Application Partitioning without Programming
(a White-Paper and Future Work Proposal)

Yannis Smaragdakis and the J-Orchestra Group
College of Computing
Georgia Tech

July 25, 2001

Application partitioningis the task of breaking up the functionality of an application into distinct entities
that can operate independently, usually in a distributed setting. As networking changes the computing
landscape, application partitioning is becoming the main kind of distributed programming. Even the plain-
est, non-performance-oriented applications may need to be partitioned due to functional considerations:
the resources that the application needs (e.g., graphical workstation, database system, sensor hardware)
may be distributed throughout a network. Traditional partitioning entails re-coding the application func-
tionality so that it uses a middleware mechanism (e.g., CORBA, Java RMI) for communication between
the different entities. This proposal examines an alternative approach that involves no programming.
Instead, higher-level tools allow the user to express how the application is to be partitioned. The tools can
then rewrite the existing application code to replace local data exchange (e.g., function calls, data sharing
through pointers) with remote communication (e.g., remote function calls, remote pointers or mobile
objects).

The no-programming approach has the potential to revolutionize the way applications are partitioned. Nev-
ertheless, no-programming partitioning faces two major challenges. First, it is hard to guarare®m-the
pletenes®f the translation process, by changing the application alone. “Completeness” refers to the ability
to place any arbitrary subset of application data and code on any site. A second challenge is to obtain
acceptable performancir a large class of applications. This requires both careful analysis of the data
exchange patterns among application entities, and appropriate mechanisms for data migration and possibly
replication. Nevertheless, doing either of the above with low overhead and no changes to the runtime sys-
tem is a difficult task.

The goal of this proposal is to explore whether no-programming application partitioning can be advanced
to “industrial strength” levels. The space of possible design choices is huge, but we will argue that a small
segment of the spectrum holds some of the most promising design directions. In particular, we propose to
explore no-programming partitioning of Java applications in bytecode format. A separate dynamic profil-
ing phase will be used to supply information to guide both partitioning and distribution decisions. Graphi-
cal tools will aid the user in describing a correct and efficient partitioning of the application. The proposed
rewriting algorithm (a new research result) is far more complete than previous approaches, and allows full
mobility of application objects. Static analysis will be used to enlarge the set of partitionings that are guar-
anteed to be correctly distributed by the system and to perform optimizations in the distribution middle-
ware. Preliminary work in these directions is being conducted at the time of writing this proposal.

1. Introduction

Programming distributed applications used to be a task reserved for high-performance computing and
large, geographically separated systems, always designed from scratch with distribution in mind. With the
widespread use of the Internet, distribution over the network became an issue for a large number of appli-
cations that before would operate on a single location. Distributing such applications leaves the functional-
ity they offer to the user virtually unchanged. Physical constraints are the reason dictating the distribution.

For instance, an application should continue to work the same, but now its user is geographically separated
from the data storage facility or the main computing engine. The dppéet modeis a good example,

when viewed as an instance of distributed computation. An applet is a piece of code that originally exists
on a server machine but gets copied on a client machine to be executed on a user's Web browser. Typically,
the applet is executed on the client machine not because this machine is faster than the server that the
applet came from, but because the applet needs to use a local resource—the graphical screen of the user
machine. Since the graphics have to reach the user screen and the code is initially on the server machine,
distribution is inevitable. The main issue is how the distribution should take place. In the case of applets,
the answer is hard-coded and it is the same for each applet: the code is downloaded and executed on the
user side. Nevertheless, one can imagine many other solutions that are customizable for individual pro-
grams. Perhaps, the functionality should be split, with the core part executed on the server, while the user
interface is executed on the client. Communication between the two parts could be performed with stan-
dard distributed computing techniques (e.g., CORBA [14], or Java RMI [20] middleware). Perhaps, objects
should migrate on demand, or according to an application-specific pattern.

Such circumstances gave rise to application partitionpglication partitioningis the task of breaking up

the functionality of an application into distinct entities that can operate independently, usually in a distrib-
uted setting. Application partitioning is advocated strongly in computing magazines (e.g., [11]) as a way to
use resources more efficiently. Traditional partitioning entails re-coding the application functionality to use
a middleware mechanism for communication between the different entities. This is a significant undertak-
ing, often prohibitively so. In this proposal, we promote the idea of partitioning existing centraippti-

cations without manually changing the application source code. Instead, a higher level tool allows the user
to express how the application is to be partitioned. The tool can then rewrite the existing application code
to replace local data exchange (e.g., function calls, data sharing through pointers) with remote communica-
tion (e.g., remote function calls, remote pointers or mobile objects). rchﬂprogramminE] approach to
application partitioning has significant simplicity advantages and can revolutionize the way applications
are partitioned.

In the spectrum of technologies aimed at facilitating distributed computing, no-programming partitioning

is among the most ambitious, because it imposes modest requirements. To elaborate this somewhat para-
doxical statement, no-programming patrtitioning is an ambitious approach on the technical front, but very
modest on the deployment front. The distinct element of the approach is that only the application
changes—ro changes are required to the runtime environment where the applications are to be executed
This distinguishes no-programming partitioning from distributed shared memory systems (e.g., CJVM [1],
Java/DSM [25]). The deployment advantages include full portability and compatibility under third-party
changes to the runtime system. Typical technical advantages include the compactness of the resulting dis-
tributed system and the transparency of the partitioning to other elements of the system (e.g., collaborating
applications running on the same runtime system). No-programming partitioning aspires to be successful
in distributing a large class of applications semi-automatically, while maintaining correctness and good
performance. This is a challenging task but the deployment advantages guarantee that the impact of the
approach depends only on the technical success of the rewriting process—not on the extent of adoption of
new infrastructure.

1. We will use the term “centralized” for applications designed to run on a single machine. Note that the distinction
betweercentralizedanddistributedis orthogonal to the distinction betwessguentiabndconcurrent Both cen-
tralized and distributed applications can be either sequential or concurrent. More specifically, the no-programming
partitioning approach has nothing to do with concurrency discovery (e.g., work on automatic parallelization).

