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Abstract. One of the main challenges facing ubiquitous computing research and development is the 
difficulty of writing software for complex, heterogeneous distributed applications. In this paper, we 
evaluate automatic application partitioning as an approach to rapid prototyping of ubiquitous 
computing systems. Our approach allows developers to largely ignore distribution issues when 
developing their applications, by providing tools for generating distribution code automatically, under 
user guidance. We claim that automatic partitioning is promising for a large class of ubiquitous 
computing applications and discuss an example ubicomp application re-engineered using our 
approach. 
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The software engineering goal of removing obstacles to human creativity is one of the main challenges in several 
areas of computing. One area in which the need for software engineering support has been clearly identified1 is that 
of ubiquitous computing.2 Proponents of ubiquitous computing envision a future in which computers are cheap and 
plentiful, and can be used together effortlessly. Unfortunately, while hardware continues to become smaller and less 
expensive, the corresponding software tools that would make the vision of ubicomp possible have not matured at the 
same rate. In particular, few languages and tools are available for exploratory programming of distributed interactive 
ubicomp applications. 

One major feature of the ubicomp domain (distinguishing it from, for example, traditional desktop applications) is 
the inherent distributed nature of the software. Ubiquitous computing environments are naturally distributed over 
multiple computers, connected via a wired or wireless network. These computers come in many shapes and sizes, 
from hand-held to wall-sized,2 and applications are typically designed under the assumption that computing 
resources come and go in ever-changing combinations of light- and heavyweight, predefined and ad-hoc groups. 
Thus, developers of ubicomp applications typically have to suffer all the complexities of distributed systems 
programming. 

The engineering difficulties encountered when building ubicomp applications are more pronounced during 
research and prototype development. Ubicomp application prototypes are typically exploratory in nature: the 
structure of the application, the kind of data being shared, and the distribution characteristics of these data will all be 
modified frequently as the application undergoes iterations through the design-build-deploy-evaluate-redesign cycle. 
In order to facilitate rapid application prototyping in this domain, developers need to be able to modify the 
underlying distribution characteristics of the data structures with very little effort. Unfortunately, more often than 
not, the developers of ubiquitous computing applications are not distributed systems experts. As a result, ubicomp 
researchers need simple, automated techniques that support rapid prototyping of applications in such domains. 



In this paper, we report on an evaluation of automatic application partitioning as a technology for developing and 
deploying an important class of ubiquitous computing applications—those that are distributed to best take advantage 
of unique or unusual computing resources. Automatic partitioning is the process of adding distribution capabilities to 
an existing centralized application without needing to rewrite the application’s source code or needing to modify 
existing runtime systems (OSes or virtual machines). An automatic partitioning system allows users to describe the 
location of system resources, and performs a rewrite of the application binaries to introduce appropriate distribution 
mechanisms. This contrasts sharply with traditional distribution middleware, which automates the mechanics of 
distributed communication, but requires the application designer to explicitly encode decisions about the distribution 
structure of the application in the source code itself. 

We believe automatic partitioning has the potential to greatly simplify the development of ubicomp applications: 
no distributed systems programming is required; applications can easily be re-partitioned and re-deployed without 
modifying the source code; and the applications run on standard run-time environments, enabling easy deployment in 
a variety of devices. For example, it has been relatively easy for us to take straightforward centralized Java 
programs, partition them, and deploy them on any device supporting a Java VM, including PDAs and computers of 
many different sizes and architectures. Nevertheless, the approach has some drawbacks that limit its general 
applicability to ubicomp development: there is limited flexibility with respect to the communications/middleware 
mechanisms that the application may use (for instance, it may not be possible for the system to be reconfigured 
dynamically); it is not easy to introduce fault-tolerance, unless the partitioning infrastructure supports it; and the 
communication patterns may be limited by the structure of the application. These problems present exciting research 
challenges which would not have been apparent without attempting to apply this nascent technology to a realistic 
ubicomp application. Overall, we found the value of automatic partitioning to be clear for ubicomp application 
prototyping tasks, but not  yet mature enough for final system development.  

