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J-Orchestra is a system that enhances centralized Java programs with distribution capabilities.
Operating at the bytecode level, J-Orchestra transforms a centralized Java program (i.e., running
on a single Java Virtual Machine (JVM)) into a distributed one (i.e., running across multiple
JVMs). This transformation effectively separates distribution concerns from the core functionality
of a program. J-Orchestra follows a semi-automatic transformation process. Through a GUI,
the user selects program elements (at class granularity) and assigns them to network locations.

Based on the user’s input, the J-Orchestra backend automatically partitions the program through
compiler-level techniques, without changes to the JVM or to the Java Runtime Environment
(JRE) classes. By means of bytecode engineering and code generation, J-Orchestra substitutes
method calls with remote method calls, direct object references with proxy references, etc. It also
translates Java language features (e.g., static methods and fields, inheritance, inner classes, new
object construction, etc.) for efficient distributed execution.

We detail the main technical issues that J-Orchestra addresses, including its mechanism for
program transformation in the presence of unmodifiable code (e.g., in JRE classes) and the trans-
lation of concurrency and synchronization constructs to work correctly over the network. We
further discuss a case study of transforming a large, commercial, third-party application for ef-
ficient execution in a client server environment and outline the architectural characteristics of
centralized programs that are amenable to automated distribution with J-Orchestra.
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Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Tech-

niques—Object-oriented programming; D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Enhancement; D.1.2 [Programming Techniques]: Automatic Pro-
gramming—Program transformation; D.1.2 [Programming Techniques]: Automatic Program-
ming—Program synthesis

General Terms: Experimentation, Languages

Additional Key Words and Phrases: Separation of concerns, Distributed Computing, Java, Mid-
dleware, RMI, Bytecode engineering

1. INTRODUCTION

Separation of concerns is the holy grail of computing. The term refers to dividing a
computing problem into parts so that different facets are isolated and reasoning can
be performed independently. Separation of concerns has been a guiding principle for
controlling the complexity of software ever since Dijkstra [1982] coined the term in
1974, some thirty five years ago. The question of which concerns can be effectively
and efficiently separated from the core functionality of a computer program has
been a central one for multiple computer science sub-disciplines.

Clear cut answers to this question identify the concerns that either can be ef-
fectively separated or are not amenable to separate treatment. Such cross-cutting
concerns as logging and persistence [Atkinson et al. 1996] lend themselves to nat-
ural separation, whereas efficient parallelism (i.e., an efficient parallel solution for
a sequential algorithm), transactions, and failure handling [Kienzle and Guerraoui
2002] do not.

The question of whether distribution can (or even should) be introduced trans-
parently to an unaware centralized program is still under debate. For example,
Waldo et al.’s well-known “Note on Distributed Computing” [Waldo et al. 1994]
argues that “papering over the network” is ill-advised due to the differences in per-
formance, different calling semantics, and the possibility of partial failure. (Other
reasons such as direct memory access do not apply to the language environments of
Java and C#.) On the other hand, multiple successful, widely deployed distributed
systems (e.g., the NFS distributed file system) owe their success to hiding the
network from unsuspecting applications. At the level of the programming model,
distributed shared memory (DSM) systems [Yu and Cox 1997; Bal et al. 1998; Ari-
dor et al. 1999] aim at hiding the differences between the centralized and distributed
execution models from the programmer.

The J-Orchestra project contributes to this ongoing discussion by examining the
issues of enhancing Java programs with distribution capabilities. The aim of the J-
Orchestra project has been to provide novel software tools for distributed computing
that are more convenient to use from the programmer’s perspective (i.e., closer to
the familiar centralized programming model). At the same time, the J-Orchestra
users remain cognizant of the differences between the centralized and distributed
execution models.