2. As explained later, “no-programming” is a slight misnomer. If application developers want to add non-default fail-
ure handling to their distributed applications, they need to add code to automatically generated skeleton modules.
Even in this case, the original application code does not need to be altered (e.g., it can well be in binary format)
and the error handling is no more complex than in the case of traditional application partitioning.

Of course, it is utopian to expect thall applications can be distributed without code modifications and
attain acceptable performance. Nevertheless, there are good reasons to hope that the class of applications
for which no-programming partitioning can yield efficient solutions is large and only getting larger. Some

of these reasons are:

* When distribution is dictated by physical constraints (as on the Internet and in embedded systems
environments) communication patterns tend to be very simple. Consider again the example of
applets, or the symmetric caseJafva servletssurely if the problem admits a solution that executes
the entire code exclusively on the server (servlet) or exclusively on the client (applet), the communi-
cation requirements cannot be too great. It should be easy for an automatic system to perform strictly
better partitioning than an inflexible solution like applets or servlets.

* The breakdown of applications in objects seems to offer a good granularity for making distribution
decisions and applying them to binary code. Non-object-oriented applications offer abstraction
boundaries only at the level of procedures or modules. The former seem too fine-grained for distribu-
tion decisions, while the latter are too coarse-grained. Binary executables in an architecture-specific
format (e.g., x86 machine language) would be hard to process automatically. In contrast, the object-
oriented coding style, in combination with more abstract execution environments (e.g., the Java VM,
or the Microsoft CLR) offer both an appropriate partitioning granularity and significant ease of
binary manipulation. Therefore, the current increasing trend of writing applications in object-ori-
ented languages with abstract runtime systems (like Java or C#) favors no-programming partitioning.

* Good techniques for placement, replication, and mobility have been developed and appear in the dis-
tributed systems literature. These include placement and data consistency technigues from Distrib-
uted Shared Memory systems (e.g., Orca [2]), object mobility techniques (e.g., from the Emerald
system [3]), etc. Additionally, with a judicious combination of static analysis and execution profiling,
distribution decisions can be more educated than in past systems.

2. Technical Issues and Design Choices

No-programming application partitioning faces some serious challenges. The two main issues are those of
the completenessf the translation process and tperformanceof the partitioned application in a distrib-

uted environment. These are the axes along which we will examine existing systems, as well as the pro-
posed approach. For concreteness, we will contrast the proposed approach to the three most closely related
prior art systems—Addistant [21], Pangaea [17][19], and Coign [9]. Other, less closely related, work (e.g.,
distributed shared memory systems and manual partitioning infrastructure) will be discussed in Section 3.

The past three years have seen a number of efforts to automatically partition Java programs [17][21] and
COM applications [9]. These prior approaches are limited in scope and have not demonstrated success in
partitioning third-party, pre-written applications. The Coign automatic partitioning system [9] has made
some inroads in this direction, but the applications partitioned successfully (e.g., the Octarine word proces-
sor) were written explicitly to demonstrate a modular style of programming using COM components. No
other real-world COM applications are written with such extreme care to ensure binary modularity.

The goal of this proposal is to advance no-programming application partitioning to “industrial strength”
levels. The platform of experimentation is Java and we propose to perform the partitioning through Java
bytecode rewriting. Thus, no source code access to the original application is required. Other main ele-
ments of the proposed approach include: a test-case profiling phase for the application that will supply
information to guide partitioning, placement, and mobility decisions; a powerful rewriting engine allowing
correct partitioning of more applications than prior approaches; generating source code skeletons where
failure handling code can be added by the user; the ability of objects to move, whenever possible; static
analysis to enlarge the set of partitionings that are guaranteed to be correct and to perform optimizations; a

graphical interface that will present the results of partitioning and static analysis to the user and will allow
the user to make distribution decisions; heuristic algorithms for partitioning (data placement) based on data
exchange information.

Our group at Georgia Tech already conducts preliminary work in the proposed direction. The name of our
system isJava-Orchestraor J-Orchestra for short3

Next, we will argue that the J-Orchestra design decisions are sound and represent the most promising ave-
nue to an industrial-strength no-programming partitioning system. A few of the aspects we will discuss
have already been implemented, but most either have not or are at an immature stage. The research plan in
Section 4 will list specifically what the proposed future work is—the current section is concerned with the
overall approach.

Java Bytecodes as a Program Representatiohhe Java programming language [8] is the dominant lan-
guage for Internet development and one of the most dominant programming languages overall. The enor-
mous number of Java developers (conservatively estimated at 500,000 professional developers in 2000, to
grow to over 2 million by 2005, not including students and hobbyists [7]) and the accumulated Java exper-
tise guarantee the potential for significant impact. Additionally, Java is among the purest object-oriented
languages. This ensures that “legacy” applications (i.e., applications written with no distribution in mind)
are fairly modular. Class boundaries offer convenient lines along which the partitioning can take place.
Objects offer a conveniently fine granularity for code and data mobility. Furthermore, Java programs are
executed in an abstract execution environment—the Java Virtual Machine (JVM). This enables ease of
binary manipulation of the application code, as well as the ability to manipulate the runtime environment
(e.g., to transform code at load time, to enable dynamic profiling, etc.).

Among the three most closely related approaches to the one proposed, two—the Pangaea [17] and Addis-
tant [21] systems—are Java based. Pangaea operates at the source code level, while Addistant, like the pro-
posed approach, operates at the bytecode level. Operating at the bytecode level is essential for generality,
because no access to the source code for the original application is needed, and because Java system
classes also need to be manipulated (although not modified). The Coign system [9] operates on COM com-
ponents. One disadvantage in this case is that no real-world applications are written as collections of many
small COM components. The applications that constitute success cases for Coign (mainly the Octarine
word processor) were written specifically to showcase that COM is a viable platform for developing appli-
cations from many small components. A second disadvantage is that COM applications (in platform-spe-
cific binary format) are hard to rewrite, which is necessary in order to change the way that remote data are
accessed. This will be further discussed when examining the rewriting engine design choices.