Motivation 
Consider the traditional approaches to evolving a regular, centralized application into a distributed one. The 
programmer typically employs conventional middleware (e.g. CORBA, DCOM, Java RMI) in order to allow 
different program entities to communicate with each other. However, middleware programming has many 
complications. Although traditional middleware mechanisms typically implement a Remote Procedure Call (RPC) 
paradigm, remote procedures do not behave the same as local procedures. For example, whereas a local procedure 
call can accept arguments by-reference (i.e. the client and server share data through a pointer), a remote procedure 
call usually supports by-copy semantics (i.e. the client and server work on two different copies of the data). 
Similarly, the implementation of several familiar actions is radically different—e.g. object construction needs to 
happen through calls to a remote factory; such objects need to be registered with a special service to be remotely 
accessible; synchronization of threads over a network requires extra support not offered directly by middleware; and 
garbage-collected languages (e.g., Java) do not fully support distributed garbage collection. In general, a 
programmer needs to perform a large number of changes to distribute an existing application, and most of these 
changes require thorough knowledge of the application structure. Application evolution may also require major 
changes in distribution implementation: new objects may need to become remotely accessible, some data structures 
may become too large to be copied and may need to be split, etc. 

Automatic Application Partitioning is an approach that makes distribution transparent. Additionally, the approach 
does not require changes to the runtime system. This goal is the fundamental distinction between automatic 
partitioning and Distributed Shared Memory (DSM) systems. The distinction is crucial in the ubicomp domain. 
Supporting exploratory programming of multiple, diverse, distributed devices is very hard when a specialized 
runtime system needs to be deployed together with the application. For instance, it is much easier to deploy an 
application with a standard Java VM (which supports a variety of third-party libraries and can often be found pre-
compiled for handheld devices such as PDAs and cell phones) than with a specialized VM that supports distribution. 
Instead of having specialized runtimes, automatic partitioning only modifies the application binaries, essentially 
imitating many of the changes that a human programmer would have to perform by hand. Several aspects of 
distribution (and especially correctness aspects—e.g. maintaining by-reference semantics over the network, enabling 
correct distributed synchronization for the partitioned application, etc.) can be handled automatically by the 
partitioning tool in use. 



Automatic Partitioning and J-Orchestra 
The main idea of automatic partitioning is quite simple: an automatic tool takes as input a regular program and user-
supplied location information for the program’s data and code. The tool re-writes the program so that the code and 
data are divided into parts that can be run in the desired locations. Any data exchange between parts of the program 
on different locations automatically becomes remote communication. 

This simple idea results in significant complications for realistic programs with data shared through pointers. 
Since centralized programs are written to assume a single, shared address space, the same abstraction must be 
maintained over a network. Data that are shared through pointers in the centralized version must continue to be 
shared in the distributed program. Therefore, many pointers (or “references” in Java) need to be transformed into 
indirect references— i.e. references to a proxy object— that could be pointing either to a local object or to an object 
over the network. Additionally, many other transformations need to take place. To name a few (we use the Java 
language in all our examples): 

• Access to fields of other objects (e.g. obj.field = new_val) should be transformed to method calls 
(e.g. obj.set_field(new_val)). 

• Constructor calls should be transformed to calls of a factory method. 

• References to Java system objects may need to become references to special wrapper objects that are remotely 
accessible (through normal proxies). 

• Synchronization requests need to be transmitted over the network. Thread identity should be preserved over 
remote calls. 

To complicate matters even more, not all references in an application can be transformed into indirect (proxy) 
references. Some references have to remain direct because the code manipulating them cannot be modified. For 
example, a data type representing a disk file can be accessed by code inside the runtime system (in our case, the Java 
VM) as well as application code. The application code holds a reference to the file data type and passes this 
reference to the VM whenever a file-related task needs to be performed. Since the VM code cannot be modified, the 
VM reference to the file data type must remain direct. Furthermore, if files need to be used on two separate 
partitions, there is no guarantee that the partitioned application will behave in the same way as the centralized 
version. Without knowledge of the semantics of the partitioned application, there is no way to tell if file operations in 
the two partitions are distinct. Therefore, much of the complexity of automatic partitioning systems is due to such 
issues of dealing with unmodifiable code.3,4,5 