J-Orchestra is a system for automatic application partitioning—the process of
enhancing an existing centralized program with distribution capabilities, without
needing to rewrite its source code or needing to modify existing runtime systems.
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An automatic partitioning system allows users to describe the location of system
resources, and performs a rewrite of the program binaries to introduce appropriate
distribution mechanisms. This technique contrasts sharply with traditional distri-
bution middleware such as Java RMI [Wollrath et al. 1996], which automates the
mechanics of distributed communication, but requires the application designer to
explicitly encode decisions about the distribution structure of the application in the
source code itself.

Automatic application partitioning is a refinement of the Distributed Shared
Memory approach with one important element: Automatic partitioning aims to
add distributed execution capabilities by transforming the program, and not by
using a specialized runtime system. That is, automatic partitioning attempts to
imitate many changes that a human programmer would have to perform by hand,
with the partitioning tool handling the majority of distribution issues automatically.

By making distribution transparent and not requiring changes to the runtime
system, automatic application partitioning provides ease-of-deployment advantages
compared to the distribution technologies that require custom runtimes. It is easier
to deploy an application with a standard Java VM (which supports a variety of third
party libraries and can often be found precompiled for handheld devices such as
PDAs and cell phones) than with a specialized VM that supports distribution.

The general structure of the process is simple: the partitioning tool takes as
input a regular program and user-supplied location information for the program’s
code/data (both represented by program classes) and external resources (e.g., im-
ages, localization resources, etc.); the tool rewrites the program so that the code
and data divide into parts that can run in the desired locations. Any communi-
cation between parts of the program at different locations automatically becomes
remote.

This simple idea produces significant complications for realistic programs with
data shared through pointers. Because centralized programs assume a single, shared
address space, the same abstraction must be maintained over a network. Data
shared through pointers in the centralized version must continue to be shared in
the distributed program. Many pointers, or “references” in Java, must be trans-
formed into indirect references (that is, references to a “proxy” object) that could
point either to local objects or to objects over the network. In addition, other
transformations must take place including:

—replacing direct field accesses to other objects with method calls

—replacing constructor calls with calls to factory methods

—replacing references to objects with references to special remotely-accessible
wrapper objects

—transmitting synchronization requests over the network while maintaining thread
identity over remote calls

To complicate matters further, objects from transformed code may have to in-
terface with code that cannot be modified. For example, a data type representing
a disk file could be accessed by code inside the runtime system as well as by appli-
cation code: The application code has to see the transformed version of the object,
as it may need to access it remotely. The VM code cannot be modified, however,
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and expects the original form of the file object. Not surprisingly, much of the com-
plexity associated with automatic partitioning systems is related to dealing with
unmodifiable code.

J-Orchestra is a state-of-the-art automatic partitioning system. It is GUI-based,
works on Java, and performs all transformations at the bytecode level. The J-
Orchestra user sees a view of all the classes, both application-level classes and Java
system classes involved in an application. The user’s input consists of assigning
groups of classes to network sites. The system then rewrites the application code
to effect the partitioning—the resulting program uses standard middleware (Java
RMI) for communication. J-Orchestra’s partitioning does not need to modify either
the JVM or its runtime classes.

At the technical level, the main contributions of J-Orchestra concern its handling
of unmodifiable code, and of various Java features—notably, thread synchroniza-
tion. These are responsible for the system’s scalability. J-Orchestra has been used
to successfully partition unsuspecting, third-party, binary-only applications of sub-
stantial size. Prior systems offer no similar validation, mainly due to limitations
in handling unmodifiable code. For instance, the Addistant tool [Tatsubori et al.
2001] shifts onto the user the burden of ensuring that objects transformed for dis-
tribution are never accessed by unmodified code inside the VM—a task requiring
full knowledge of program behavior, which is prohibitive for large, third-party pro-
grams.