Using Test-Case Profiling Data for Partitioning DecisionsTlest-case profiling consists of examining the
behavior of an application under some sample input. The observations made during the test run are then
used to guide decisions that will affect application performance during actual use. Test-case profiling is
ideal for no-programming application partitioning because it is hard to perform low-overhead online mon-
itoring of application behavior without changing the execution environment. Recall that keeping an
unmodified execution environment is one of the main goals of application partitioning, for portability and
ease of adoption reasons. Of course, the main assumption of test-case profiling is that the test-case is repre-
sentative of general application behavior. For initial partitioning of application classes (i.e., deciding which
classes are strongly coupled with which others), this is likely to be the case. For more complex infer-

3. The motivation behind the name “J-Orchestra” is dual. First, it suggests the kind of orchestration of object mobil-
ity that the system aspires to perform. Second, there is a strong analogy between application partitioning and the
way orchestral pieces are commonly composed: first a piano score is completed. Then an “orchestration” process
takes place that determines which instrument should play which notes of the completed piano score. The analogy
extends far. For instance, there are many examples of orchestrating piano music that was never intended by its
composer for orchestral performance.

ences—like deciding when to move an object from a site to another—profiling has to be very sophisticated
to be adequate. This is one of the most open-ended directions we propose to explore.

Of the three prior art systems discussed, only Coign uses test-case profiling to guide partitioning decisions.

A General, Efficient Rewriting Engine that Allows Object Mobility. The most important part of a no-
programming partitioning approach is the rewriting it performs. The issues involved range from engineer-
ing considerations to deep research problems. First, we will present the necessary background and a criti-
cal view of prior art—the issues discussed here are generally overlooked in the literature and past no-
programming partitioning systems have not documented exactly the limitations of their approaches.
Although the discussion is often Java-specific, the techniques described are fairly general.

To begin, let us distinguish between different kinds of classes that form a Java application. The first kind is
application classesThese are part of the original application to be partitioned. As such, they can freely be
modified (e.g., to refer to other objects through proxies). Next thersyamtem classesthe classes form-

ing the Java runtime libraries, which are universally available. For brevity, we will occasionally call
instances of system class®stem objectdlany system classes are implemented usiatijve code—i.e.,

their functionality is encoded in a platform-dependent binary file, either the JVM executable itself or a
dynamically linked library. There is a distinction between system classes that invoke native methods and
ones that do not. The latter may be treated as application classes under some (strict) conditions.

Completeness the main problem of no-programming application partitioning. Without modifying the
runtime system, it is hard to guarantee correct executiomlfaapplications partitioned alongny user-

defined boundary. The problem stems from the fact that most mainstream programming languages allow
data sharing through references (i.e., pointers). Sharing through references is valid on a single address
space. When clients are distributed over a network, however, there is no way to directly access remote data.
For application code, this may be fine, as long as code modification is possible: application code can be
rewritten to always access data through indirect references. If, however, references ever leak to unmodified
code that is unaware of the distribution (e.g., native code in the Java VM, system libraries for a platform-
specific executable) disaster will ensue: the code will try to access the data directly, even if the data are
remote. Even if care is taken to only pass direct references to unmodified code, there is no guarantee of
correctness: the unmodified code may alias the data, so that replicating or moving them will violate the
original application semantics. In general, if an arbitrary subset of the code is unmodifiable, it is an unde-
cidable problem whether a given partition of the application will respect the original semantics. The reason
is that the aliasing behavior of the unmodifiable code depends on run-time information. The aliasing
behavior, in turn, determines whether a piece of data can be safely moved to a remote site.

Performancas the other major issue in no-programming application partitioning. There are certainly some
applications for which performance is secondary. Nevertheless, the ultimate success of no-programming
partitioning depends on the efficiency of the partitioned application. It is tempting to view the problem as
one of data locality and apply standard techniques (e.g., from distributed shared memory systems). Most of
these techniques have to do with data replication and data mobility. A wealth of past research experience
has shown that replication and mobility are essential tools for good performance in distributed applica-
tions. Nevertheless, in this case, correctness is the enemy of performance. For instance, it is not necessarily
the case that a set of data (e.g., a vector) can be moved to a different host or can be replicated. Clients of the
vector may be unmodifiable, thus needing to access the vector data directly (which is not possible if the
vector is remote). Unmodifiable system code may hold an alias to the vector, preventing it from moving, or,
rather, violating the semantics of the application if the vector moves. Similarly, replicating data may be
unsafe, as it may lead to inconsistencies between copies. Traditional mechanisms for keeping copies con-
sistent are not sufficient because there is ho way to intercept access to the data without modifying either the
client or the runtime environment.

The above discussion suggests that good conservative approximations are required to achieve correctness
of the partitioning, but these should not sacrifice performance. The proposed approach consists of just such
a conservative approximation. First, though, let us consider how the issues of completeness and perfor-
mance have been addressed in prior systems. All three of the examined systems impose very severe restric-
tions on the kinds of partitionings allowed and have little, if any, support for data mobility. The limitations

are such as to render these systems fundamentally unscalable:

* the Coign system does not distribute components when they share data through memory pointers.
Such components are deemed non-distributable and are located on the same machine. Practical expe-
rience with Coign [9] showed that this is a severe limitation for the only real-world application
included in Coign’'s example set (the Microsoft PhotoDraw program). Note that the Coign approach
would be impossible in the case of Java: almost all program data are accessed through references in
Java. No support for synchronous data mobility exists in Coign, but the application can be periodi-
cally repartitioned based on its recent behavior.

* the Pangaea system uses the JavaParty [15] infrastructure for application partitioning. Since Java-
Party is designed for manual partitioning and operates at the source code level, Pangaea is also lim-
ited in this respect. Thus, Pangaea cannot be used to make Java system classes (which are supplied in
bytecode format) remotely accessible. This is a very severe limitation as most data exchange in Java
programs happens through system classes (e.g., collection classgaydikél.Vector). If
such classes are not remotely accessible, all their clients need to be located on the same site, making
partitioning almost impossible for realistic applications.