The J-Orchestra automatic partitioning system that we discuss in this paper is a state-of-the-art partitioning system 
in terms of sophistication and scalability.4,5 J-Orchestra is completely GUI-based, works on Java programs, and 
performs all transformations at the bytecode level. The user of J-Orchestra sees a view of all the classes (both 
application-level classes and Java system classes) involved in an application. The user’s input consists of assigning 
groups of classes to network sites. The system then rewrites the application code to effect the partitioning. J-
Orchestra’s partitioning does not need to modify either the JVM or its runtime (JRE) classes, making deployment 
easy to manage. J-Orchestra is the first system to effectively address the problems of dealing with unmodifiable code 
(references that must remain direct) for industrial-strength applications. The solution consists of an analysis 
algorithm that tries to determine heuristically what references leak to unmodifiable code, and a sophisticated rewrite 
algorithm that injects code transforming indirect references to direct references (and vice-versa) at run-time. The role 
of the analysis algorithm is strictly advisory: the user can override analysis results and guide the J-Orchestra rewrite 
at will. The results of the analysis algorithm are reflected in the GUI as groupings of co-dependent classes.The user 
can override these restrictions and place the classes on different machines. Thus, the user of J-Orchestra manipulates 
the partitioned application at the level of individual classes or groups of classes (where the groupings are computed 
automatically). This yields a high degree of automation. J-Orchestra has been used to partition third-party industrial 
applications without any knowledge of their internals. 

Despite its capabilities, the automatic partitioning approach is not a magic wand that removes all difficulties of 
implementing distributed systems. The main feature (and restriction) of automatic partitioning is that the logic and 



structure of the distributed application remain identical to those of the centralized application. This limits the 
applicability of the approach. For example: 

• Partitioned applications should have very clear communication and locality patterns. Since the application logic 
will remain the same, a large number of remote accesses will be detrimental to performance. 

• Objects shared among partitions should not be used by unmodifiable code (e.g. OS or JVM code). Otherwise, 
the application structure needs to change for partitioning to be possible. 

• The resulting distributed application should primarily have synchronous communication patterns. If good 
performance or reliability requires asynchronous communication, the application structure needs to change. 

These and other limitations make automatic partitioning particularly well suited for what can be roughly described 
as resource-driven distribution. This is the case when the application has distinct parts, each dealing with different 
hardware or software resources that may exist throughout a network. For example, machines scattered around the 
network might each possess unique resources such as a large graphical display screen, high-quality speakers, a digital 
camera, etc. A centralized application, written without any distribution in mind, might want to access such resources 
located on one or more remote machines. As a specific example of resource-driven distribution, a user may decide to 
partition a sound application to be controlled and monitored remotely from the machine where the sound is actually 
produced or processed. 

The Ubicomp Domain and Automatic Partitioning 
Mark Weiser’ s original vision of computers “disappearing” and being integrated “seamlessly into the world” has 
always relied on leveraging a variety of computing form factors and connecting those devices— and the applications 
that run on them— using wired, and wireless, networks.2 Thus, ubicomp systems are naturally distributed because 
they integrate many devices: sensors, displays, storage, etc.This is exactly the resource-driven kind of distribution 
that automatic partitioning excels at. 

In many cases, the different parts of a ubicomp application are loosely coupled. Although network communication 
can be a bottleneck, most successful applications of automatic partitioning4,5 achieve high performance for loosely 
coupled applications by putting the code near the resource it accesses. 

Additionally, ubicomp systems place a high premium on flexibility and configurability. Distribution decisions 
may change multiple times over the lifetime of the system. For example, even if a ubicomp application was originally 
designed to have sound processed on the same machine as some other part of the computation, a later version may 
need to change this assumption. Components should be able to be used together effortlessly and in a variety of 
configurations. Ease of programming by non-experts is paramount in ubicomp systems; hence, the low-effort 
distribution of automatic partitioning is highly desirable. 

We have used the J-Orchestra infrastructure to partition multiple Java applications and deploy them on diverse 
platforms. A common case is that of taking a straightforward centralized Java program, partitioning it, and deploying 
it on many small mobile devices that communicate with a central server or a laptop machine. Examples that we 
commonly use for demonstration purposes include: 

• A demo application where GUI actions cause the production of synthesized speech: speech is produced on a 
central machine while the application GUI is running on a handheld (iPAQ). 

• A smart controller for our PowerPoint presentations: we have written a small Java GUI application that controls 
MS PowerPoint through its COM interface. We partitioned this application into a GUI and a back-end part. We 
run the GUI on a Linux PDA equipped with a wireless card and use it to control PowerPoint running on a 
Windows laptop. We have given multiple presentations using this tool. 



• A remote load monitoring application: machine load statistics are collected and filtered locally with all the 
results forwarded to a handheld (iPAQ) machine over a wireless connection and displayed graphically. The 
original application was written to run on a single Windows machine. 