This article is effectively a retrospective of the entire J-Orchestra project, various
aspects of which were described in previous publications [Tilevich and Smaragdakis
2002b; 2002a; 2004; Liogkas et al. 2004; Tilevich et al. 2005; Tilevich and Smarag-
dakis 2006]. Thus, the article collects and updates our J-Orchestra experiences,
with the benefit of a complete picture. Perhaps the greatest advantage of this hind-
sight is an understanding of which are the important elements of the J-Orchestra
project, which the article attempts to emphasize.

We next describe J-Orchestra, as well as the insights gained from it. Section 2
introduces J-Orchestra via a case study of partitioning a large, centralized, third-
party application for efficient execution in a client server environment. Section 3
describes the main facets of the J-Orchestra translation process. Section 4 details
how J-Orchestra translates various Java language features. Section 5 presents the
J-Orchestra approach to maintaining Java concurrency and monitor style synchro-
nization constructs across the network. Section 6 gives a retrospective summary
of the lessons learned. Section 7 compares J-Orchestra to other research aimed at
facilitating distributed application development, and Section 8 presents concluding
remarks.

2. WHY PARTITION PROGRAMS: THE J-BITS CASE STUDY

Before introducing automatic application partitioning, one must ask what bene-
fits could be gained from introducing distribution to a centralized program. The
foremost reason for distributing a program with J-Orchestra is to take advantage
of remote hardware or software resources (e.g., a processor, a database, a graphi-
cal screen, or a sound card). Several special-purpose technologies do this already:
distributed file systems allow storage on remote disks; Java applets move graphics-
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producing code from a server to a client with the screen on which the graphics will
be displayed; and network printer protocols let users print remotely.

The distribution decisions of these special-purpose distribution technologies, how-
ever, are hard-coded. For example, Java applets require that the entire program
move across the network. The advantage of automatic partitioning is that it pro-
vides greater flexibility. By splitting a program into arbitrarily-shaped partitions,
automatic partitioning can create distributed applications that are optimized for
different networking environments. For instance, if a graphical representation can
be computed from less data than it takes to transfer the entire graphical represen-
tation over the network, such distribution would have an advantage.

With the above observations in mind, we next showcase J-Orchestra through a
case study of partitioning JBits, a large, centralized, third-party application for
efficient execution in a client server environment. JBits is an FPGA graphical
monitor and simulator by Xilinx [Guccione et al. 1999]—a web search shows many
instances of industrial use. The JBits GUI is rich with multiple graphical areas
presenting the state of the real or simulated hardware. The GUI allows connecting
to various hardware boards and simulators and depicting them in graphical form.
It also allows stepping through an execution, offering multiple logical views of a
hardware board, each of which can be zoomed in and out, scrolled, and so forth.

Fig. 1. JBits Usage Scenario.

A typical deployment environment for JBits is a workstation connected to a
hardware board (Figure 1). In other words, the deployment environment utilizes
two main hardware resources: a graphical screen (to render the application GUI)
and a physical connection to an external device (the board).
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A user of JBits may wish to access the application over a network connection—
e.g., over a home DSL link.1 The latency/bandwidth ratio of this network con-
nection is likely to render remote desktop applications (e.g., VNC [Richardson
et al. 1998], X [Scheifler 1987]) inadequate for this task. Because these technologies
transfer the graphical data representing a computer screen over the network, the
amount of data transferred for a complex GUI can be significant, resulting in higher
latency and poor user experience. In contrast, automatic partitioning can split a
program so that the graphics rendering code is entirely on the client machine. This
way, only the simulation data could be transferred over the network, with most
graphical operations requiring no network traffic.

JBits was given to us in bytecode-only form. The installed distribution (with
only Java binary code counted) consists of 1,920 application classes that have a
combined size of 7,577 KBytes. These application classes also use a large part of
the Java system libraries. We have no understanding of the internals of JBits, and
only limited understanding of its user-level functionality. For our partitioning, the
vast majority (about 1,800) of the application’s classes are placed on the server. As
we will see in Section 3, objects of permanently co-located classes access each other
directly and impose no overhead on the application’s execution. This is particularly
important in this case, as the main functionality of JBits is the simulation, which
is compute-intensive. 259 classes are placed on the client (i.e., GUI) site. Of these,
144 are JBits application classes and the rest are classes from the Java system’s
graphical packages (AWT and Swing). (We later discuss a variation in which we
make some objects mobile.)