¢ the Addistant system concentrates on functional distribution along library boundaries. The kind of
rewrite employed (i.e., the semantics supported) is picked manually (e.g., the user has to pick a dif-
ferent rewrite for classes that can be freely replicated, a different rewrite if an application class refer-
ences an unmodifiable system class, etc.). There are certainly some arbitrary limitations in the
Addistant approach. (For instandaal system classes cannot be accessed remotely due to the
subclassing-based rewrite technique. All clients of such classes need to be on the same host.) Even
so, however, the set of partitionings supported is much richer than that of Pangaea. The main problem
with the Addistant rewrite, however, is that objects cannot move from site to site. Instead, objects
stay on the site where they were initially allocated but can be accessed remotely. Thus, the only way
to get acceptable performance with Addistant iscbpyingobjects. Nevertheless, allowing copying
semantics is a responsibility left for the user! That is, a user with only bytecode access to the original
application is expected to know whether a class in that application can be safely replicated without
violating the application semantics. This limitation makes Addistant impractical for any but trivial
applications, usually partitioned by the original author. Essentially, Addistant does not solve the
completeness issues, but shifts the burden to the end user. Even under this restriction, the user is lim-
ited to specifying copy semantics for the objects—object mobility is not allowed.

Given the above restrictions, it is easy to see why prior systems have not scaled to industrial level applica-

tions. The rewriting engine proposed here addresses most of the above concerns. First, we will sketch a
conservative (with respect to Java system classes) approach, which is still much more general than all the
above techniques. (This constitutes a new, implemented, but yet unpublished, research result.) Later in this
section, we will discuss how static analysis can be used to enable safe mobility even of some Java system
classes. The discussion is simplified (by abstraction but also omission of special cases—e.g., treatment of
this references) but maintains all the crucial insights.

The J-Orchestra rewriting engine uses the standard technique (e.g., see JavaParty [15]) of changing refer-
ences to objects (which we will cadlirect referencesto point to a proxy object insteadéh(lirect refer-

ence$4 The proxy object hides the details of whether the actual object is local or remote. The invariant
maintained is that clients never get direct references to objects that can potentially be remote—access is

always through a proxy. Application code needs to be rewritten to maintain the invariant: for instance, all
new statements have to be rewritten to create a proxy object and return it, an object has to be prevented
from passing direct references to itself (as the value ofttise expression) to other objects, etc. If other
objects need to refer to data fields of a rewritten object directly, the code needs to be rewritten to invoke
accessor and mutator methods, instead. Such methods are generated automatically for every piece of data
in application classes. (For instance, if the original application code tried to increment a field of a poten-
tially remote object directly, like inol.a field++ , the code will have to change into
ol.set_a field(ol.get_a_field() + 1) . The rewrite will actually occur at the bytecode level.).
Consider now the completeness issues discussed earlier: what if unmodified code (e.g., native methods)
tries to access object fields directly? What if unmodified code aliases the data?

The main observation is that none of these cases applies to instances of application classes (i.e., classes of
the original application to be partitioned, as opposed to Java system classes). Unmodified (system) code
can only access application objects in three ways: through ger@jec() references, through Java
interfaces, or if their classes are derived from system classes. In the third case, the classes are not really
application classes—they represent subtypes of system classes and should be treated just like system
classes. In the first and second cases, no problem exists (after careful rewriting). Direct access to the data is
not allowed, thus the proxy is used. Also, since no object can directly refer to a potentially remote object, if
unmodified code is to alias the application object, it will instead alias its proxy object. For instance, if the
program creates a collection (e.gVector) of instances of application classa vector of objects that are

proxies to instances daf will be created. In this way, instances of application classes can freely move—
their location is entirely transparent to the rest of the system.

Consider now system classes. Objects of system classes will also be accessed through a proxy, when used
in application code. Nevertheless, the problem is that other system classes may need to reference these
objects. For example, system code (or even native code) may create an instance of a system class, keep a
reference (alias) to it, and return that reference as the result of a method invocation. Additionally, system
code is for practical purposes unmodifiable. (In reality, some system code is perfectly modifiable, but not
all system code is—due to native methods. Treating all system code as unmodifiable code yields a cleaner
solution and does not run the danger of possibly violating licensing agreements.) Thus, there are at least
two modes of operating on system objects: using direct references (from inside other unmodifiable system
classes) or using indirect references/proxies (from inside application classes). The issue then becomes how
to translate between direct access to system classes and indirect access. Fortunately, the proxies for system
objects offer the only interface between application and system code. The code of these proxy classes can
take care of the translation so that system classes can refer to system objects directly but application
classes only do so through proxies. In particular, if a direct reference to a system object is about to be
returned to application code, it is first “wrapped” with a proxy object and the proxy object is returned. Sim-
ilarly, if a system class is to be passed into system code from application code, it is first “unwrapped”. (In
fact, a similar transformation takes place for application classes that implement system interfaces.)

The rewrite algorithm sketched above takes care of unmodified code trying to access data directly, but it
does not address the issue of unmodified code possibly aliasing the data. Indeed, system code can keep an
alias to objects (instances of other system classes). If these objects are later moved, the aliases will be
invalid. Therefore, in the strictest case, this rewrite only takes care of the caseaillsyrgtem objects can

only exist on one network site. Nevertheless, Java system classes can be subdivided into libraries, which
have hierarchical dependencies. For instance, the Swing graphics library may access classes from the

4. This point is worth repeating for clarity: we will use the term “direct reference” to indicate a normal Java reference
(i.e., an indirection). This could well be called an “indirect reference” but since Java does not allow any more
“direct” access to objects, we can “hijack” the term without ambiguity. Summarizing the terminology used, “direct
references” offer a single point of indirection, while “indirect references” offer two points of indirection, the sec-
ond one hiding whether the object is local or remote.

java.util package, but not the other way around. Thus, Swing classes can easily (all together) be
assigned to a single host, whjkea.util classes are on a different host. This is the same property that
the Addistant system exploits in order to allocate Swing classes on remote hosts.