A Case Study: Kimura 
As a larger case study of applying automatic partitioning to ubiquitous computing systems, we have used automatic 
partitioning in the development of the latest version of the Kimura system6,7— a realistic, complex ubicomp 
application. Kimura is part of a research project that seeks to explore and evaluate the addition of visual peripheral 
displays to human-computer interfaces. It uses large, projected displays as peripheral interfaces to complement an 
existing focal work area (i.e. the area surrounding a traditional desktop computer). It effectively utilizes peripheral 
displays to assist users in managing multiple activities— coherent sets of tasks typically involving the use of multiple 
documents, tools, and communications with others. Background activities are visualized on the peripheral displays as 
montages of images captured in desktop computer activity logs. Additionally, the montages serve as anchors for 
background awareness information collected from a context-aware infrastructure. 

Kimura’ s source code consists of 98 Java application classes and over 4,400 non-comment source statements. 
These application classes use a large number of system and third party classes, including Swing and Java Advanced 
Imaging (JAI) library classes, as well as classes that facilitate two-way communication with an electronic 
whiteboard. 

 
Figure 1. (a) The architecture of the original Kimura system. (left) 

Figure 1. (b) The architecture of the re-engineered Kimura2 system. (right) 

The architecture of the original version of Kimura, shown in Figure 1a, is structured around three distinct 
components. A desktop interface module runs on the user’ s PC, monitoring all window and application activity 
through a native library and providing virtual desktop functionality. A context interpreter module acts as an 
intermediate layer, aggregating the incoming messages from the desktop and the context-aware infrastructure 
(providing email, printer, and location awareness services) and conveying them to the peripheral display module 
(informally, “ the wall” ). The wall is directly connected to several projectors and a SMARTBoard device, and is 
responsible for maintaining two-way communication with the whiteboard and providing up-to-date visualizations of 
the user’ s working contexts as montages projected on the SMARTBoard surface. 

These three components in the original version of Kimura are connected together using TSpaces8, a 
communication package designed to connect distinct distributed components. It is based on the well-known 
tuplespace paradigm, and incorporates database features such as transactions, persistent data, and flexible queries. 
TSpaces employs the publish-subscribe model: when one component adds or deletes a tuple on the TSpaces server, 
an appropriate callback method is called asynchronously in any other component that has registered to receive 
notifications matching that type of tuple. The creators of TSpaces aimed at “ hitting the distributed computing sweet 
spot” 8: the system allows programmers to ignore many of the hard aspects of distributed communication, such as 
naming, state (and persistent storage), and load balancing. The Kimura implementation did not use any of these 



advanced features of TSpaces, but employed it as a convenient way to keep shared state and broadcast global events 
(e.g. activity changes) to all system components. 

Developing Kimura2 
In order to evaluate the applicability of automatic partitioning to the ubicomp domain, we re-engineered Kimura by 
removing the existing distribution code and re-distributing by automatic partitioning. The first step in the re-
engineering process was to separate Kimura’ s main application tasks from its network communication. In this way, 
we could derive a simpler Kimura core, evolve it as necessary and automatically partition it with J-Orchestra. We 
first removed the code that supported distribution with TSpaces, and replaced it with a single shared data structure. 
The result was a single program that runs in one process and opens multiple windows (the “ wall”  and the desktop 
control panel) on a single machine. The TSpaces-related code— functions responsible for connecting to the TSpaces 
server and adding or deleting tuples— was spread over 11 of the 77 source files. While TSpaces dictated an event-
based structure for the application, the centralized version could use direct method calls between components, 
resulting in simpler and cleaner code. Similarly, the interpreter component, which acted as an extra level of 
indirection between the desktop and the wall, was superfluous in the centralized version. We removed it as a distinct 
entity, preserving its functionality in two new modules that act as public interfaces of the desktop and the wall, 
respectively. These two new modules are essentially two singleton classes whose responsibilities are to handle 
incoming and outgoing messages from the other part of the application. Their coding and integration with the rest of 
the system was straightforward. The architecture of Kimura2 can be seen in Figure 1b. As illustrated, there is no 
longer a central server in the new version. Instead, the system components talk to one another directly and 
synchronously. 

The partitioned version of Kimura2 consists of two partitions: one for the desktop and one for the peripheral 
display. The user interaction takes place through the peripheral display, while the desktop machine does the core of 
the processing (e.g. monitoring open applications). The peripheral display can be thought of as a “ monitoring 
console”  for the Kimura working environment.  Altogether, out of the 64 classes automatically rewritten, 42 were 
Swing/AWT classes, and 6 were made Serializable so that they could be passed by-copy across different memory 
spaces, resulting in improved performance. 71 Kimura application, 4 third-party, and 12 JDK classes were excluded 
from the distribution process altogether as we determined (using an automatic heuristic analysis) that they never 
participate in the distributed communication. All in all, including testing, it took the programmers a few days to 
partition Kimura2 with J-Orchestra. 