In our measurements, we compare the partitioned application’s behavior to using
a remote X display [Scheifler and Gettys 1986] to remotely control and monitor the
application. Since JBits is an interactive application and we could not modify
what it does, we got measurements of the data transferred and not the time taken
to update the screen (i.e., we measured bandwidth consumption but not latency).
Our experience is that partitioning is an even greater win in terms of perceived
latency: In all cases, the overall responsiveness of the partitioned versions is much
better than using remote X displays. This is hardly surprising, as many GUI
operations require no network transfer. Note that the data transfer numbers do
not depend on the machines or network used. For reference, however, most of our
experimentation was over a “slow” 10 Mbps ethernet link.

The partitioned JBits can be made to perform arbitrarily better than a remote
X-Window display. For instance:

—JBits has multiple views of the simulation results (“State View”, “Power View”,
“Core View”, and “Routing Density View”). Switching between views is a com-
pletely local operation in the J-Orchestra partitioned version: no network trans-
fers are caused. In contrast, the X window system needs to constantly refresh
the graphics on screen. For cycling through all four views, X needed 3.4 MBytes
transferred over the network.

1This scenario is not just realistic, but real. We were introduced to JBits because a computer
architecture researcher (and former colleague) expressed excitement in the J-Orchestra project
from its very early days, because it would allow him to use JBits from home.

ACM Journal Name, Vol. V, No. N, Month 20YY.



J-Orchestra: Enhancing Java Programs with Distribution Capabilities · 7

—JBits has deep drop-down menus (e.g., a 4-level deep menu under
“Board→Connect”). Navigating these drop-down menus is a local operation
for the J-Orchestra partitioned application, but not for remote access with the
X window system. For interactively navigating 4 levels of drop-down menus, X
transferred 1.8 MBytes of data.

—GUI operations like resizing the virtual display, scrolling the simulated board, or
zooming in and out (four of the ten buttons on the JBits main toolbar are for
resizing operations) do not result in network traffic with the partitioned JBits. In
contrast, the remote X display produces heavy network traffic for such operations.
With our example board, one action each of zooming-in completely and zooming-
out results in 3.5 MBytes of data transferred. Scrolling left once and down once
produces about 2 MBytes of data over the network with X, but no network traffic
with the J-Orchestra partitioned version. Continuous scrolling over a 10 Mbps
link is unusably slow with the X window system. Clearly, a slower connection
(e.g., DSL) is not suitable for remote interactive use of JBits with X.

Even for a regular board redraw, in which the partitioned JBits needs to transfer
data over the network, less data get transferred than in the X version. Specifically,
the partitioned version needs to transfer about 1.28 MB of data for a complete
simulation step including a redraw of the view. The X window system transfers
about 1.68 MBytes for the same task. Furthermore, J-Orchestra transfers these
data using five times fewer total TCP segments, suggesting that, for a network in
which latency is the bottleneck, X would be even less efficient. Although there
may be ways (e.g., compression, or a more efficient protocol) to reduce the amount
of data transferred by X, the important point is that some data transfer needs to
take place anyway. In contrast, the partitioned version only needs to transfer a
data object to the remote site, and all GUI operations presenting the same data
can then be performed locally. For the cases that do produce network traffic, the
partitioned version can also have its bandwidth requirements optimized by using a
version of Java RMI with compression.