Now let us summarize the completeness of the J-Orchestra rewrite algorithm and compare it to past rewrite
algorithms. The proposed rewrite allows correct distributiorafbapplications partitioned aloranyuser-

defined boundary across application classes. That is, the user camypustance ofinyapplication class
onanysite, and the semantics of the original centralized application will be preserved. Additionally, appli-
cation objects can freely move from site to site during application execution, without endangering the cor-
rectness of the application. Therefore, the rewrite algorithm is much more general than all previous no-
programming partitioning approaches. The algorithm’s only limitations have to do with partitionings of
system classes. System objects have to be located on the same site as any other system objects that poten-
tially alias them. As a conservative approximation, all instances of system classes in the same conceptual
“library” (e.g., Swing classegava.util classes, etc.) have to be on the same host, although they can still

be accessed remotely. Even in the case of system classes, the J-Orchestra rewriting algorithm is at least as
complete as any previous one.

Static Analysis for Performance Optimizations.The limitation of the rewriting algorithm sketched

above is that system objects have to be on the same site as other system objects that can potentially alias
them. There is no way to compute exactly what objects will alias other objects. Thus, we have to resort to
conservative approximations, like enforcing that all instances of classes in the same “library” have to be on
the same host. This can be too restrictive, even for realistic examples, as it means that such objects cannot
move. This restriction can be relaxed with careful application of static analysis. For instance, many classes
in the same library never alias instances of each other in a way that will cause problems if the instances
move. Objects of such classes can freely exist on different sites on the network.

Static analysis can also enable a wealth of optimizations. For instance, if the code of a system class only
accesses other system objects by calling methods through an interface, then we are able to avoid the over-
head of translating between indirect references and direct references when passing arguments to methods
of this class. If a certain method is guaranteed to never change some of its arguments, these arguments can
be passed using “by-copy” semantics instead of the “by-reference” semantics that the proposed rewrite
algorithm guarantees in order to emulate Java behavior on a single address space. If a method does change
its arguments, but references to them never escape the body of the method, then we can pass the arguments
using “by-copy-return” semantics, again resulting in a more efficient implementation.

Of the three prior art systems discussed in this section, only Pangaea has attempted to use static analysis to
infer relationships between objects [18]. This work is still at a preliminary stage.

Enabling the User to Add Failure Handling Code.The overall approach of programming distributed
systems as if they were centralized (“papering over the network”) has been occasionally criticized (e.g.,
see the best known “manifesto” on the topic [23]). The main point of criticism has been that distributed
systems fundamentally differ from centralized systems because of the possibility of partial failure, which
needs to be handled differently for each application. Nevertheless, the proposed approach does not suffer
from this problem: although the input of the system is a binary application, the output is both a rewritten
binary and thesource cod®f new front-end classes (skeletons) required to run the application in a distrib-
uted environment. These front-end classes offer a wrapper for the rewritten binary functionality of the orig-
inal application. Application-specific (i.e., non-default) partial-failure handling can be effected by
manually editing the source code of the front-end classes and handling the corresponding Java language
exceptions. Thus, although the proposed work involves hiding (much of) the complexity of distribution, it
allows the user to handle distribution-specific failure exactly like it would be handled through manual par-
titioning. Alternatively viewed, the user can concentrate on the part of the application that really matters
for distributed computing: partial failure handling. This part is the only code that needs to be written by
hand in order to partition an application.

Graphical Front-End for User Interaction and Heuristics for Partitioning. The goal of the proposed
approach is to enable application partitioning at a higher level of abstraction. Therefore, it is natural to
include a graphical front-end to allow the user to specify partitioning parameters. Ideally, such a user inter-
face should present all the results of program analysis so far and allow the user full flexibility in making
further decisions. This presents some challenging user-interface issues. How should static analysis infor-
mation be represented in an approachable form? How can profiling information be represented? How can
the user deal with the complexity of hundreds or thousands of classes and methods? How can the user eas-
ily specify object migration policies (e.g., “when methfad is called, its third argument should move
permanently to the site dbo if it is not already there”)? How can the user override static analysis infor-
mation (e.g., to assert that a method never modifies its arguments, even if this is not apparent to the static
analysis algorithm)?

Although we cannot provide complete answers to these questions, preliminary experience suggests a few
good directions. First, the user should always be in full control of the distribution process, if needed. On
the other hand, heuristics for distribution (e.g., a flow-based static partitioning algorithm) should be readily
available to provide some automatic decision making. In this way, the user can be sure that most of the
“don’t-care” cases are handled in an acceptable way. If a structured language (e.g., XML-based) is used for
externalizing the distribution information, then an editor for the more complex structures (e.g., migration
policies) can be integrated directly in the graphical user interface. In this way, graphical information and
complex structures with no direct graphical representation are integrated smoothly. This is a technique suc-
cessfully employed in development environments like Visual Basic. The advantage over separate editing of
the complex structures is that the hierarchical capabilities of the graphical environment are exploited: the
user can click on a class, choose one of its methods, then edit the migration policy for arguments of the
method. In general, a hierarchical philosophy in the user interface is a good way to deal with complexity.
The user should be able to group classes together to form larger entities that are used as a unit. The system
should then be able to summarize profiling and static analysis information for the entire group.

3. Related Work

The most closely related pieces of work were discussed in detail in the previous section. Here we will dis-
cuss other work that is less directly related to the proposed approach. The spectrum of infrastructure for
distributed computing is huge so presentation will be selective.

Distributed shared memory systefixSMs) like Munin [4], Orca [2], and, in the Java world, CJVM [1],

and Java/DSM [25], can be used to offer transparent distribution, but they are different from no-program-
ming partitioning in that what changes is the runtime environment and not the application. Furthermore,
distributed shared memory systems are typically used in local environments, and are geared towards scal-
able high-performance applications. Thus, unlike the proposed approach, most programs do get modified
to run efficiently on a distributed shared memory system, and little opportunity exists for handling network
failures intelligently at the application level.

Among distributed shared memory systems, the ones most closely resembling the proposed approach are
object-based DSMs, like Orca [2]. The Orca system has a dedicated language and runtime, but also has
similarities to the proposed approach in its treatment of data at the object level, and its use of static analy-
sis. In fact, a no-programming partitioning approach in Java can be viewed as a way to simulate an object-
based DSM using traditional middleware and application rewriting. The rewriting algorithm described in
Section 2 essentially causes an appropriate mobile object environment to be maintained at application run
time, even though the runtime environment remains unchanged.