Benefits 
Automatic partitioning turned out to be quite beneficial in the case of developing Kimura2. The main benefit is in the 
simplicity of the new software architecture, resulting in more understandable and maintainable code, without 
sacrificing any of the original functionality. The architecture of Kimura2 will enable planned additions to the system 
much more easily because the developers can focus on the desired functionality without having to worry about the 
distribution specifics. Furthermore, the new version is easier to deploy: we avoid the need to maintain a running 
TSpaces server. 

To quantify the simplicity benefits of Kimura2, we used a standard tool (JStyle 5 by Codework—
http://www.codework.com/JStyle/product.html) to derive software metrics. The Software Engineering community is 
still divided on the value and meaning of software metrics; thus, the significance of our qualitative findings is subject 
to some degree of individual interpretation. We list below some of the more pronounced differences between the 
original Kimura and Kimura2. The new version exhibited better results under all metrics, including those not 
described in detail here. 

The original application consisted of 4,436 source statements (including declarations, but not counting comments, 
empty statements, empty blocks, closing brackets or method signatures). Out of them, 3,836 (86% of the total) 
remained unchanged in the new version. The TSpaces-related code (486 statements, almost 11% of the total) was 
removed completely, and 134 statements were added. Finally, 114 statements were modified to adapt the application 
to the new communication paradigm. 



The new version exhibits significant differences using the Halstead program difficulty metric,9 Chidamber and 
Kemerer’ s Lack of Cohesion of Methods (LCOM),10 and class fan-out (the number of classes a given class depends 
on). The summative values of these metrics can be seen in Table 1. The new version is significantly less complex 
than the original one. Of course, it is expected that a centralized architecture would be much less complex than a 
distributed one. However, it is interesting to quantify the difference. 

In our evaluation of Kimura2, we also performed extensive measurements to evaluate the performance impact of 
the partitioning infrastructure. Most system operations (montage creation, montage switching, document 
manipulation, etc.) exhibited significant speedup relative to their counterparts in the original version, with only two 
of the measured operations (wall montage switching, document activation) showing a slowdown. We omit our 
performance measurements since they are not essential to our conceptual evaluation of automatic partitioning for 
ubicomp: they are merely the result of orthogonal, low-level concerns, such as the underlying middleware used in the 
case of J-Orchestra relative to TSpaces. 

Limitations and Discussion 
Our experiences of using automatic partitioning to develop ubicomp applications have been quite positive. The 
overwhelming advantages of the approach include the simplicity of coding for a single machine without the need for 
distributed programming, and the ease of re-partitioning and re-deployment. Furthermore, the ability to run on 
unmodified run-time systems (i.e., any Java VM) is invaluable when using a multitude of heterogeneous devices. 
Nevertheless, we have also identified several shortcomings of automatic partitioning in the context of ubicomp. 
Although some of them arguably result from limitations of the current state-of-the-art, we try to distance ourselves 
and to identify the general engineering issues that are difficult to address in an automated way. Note that we 
explicitly distinguish between “ automatic”  approaches, like ours, and “ semi-automatic”  ones. Recall that the J-
Orchestra user works at the class or group-of-classes level of abstraction. Thus, our approach is quite automatic and 
involves no programming, just resource location assignment (e.g., graphics code should run on this machine, the 
main engine should run on that machine, etc.). In contrast, a semi-automatic approach could let the user annotate 
detailed parts of the code and data, e.g., to indicate what data should be replicated and where, how the copies remain 
consistent, where leases are used for fault tolerance, etc. Many of the issues with automatic partitioning can be 
resolved with a semi-automatic approach. 

First, we should point out that automatic partitioning is not a naïve end-user technique. Often automatic 
partitioning requires an understanding of the application’ s internal structure. For instance, J-Orchestra could not have 
partitioned Kimura2 without knowledge of its internals because Kimura2 uses Swing UI classes on what would 
become the wall and the desktop partitions. As discussed earlier, a major difficulty with automatic partitioning is 
dealing with unmodifiable code, such as the native Swing UI libraries in the Java runtime. Since the code handling 
these objects is unmodifiable, we need to be sure that the objects in one partition are not shared in the other; 
otherwise, the Swing code may try to access fields of a remote object directly, resulting in a crash. The heuristic 
analysis that J-Orchestra uses for determining what references can leak to what code conservatively determines that 
Swing classes cannot exist on two different partitions. However, we know that the Swing object partitioning in 