Experiment: Mobility. One of the capabilities of J-Orchestra is to allow objects to
move from host to host, to exploit locality. Our above analysis did not include any
such mobile objects. Even though many of the JBits objects could be made mobile,
very few of them actually need to move in an interesting way. The one exception is
JBits View Adaptor objects (instances of four classes with the ViewAdaptor suffix).
View adaptors seem to be logical representations of visual components and they
also handle different kinds of user events such as mouse movements. During our
profiling we noticed that such objects are used both on the server and the client
partition and in fact can be seen as carriers of data between the two partitions.
Thus, no static placement of all view adaptor objects is optimal—the objects need
to move to exploit locality. We specified a mobility policy that originally creates
view adaptors on the client site, moves them to the server site when they need to be
updated, and then moves them back to the client site. Surprisingly, object mobility
results in more data transferred over the network. With mobile view adaptor objects
and an otherwise indistinguishable partitioning, J-Orchestra transferred more than
2.59 MBytes per simulation step (as opposed to 1.28 MBytes without a mobility
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policy). The reason is that the mobile objects are quite large (in the order of 300-
400 KBytes) but only a small part of their data are read/written. In terms of bytes
transferred it would make sense to leave these objects on one site and send them
their method parameters remotely. Nevertheless, mobility results in a decrease in
the total number of remote calls: 386 remote calls take place instead of 484 for
a static partitioning, in order to start JBits, load a file and perform 5 simulation
steps. Thus, the partitioned version of JBits with mobile objects may perform
better for high bandwidth networks, in which latency is the bottleneck.

Discussion. Automatic partitioning is not free of limitations. Applications can
be arbitrarily complex and can defy correct partitioning. More common in practice,
however, is the case of applications that can be correctly partitioned (i.e., they do
not employ unsupported Java features such as dynamic loading) yet require manual
intervention to override conservative decisions of the J-Orchestra heuristic analyses.
Partitioning JBits required some intervention (but no explicit programming) to
arrive at a good partitioning within 1-2 days. For example, knowing only the
JBits execution from the user perspective, we speculated that the integer arrays
transferred from the server towards the GUI part of JBits could safely be copied to
the client rather than accessed through a remote proxy. These arrays turned out to
never be modified at the GUI part of the application. A more conservative rewrite
would have introduced a substantial overhead to all array operations. Even in the
less automatic cases, however, the expertise required to partition an application
is analogous to that of a system administrator, rather than that of a distributed
systems programmer. In the JBits case, we partitioned a 7.5 MB binary application
without knowledge of its internals. Even though the partitioning was not automatic,
the effort expended was certainly much less than that of a developer who would
need to change an application with about 2,000 classes, more than 200 of which
need to be modified to be accessed remotely.

Additional Partitioning Examples. We have used J-Orchestra to partition multi-
ple Java programs and deploy them on diverse platforms. A common case is that of
taking a straightforward centralized Java program, partitioning it, and deploying
it on a mobile device that communicates with a central server or a laptop machine.
One example is an application in which GUI actions on a PDA produce synthesized
speech on a server machine. Another example is a smart controller for PowerPoint
presentations. We started with a small Java application that controls PowerPoint
through its COM interface. J-Orchestra was able to partition this application into
a GUI and a back-end part, so that the GUI runs on a Linux PDA equipped with
a wireless card and uses it to control PowerPoint running on a Windows laptop.

3. TRANSLATION PROCESS

Having outlined the user argument for our approach, we now describe the main
design and implementation decisions in the J-Orchestra translation process.

3.1 The General Problem and Approach

In abstract terms, the problem that J-Orchestra solves is emulating a shared mem-
ory abstraction for unaware applications without changing the runtime system. The
following two observations distinguish this problem from that of related research
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work. First, the requirement of not changing the runtime system while supporting
unaware applications sets J-Orchestra apart from traditional Distributed Shared
Memory (DSM) systems. (The related work section offers a more complete com-
parison.) Second, the implicit assumption is that of a pointer-based language. It is
conceptually trivial to support a shared memory abstraction in a language environ-
ment in which no sharing of data through pointers (aliases) is possible. Although
it may seem obvious that realistic systems will be based on data sharing through
pointers,2 the lack of data sharing has been a fundamental assumption for some
past work in partitioning systems—e.g., the Coign approach [Hunt and Scott 1999].

