 Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computin
Technical Report, Sun Microsystems Laboratories, SMLI TR-94-29, November 1994.
14



ikar,
24 Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, Rob Pike, Girija Narl
Sape Mullender, and Eric Grosse, “Protium, and Infrastructure for Partitioned Applications”,Eighth
IEEE Workshop on Hot Topics in Operating Systems (HotOS-VIII). May 20—23, 2001, Schoss Elmau
Germany, pp. 41-46, IEEE Computer Society Press, 2001.

25 Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”,Concurrency:
Practice and Experience, 9(11):1213-1224, 1997.
15


	Application Partitioning without Programming (a White-Paper and Future Work Proposal)
	Yannis Smaragdakis and the J-Orchestra Group College of Computing Georgia Tech July 25, 2001
	1.� Introduction
	2.� Technical Issues and Design Choices
	Java Bytecodes as a Program Representation
	Using Test-Case Profiling Data for Partitioning Decisions
	A General, Efficient Rewriting Engine that Allows Object Mobility
	Static Analysis for Performance Optimizations
	Enabling the User to Add Failure Handling Code
	Graphical Front-End for User Interaction and Heuristics for Partitioning

	3.� Related Work
	4.� Research Plan
	Powerful Profiling
	Static Analysis
	Supporting Technology
	Applications and Evaluation

	5.� Impact of the Proposed Work
	References Cited
	1 Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a Clus...
	2 Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M. ...
	3 Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Abst...
	4 John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Munin...
	5 Ben Charny, “Cell phone industry infiltrates JavaOne show”, Special to CNET News.com, June 4, 2...
	6 Markus Dahm, “Doorastha—a step towards distribution transparency”, JIT, 2000. See http://www.in...
	7 M. Driver, “Where Are Java Programmers When You Need Them?”, Gartner Group research note, 4�Apr...
	8 James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language Specification, 2nd Ed....
	9 Galen C. Hunt, and Michael L. Scott, “The Cogin Automatic Distributed Partitioning System”, 3rd...
	10 Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-Grained Mobility in the Emera...
	11 Nelson King, “Partitioning Applications”, DBMS and Internet Systems magazine, May 1997. See ht...
	12 Donglin Liang and Mary Jean Harrold, “Efficient Points-to Analysis for Whole-Program Analysis”...
	13 Christian Nester, Michael Phillipsen, and Bernhard Haumacher, “A More Efficient RMI for Java”,...
	14 Object Management Group, “The Common Object Request Broker: Architecture and Specification, re...
	15 Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java”, Conc...
	16 Robert W. Scheifler, and Jim Gettys, “The X Window System”, ACM Transactions on Graphics, 5(2)...
	17 Andre Spiegel, “Pangaea: An Automatic Distribution Front-End for Java”, 4th IEEE Workshop on H...
	18 Andre Spiegel, “Object Graph Analysis”, Technical Report B-99-11, FU Berlin, FB Mathematik und...
	19 Andre Spiegel, “Automatic Distribution in Pangaea”, CBS 2000, Berlin, April 2000. See also htt...
	20 Sun Microsystems, Remote Method Invocation Specification, http://java.sun.com/products/jdk/rmi...
	21 Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translator fo...
	22 Deepa Viswanathan, and Sheng Liang, “Java Virtual Machine Profiler Interface”, IBM Systems Jou...
	23 Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computing”, Tech...
	24 Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, Rob Pike, Girija Narli...
	25 Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”, Concurrency: Prac...