Table 1. Software complexity metrics 

 
original 
version 

new 
version 

% more 
in 

original  
total statements 4436 4084 8.6 

number of classes 98 92 6.5 
number of methods 693 682 1.6 
program difficulty 3305 3124 5.8 
development effort 2611 2235 16.8 

LCOM 2395 2165 10.6 
inter-package fan-out 881 822 7.2 

 



Kimura2 is safe (i.e., that the Swing widgets on the desktop display are distinct from the Swing widgets on the wall 
display). Thus, we can explicitly direct J-Orchestra to produce appropriate code for Swing classes on both partitions. 

Another issue with automatic partitioning in the context of ubicomp is that it does not offer any assistance in the 
problem of highly dynamic interactions between communicating entities. One of the common features of ubicomp 
applications is allowing for resources and services to come and go dynamically as users and devices enter and leave 
the environment. Since automatic partitioning does not change the logic or structure of the original centralized 
application, flexibility and configurability must be designed into the original application before it is partitioned. 
Nevertheless, although dynamic interactions cannot be supported by automatic modification of an unsuspecting 
application, they can be supported semi-automatically. A system offering tool support for ubiquitous computing 
development can let the user annotate the application code to express desired policies for data consistency under 
possible failures. These annotations  form a domain-specific language for specifying properties of dynamic 
distribution. For instance, a certain data field can be annotated to indicate that there will be dynamically many 
instances of it. Another annotation can specify the leases that each client holds and the data that depend on each 
lease. The low-level code will then be generated from the annotations instead of having to be written by hand. 

A similar observation holds regarding concurrency: automatic partitioning does not provide automatic 
parallelization. If the original application is single-threaded, the partitioned application will remain single-threaded: 
separate threads will exist on each machine, but only one of them will be active at any time. Of course, we can 
sometimes duplicate clients in identical configurations (i.e. replicate a partition on multiple devices). Nonetheless, 
every remote method remains single-threaded and multiple incoming remote calls will be queued and serviced in 
order. Fortunately, this is sufficient for many common communication patterns. Furthermore, most interactive Java 
programs make heavy use of threads when accessing resources and handling interactivity, due to the design of the 
Java run-time libraries. When such programs are distributed using automatic partitioning, the concurrency is 
maintained correctly (although remote transitions are more costly). A common scenario, however, is that in which 
threads execute almost entirely within one partition and handle distinct resources (disk files, sound devices, graphical 
interactions, CPU processing, etc.); this model is ideal for automatic partitioning. 

In general, a partitioning system tries to automate many hard distribution tasks. Any automation effort, however, 
hinders complete control for users with advanced requirements. In ubicomp development such requirements may 
include replication for fault-tolerance; high-performance through load-balancing, caching, or asynchronous 
communication; security; persistence; and more. For instance, in an automatically partitioned application, it is not 
easy to use replication for redundancy and switch to a different server once a failure is detected. The conventional 
wisdom in the distributed systems community is that mechanisms for handling distributed failure are extremely 
application-specific and cannot be automated completely. Again, the appropriate solution may be to follow a semi-
automated approach, providing tool support for replication, load-balancing, security, etc. In this way, the 
programmer will be relieved of the low-level complexity, but will still be responsible for annotating parts of the code 
in detail and for the conceptual consistency of the distribution, unlike in a fully automated approach. An example of 
the semi-automated approach is already supported by J-Orchestra: the user can enable complex schemes for object 
mobility (e.g., “ move this object whenever it is reachable from an argument of a remote method” ). Nevertheless, this 
is not a GUI-accessible feature. Instead, the user needs to write Java code that follows conventions of the J-Orchestra 
framework in order to enable such object mobility.  

Because of these observations, we believe that the benefits of fully automatic partitioning for ubicomp are highest 
during prototyping. During prototyping, the benefits of avoiding distributed systems coding while being able to 
experiment with different partitioning schemes outweigh the potential inflexibility of the communication 
mechanisms. In contrast, the applicability of automatic partitioning for creating mature, deployable applications can 
vary substantially. If handling tough distribution issues (e.g. asynchrony, fault-tolerance, or load balancing) is 
essential for an application, the best option continues to be the use of a flexible middleware technology and a 
program design that exerts full control over the application structure. Further work is required to determine the ideal 
balance between automation and power in ubicomp development tools, but we believe that our study illuminates 
interesting aspects in the design spectrum. 
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