It is worth asking why mature partitioning systems have not been implemented in
the past. For example, why no existing technology can partition a platform-specific
binary (e.g., an x86 executable) to have different parts of the code run on different
machines? We argue that the problem can be addressed much better in the context
of a high-level, object-oriented runtime system, like the JVM or the CLR, than in
the case of a platform-specific binary and runtime. The following three concrete
problems need to be overcome before partitioning is possible:

(1) The granularity of partitioning has to be coarse enough: the user needs to
have a good vocabulary for specifying different partitions. High-level, object-
oriented runtime systems, like the Java VM, help in this respect because they
allow the user to specify the partitioning at the level of objects or classes, as
opposed to memory words.

(2) It is necessary to establish a mechanism that adds an indirection to every
pointer access. This involves some engineering complexity, especially under the
requirement that the runtime system remain unmodified.

(3) The indirection has to be maintained even in the presence of unmodifiable
code. Unmodifiable code is usually code in the application’s runtime system.
For example, in the case of a stand-alone executable running on an unmodified
operating system, the program may create entities of type “file” and pass them
to the operating system. If these files are remote, a runtime error will occur
when they are passed to the unsuspecting OS. This problem, in different forms,
has plagued not just past partitioning systems but also traditional Distributed
Shared Memory systems. Even page-based DSMs often see their execution fail
because protected pages get passed to code (e.g., an OS system call expecting a
buffer) that is unaware of the mechanism used to hide remoteness. Addressing
the problem of adding indirection in the presence of unmodifiable code is a
novel contribution of J-Orchestra.

We now look at the problem in more detail, in order to see the complications
of adding indirection to all pointer references. The standard approach to such
indirection is to convert all direct references to indirect references by adding proxies
[Shapiro 1986]. This creates an abstraction of shared memory in which proxies hide
the location of objects—the actual object may be on a different network site than
the proxy used to access it. This abstraction is necessary for correct execution of

2The pointers may be hidden from the end user (e.g., data sharing may only take place inside a
Haskell monad). The problems identified and addressed by J-Orchestra remain the same regardless
of whether the end programmer is aware of the data sharing or not.
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the program across different machines because of aliasing: the same data may be
accessible through different names (e.g., two different pointers) on different network
sites. Changes introduced through one name/pointer should be visible to the other,
as if on a single machine. Figure 2 shows schematically the effects of the indirect
referencing approach. This indirect referencing approach has been used in several
prior systems [Philippsen and Zenger 1997; Spiegel 2002; Tatsubori et al. 2001].

Run-time view of original application

Run-time view of application with indirect references

object o

object qobject p

object o

object qobject p

proxy of p

proxy of q

object r

object r

Fig. 2. Results of the indirect reference approach schematically. Proxy objects
could point to their targets either locally or over the network.

Since one of the requirements is to leave the runtime system unchanged, J-
Orchestra cannot change the JVM’s pointer/reference abstraction. Instead, it
rewrites the entire partitioned application to introduce proxies for every reference
in the application.3 Thus, when the original application would create a new ob-
ject, the partitioned application will also create a proxy and return it; whenever
an object in the original application would access another object’s fields, the corre-
sponding object in the partitioned application would have to call a method in the
proxy to get/set the field data; whenever a method would be called on an object,
the same method now needs to be called on the object’s proxy; etc.