Mobile object systems, like Emerald [3][10] have similarities with the proposed approach. Some of the
ideas on implementing mobile objects and choosing appropriate semantics for method invocations (syn-
chronous object migration) are identical in the proposed approach and in Emerald.

The Doorastha system [6] represents another piece of work closely related to no-programming partition-
ing. Doorastha allows the user to annotate a centralized program to turn it into a distributed application.
Unfortunately, all the burden is shifted to the user to specify what semantics are valid for a specific class
(e.g., whether objects are mobile, whether they can be passed by-copy, etc.). The Doorastha annotations
are quite expressive in terms of how method arguments, different fields of a class, etc., are manipulated.
Nevertheless, programming in this way is tedious and error-prone: a slight error in an annotation may
cause insidious inconsistency errors.

The need for infrastructure to support application partitioning has been recognized in the systems commu-
nity. Proposals for such infrastructure (most recently, Protium [24]) usually try to address different con-
cerns from those covered in this proposal. High performance is an essential element, with the infrastructure
trying to hide the latency of remote accesses. The no-programming partitioning approach aims at a much
higher degree of automation, but for applications with more modest network performance requirements.

4. Research Plan

The main goal will be to evaluate whether no-programming application partitioning can become an indus-
trial-strength technique, scaling to large third-party applications and providing acceptable performance.
Previously (Section 2) we argued that the proposed approach makes the right general design choices. Thus,
the proposed approach is capable of demonstrating or disproving the potential of no-programming parti-
tioning. Nevertheless, the design choices outlined in Section 2 are general enough that significant space for
exploration exists. This section describes a specific research plan covering this space.

Some preliminary work has already taken place, but only just started yielding fruit. (No publications on
this preliminary work exist.) In particular, at this point, the J-Orchestra system implements the general
rewrite algorithm outlined in Section 2 using Java RMI [20] as the target middleware. The implementation
is currently inefficient—completeness has been the primary goal so far. Now performance becomes a
major consideration. Other aspects of the proposed approach have primitive implementations. There is a
rudimentary profiler, constructed by instrumenting Sun’s Java VM using JVMPI (the JVM Profiler Inter-
face) [22]. The profiler currently only records the total amount of data exchanged during all calls of all
methods of a class. Static analysis is at an early stage with only a preliminary Java implementation of a
published alias analysis algorithm [12]. The static analysis part of the approach is one that needs to reach a
high level of maturity before it can be integrated with the rest of the components. A simple graphical inter-
face allows the user to see a list of classes together with call-graph information (what other classes’ meth-
ods call/are called by methods of the class). Simple profiling information can be input and is represented in
a weighted-graph view of the application classes. An implementation of a greedy static (class-based) parti-
tioning algorithm is available to aid the user in object placement.

Most of the elements of the approach that will enable it to achieve industrial strength are still to be devel-
oped. Our specific research agenda will include exploration along the following axes:

» Powerful profiling the profiler should be the main source of information for object placement and
migration.

» Static analysisis static analysis accurate enough to help? Are more complex algorithms better? Is
static analysis essential? How should static analysis interact with profiling information?

* Supporting Technologyhow important is the underlying middleware for performance? What is a
good middleware infrastructure for no-programming partitioning? What optimizations can be per-
formed at the bytecode level to eliminate the overhead of the rewriting process?

¢ Applications and Evaluatiarwhat applications can be successfully partitioned? Are there important
practical benefits of the approach? What application domains most benefit from no-programming

10

partitioning? Is no-programming partitioning suitable to high-performance applications? How does it
compare to traditional Distributed Shared Memory systems?

These directions are analyzed below in detail:

Powerful Profiling. Test-case profiling is a major element of the proposed approach. The needs of no-pro-
gramming partitioning will likely test the limits of profiling. The profiler should not just be able to report
cumulative information about data exchange, but also to extract a model of the application (e.g., based on
temporal patterns of application behavior). For instance, the profiler could recognize situations that will
enable object migration strategies, such as “whenever metliwdalled, its arguments should migrate to

the site where methoatis executed”. Because of the dual nature of the profiler, it is best to think of it as
two tools: one that will record program actions in great detail, and one that will analyze the actions and
infer strategies from them.

Specifically, we will do the following:

* Build a scalable profiler that records synchronous events in the system (mainly method calls), the
amount of data exchanged, and any other information deemed necessary in the course of the project.
Producing a scalable profiler tool is not trivial and may require modifying a Java VM implementa-
tion. (The modified JVM will only be used for profiling and will never need to be deployed with the
partitioned application.) Our past experience with a profiler based on the JVM Profiling Interface was
not entirely satisfactory: application profiling is slower than normal execution by a factor of almost
1,000. This may be sufficient for infrequent profiling, but it is a problem if multiple profiling runs of
each application are needed.

Build a tool to analyze the information from the test-case execution of an application. Experiment
with different strategies to draw high-level inferences. For each method and each argument to the
method, collect information about the use of arguments. Example questions include:

“Is the client of a method call more tightly coupled to the data passed as arguments than the object on
which the method is called?”

“When a reference is passed as an argument, how deep are the paths from this reference that a
method traverses?”

“Does a method typically change its n-th argument?”

Explore how to extract “representative” information from profiling runs. Profiling can never capture
the full complexity of all application executions, but can we get an acceptable approximation? Prom-
ising approaches include combining inferences from different profiling runs and concentrating on
static elements (e.g., object creation statements) instead of specific objects.

Static Analysis.Properties of the partitioned application can be discovered automatically using static anal-
ysis. The static analysis space is fairly open ended, leaving many possibilities for exploration.

Specifically, we will:

* Implement published alias analysis algorithms as the first step to the required static analysis tasks.
We will also explore a new alias analysis algorithm that we have designed and believe is appropriate
for the domain.

* Implement escape and modifiability analysis algorithms on top of the alias analysis techniques. Test
the difference in accuracy when different alias analysis information is used.

* Perform analysis of Java system classes. A challenge will be to see if safe and useful results can be
extracted without analyzing native code. Some simple results of this kind should be easy to achieve
(e.g., many system classes can be referenced only by very few other classes).

11

* Explore how static analysis results affect the profiling process and vice versa. To see why there is
interaction, recall that part of the interesting information is whether an object can be aliased at a spe-
cific site. The answer to this question depends on what other objects are on the same site. An initial
distribution of objects based on profiling information can make the static analysis less conservative.
Similarly, static analysis information (e.g., the fact that a method does not change its arguments)
affects how much data is transferred during a method invocation, which, in turn, affects the place-
ment and migration decisions made in the profiling phase.

Supporting Technology.The performance of a partitioned application depends on having an efficient
runtime system. In this direction we will:

* Explore what middleware technology is appropriate for no-programming partitioning. Compare dif-
ferent middleware technologies for performance and services offered. Application partitioning tech-
nologies, like JavaParty, have often used optimized middleware to improve performance [13].

* Explore optimizations specific to the rewriting algorithm proposed. Rewriting application classes to
access other objects through indirect references imposes overhead. Several techniques can be used to
limit the overhead to the absolutely necessary cases. Lazy conversion of direct to indirect references
may be possible. Allowing direct field access to local objects seems promising. Efficient treatment of
thethis expression by changing the local variable array may be an option.

Applications and Evaluation. A large part of the proposed work has to do with evaluating the impact of
no-programming partitioning. Although not all applications can be partitioned automatically, it will be
beneficial to have a classification of applications that are amenable to no-programming partitioning.
Clearly this evaluation process is closely coupled with the rest of the exploration. If some class of applica-
tions proves to be hard to partition well, this may motivate adding new capabilities to the back-end, profiler
tools, or static analyzer.

Specifically we will do the following:

¢ Collaborate with colleagues implementing applications for naturally distributed environments. Geor-
gia Tech has patrticularly active research groups designing and implementing applications for embed-
ded systems and alternative computing environments. Applications in these domains operate in a
heterogeneous, distributed environment with functional distribution constraints: cameras may be
connected to one machine, sensors to another, while a database system runs on a central server. Java
is often used to hide the platform specific elements of each environment. (Lately, Java has made great
inroads to the embedded systems domain, in general—tens of millions of Java-enabled cell phones
are in use in Japan [5].) Ease of application development is paramount, as the applications are not
developed by systems experts. Therefore, the proposed approach has a lot of potential in these con-
texts. Lots of small machines (like Java-enabled cell phones) can be running parts of an application
originally intended only for centralized execution, while the rest of the application runs on a central
server, or even on other small machines.

e Experiment with interactive applications to make them receive input or produce output on sites other
than where computation occurs. Example applications include command shells (e.g., the JShell—a
Unix shell look-alike for the Java VM), and Swing applications (where the graphics will be displayed
remotely). The goal is to enable a better partitioning than what would happen if individual key-
strokes, or entire graphics windows were transferred over the network (as, for instance, in the telnet
or X-Windows protocols). In the case of JShell, for example, the parsing of commands can be done
on the client side and only their execution needs to take place on the server side. Eventually the sys-
tem should scale to industrial-strength applications and examples should abound. A Georgia Tech
colleague has already requested a partitioning of the JBits 2.5 FPGA simulator by Xilinx. The goal is
to use this heavy-duty application over a network link without incurring as much overhead as X-Win-
dows.

12

* Experiment with high-performance applications to see how the approach can deal with parallel exe-
cution and contention for resources. Replication is limited to immutable objects in the proposed
approach. Lifting this limitation seems hard without modifying the runtime system and without
incurring a lot of extra overhead on each write operation. Furthermore, pre-written concurrent appli-
cations, designed to execute on a multiprocessor machine, are unlikely to achieve optimal perfor-
mance in a distributed environment without extensive manual rewriting. Nevertheless, it is interesting
to see if some well behaved applications are suitable for no-programming partitioning. It is also inter-
esting to quantify the overhead of the approach relative to traditional Distributed Shared Memory
systems.

» Explore the possibilities for application development with no-programming partitioning in mind.
Although the approach is aimed at pre-written applications, perhaps it can yield great benefits when
used simultaneously with the development of the application. In this way, the application writer will
be shielded from distribution concerns, but all the testing of the application will be done in a distrib-
uted environment. Having distribution in mind when writing the application should reveal several
opportunities for optimization. We will try to specify guidelines for application authors to help make
their applications amenable to no-programming partitioning.

5. Impact of the Proposed Work

Ease of application development has emerged as a primary concern of the Computer Science community.
Nevertheless, facilitating application development is a very hard problem, that has generally defied solu-
tion for many decades. The hope is now that select, domain-specific solutions can be developed, aiding in
the development of particular classes of applications. No-programming partitioning is exactly one such
solution, aiming to facilitate developing a class of distributed applications. As networking becomes ubiqui-
tous and computing enters every field of life, this class of applications will only grow.

No-programming partitioning can reduce drastically the development time and effort required to deploy
applications in a distributed environment. Additionally, no-programming partitioning can improve perfor-
mance over traditional techniques that enable applications to accept remote input or produce remote output
(e.g., X-Windows, Java applets, Java servlets). In some cases, no-programming partitioning may make the
difference that will enable running the application in a distributed environment: traditional techniques may
be too slow or heavyweight, and manual rewriting may be impossible or not cost-effective. For applica-
tions amenable to no-programming partitioning, the tedious details of programming for a distributed envi-
ronment can be completely eliminated. This will enable application developers to concentrate on the more
interesting aspects of distribution (e.g., handling partial failure) and produce higher-quality partitioned
applications.

References Cited

1 Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a
Cluster”, in ProclCPP’99.

2 Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M.
Frans Kaashoek, “Performance Evaluation of the Orca Shared-Object Sysk€@hf, Trans. on
Computer System$6(1):1-40, February 1998.

3 Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Abstract
Types in Emerald”, ifEEE Trans. Softw. Engl3(1):65-76, 1987.

4 John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Munin”,
Proc. 13th ACM Symposium on Operating Systems Principbed52-164, October 1991.

13

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Ben Charny, “Cell phone industry infiltrates JavaOne show”, Special to CNET News.com, June 4, 2001
http://news.cnet.com/news/0-1004-200-6163270.html

Markus Dahm, “Doorastha—a step towards distribution transparehEyZOOO See
http://www.inf.fu-berlin.de/~dahm/doorastha/

M. Driver, “Where Are Java Programmers When You Need Them?”, Gartner Group research note,
4 April, 2000,

http://gartnerll.gartnerweb.com/public/static/hotc/hc00087599.html

James Gosling, Bill Joy, Guy Steele, and Gilad Bradtme, Java Language SpeC|f|cat|on 2nd,Hdhe

Java Series, Addison-Wesley, 2000.

Galen C. Hunt, and Michael L. Scott, “The Cogin Automatic Distributed Partitioning Systeénh”,
Symposium on Operating System Design and Implementation (OSDI2Q87-200, New Orleans,
1999.

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-Grained Mobility in the Emerald
System”, ACM Trans. on Computer Systems, 6(1):109-133, February 1988.

Nelson King, “Partitioning ApplicationsDBMS and Internet Systemmagazine, May 1997. See
http://www.dbmsmag.com/9705d13.html

Donglin Liang and Mary Jean Harrold, “Efficient Points-to Analysis for Whole-Program Analysis”, in
7th ACM Symposium on Foundations of Software Engineggm@99-215, Sept. 1999.

Christian Nester, Michael Phillipsen, and Bernhard Haumacher, “A More Efficient RMI for Java”, in
Proc.ACM Java Grande Conferenci999.

Object Management Group, “The Common Object Request Broker: Architecture and Specification,
rev. 2.2", Technical Report, February 1998.

Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java’,
Concurrency: Practice and Experien&11):1125-1242, 1997.

Robert W. Scheifler, and Jim Gettys, “The X Window SysteACM Transactions on Graphic§(2):
79-109, April 1986.

Andre Spiegel, “Pangaea: An Automatic Distribution Front-End for Java”|BBE Workshop on
High-Level Parallel Programming Models and Supportive Environments (HIPS328) Juan, Puerto
Rico, April 1999.

Andre Spiegel, “Object Graph Analysis”, Technical Report B-99-11, FU Berlin, FB Mathematik und
Informatik, July 1999.

Andre Spiegel, “Automatic Distribution in PangadaBS 2000Berlin, April 2000. See also
http://www.inf.fu-berlin.de/~spiegel/pangaea/

Sun Microsystems, Remote Method Invocation SpeC|f|cat|on,

http://java.sun.com/products/jdk/rmi/ , 1997.

Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translator for
Distributed Execution of ‘Legacy’ Java SoftwareEuropean Conference on Object-Oriented
Programming (ECOOR)Budapest, June 2001.

Deepa Viswanathan, and Sheng Liang, “Java Virtual Machine Profiler Interfé8k!, Systems
Journal 39(1):82-95, 2000.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computing”,
Technical Report, Sun Microsystems Laboratories, SMLI TR-94-29, November 1994.

14

24 Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, Rob Pike, Girija Narlikar,
Sape Mullender, and Eric Grosse, “Protium, and Infrastructure for Partitioned Applicatiinsith
IEEE Workshop on Hot Topics in Operating Systems (HotOS-Wilidy 20—23, 2001, Schoss Elmau
Germany, pp. 41-46, IEEE Computer Society Press, 2001.

25 Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computi@ghcurrency:
Practice and Experien¢c®(11):1213-1224, 1997.

15

	Application Partitioning without Programming (a White-Paper and Future Work Proposal)
	Yannis Smaragdakis and the J-Orchestra Group College of Computing Georgia Tech July 25, 2001
	1.� Introduction
	2.� Technical Issues and Design Choices
	Java Bytecodes as a Program Representation
	Using Test-Case Profiling Data for Partitioning Decisions
	A General, Efficient Rewriting Engine that Allows Object Mobility
	Static Analysis for Performance Optimizations
	Enabling the User to Add Failure Handling Code
	Graphical Front-End for User Interaction and Heuristics for Partitioning

	3.� Related Work
	4.� Research Plan
	Powerful Profiling
	Static Analysis
	Supporting Technology
	Applications and Evaluation

	5.� Impact of the Proposed Work
	References Cited
	1 Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a Clus...
	2 Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M. ...
	3 Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Abst...
	4 John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Munin...
	5 Ben Charny, “Cell phone industry infiltrates JavaOne show”, Special to CNET News.com, June 4, 2...
	6 Markus Dahm, “Doorastha—a step towards distribution transparency”, JIT, 2000. See http://www.in...
	7 M. Driver, “Where Are Java Programmers When You Need Them?”, Gartner Group research note, 4�Apr...
	8 James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language Specification, 2nd Ed....
	9 Galen C. Hunt, and Michael L. Scott, “The Cogin Automatic Distributed Partitioning System”, 3rd...
	10 Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-Grained Mobility in the Emera...
	11 Nelson King, “Partitioning Applications”, DBMS and Internet Systems magazine, May 1997. See ht...
	12 Donglin Liang and Mary Jean Harrold, “Efficient Points-to Analysis for Whole-Program Analysis”...
	13 Christian Nester, Michael Phillipsen, and Bernhard Haumacher, “A More Efficient RMI for Java”,...
	14 Object Management Group, “The Common Object Request Broker: Architecture and Specification, re...
	15 Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java”, Conc...
	16 Robert W. Scheifler, and Jim Gettys, “The X Window System”, ACM Transactions on Graphics, 5(2)...
	17 Andre Spiegel, “Pangaea: An Automatic Distribution Front-End for Java”, 4th IEEE Workshop on H...
	18 Andre Spiegel, “Object Graph Analysis”, Technical Report B-99-11, FU Berlin, FB Mathematik und...
	19 Andre Spiegel, “Automatic Distribution in Pangaea”, CBS 2000, Berlin, April 2000. See also htt...
	20 Sun Microsystems, Remote Method Invocation Specification, http://java.sun.com/products/jdk/rmi...
	21 Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translator fo...
	22 Deepa Viswanathan, and Sheng Liang, “Java Virtual Machine Profiler Interface”, IBM Systems Jou...
	23 Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computing”, Tech...
	24 Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, Rob Pike, Girija Narli...
	25 Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”, Concurrency: Prac...