The difficulty of this rewrite approach is that it requires a global rewrite for
correctness, yet some code cannot be modified, as it is part of the runtime system. In
our context (the Java VM), such code is encapsulated by system classes that control
various system resources through native code. Java VM code can, for instance,
have a reference to a thread, window, file, etc., object created by the application.
However, not being able to modify the runtime system code, one can not make it
aware of the indirection. For instance, one cannot change the code that performs
a file operation to make it access the file object correctly for both local and remote

3More precisely, it is acceptable to think that every reference in the transformed application
becomes a proxy reference when discussing correctness/semantics. This is not accurate in practice,
as it would introduce significant overhead. Only a small number of references end up being through
proxies, but this optimization can be ignored at first approximation.

ACM Journal Name, Vol. V, No. N, Month 20YY.



J-Orchestra: Enhancing Java Programs with Distribution Capabilities · 11

files: the file operation code is part of the Java VM (i.e., in machine-specific binary
code). If a proxy is passed instead of the expected object to runtime system code
that is unaware of the distribution, a run-time error will occur. (For simplicity,
we assume that only system classes contain native code—i.e., the application code
itself is “pure Java”.)

J-Orchestra effectively solves many of the problems of dealing with unmodifiable
code by partitioning around unmodifiable code (i.e., by computing which data are
not affected by unmodifiable code and enabling full partitioning for them, while
allowing only remote access for data that are manipulated by unmodifiable code).
Additionally, objects can refer to system objects through an indirection from ev-
erywhere on the network. If they need to ever pass such references to code that
expects direct access, a direct reference will be produced at run-time. We discuss
this and other specifics of the J-Orchestra program transformations next.

3.2 Before Rewriting: Classification

J-Orchestra classifies classes into two categories, with each class’s category de-
termining the set of transformations it goes through during rewriting. The user
interaction with J-Orchestra is through a graphical interface. Once the user im-
ports application classes, J-Orchestra determines the full set of system classes they
access, and runs a preliminary classification algorithm, based on the use of native
code. The user can override any classification decisions. The result of classification
is to split classes into two groups: anchored and mobile.

—Anchored classes (after preliminary classification) either contain native code
or can have their instances accessed inside native code. Intuitively, anchored
classes control specific hardware resources and make sense within the context
of a single JVM. Their instances must run on the JVM that is installed on the
machine that has the physical resources controlled by the classes. J-Orchestra
clusters anchored classes into groups for safety. Classes within the same anchored
group reference each other directly (i.e., the same native code has access to
objects of both classes) and as such must be co-located during the execution
of the partitioned application. If classes from the same group are placed on
the same machine, the partitioned application will never try to access a remote
object as if it were local, which would cause a fatal run-time error. For instance,
all classes accessing a single hardware resource (such as GUI classes, or classes
using the Java Speech API) will likely be clustered in the same group. In this
way, the preliminary classification guarantees safety (under heuristic assumptions
described in Section 4). The user can override the preliminary classification and
break up an anchored group, if this is safe.
While classes within the same anchored group cannot be separated, different
anchored groups can be placed on different network sites.

—Mobile classes do not reference system resources directly and as such can be
created on any JVM. Mobile classes do not get clustered into groups, except
as an optimization suggestion. Instances of mobile classes can move to different
JVMs independently during the execution to exploit locality. Supporting mobility
requires adding some extra code to mobile classes at translation time to enable
them to interact with the runtime system. Mobility support mechanisms create
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overhead that can be detrimental for performance if no mobility scenarios are
meaningful for a given application. To eliminate this mobility overhead, a mobile
class can be anchored by choice, overriding the system’s preliminary classification.

Once the classification is finalized, the J-Orchestra GUI allows the user to assign
network sites to anchored class groups, or individual mobile classes. For an anchored
class group, this assigns the group’s final location. For a mobile class, it merely
assigns its initial creation location. Later, an instance of a mobile object can move
as described by a given mobility policy. In the end, J-Orchestra rewrites the original
application and puts all the modified classes, generated supporting classes, and J-
Orchestra run-time configuration files into jar files, one per destination network
site. At run-time, the application is deployed with a small (pure Java) J-Orchestra
runtime library, which handles remote object creation, object mobility, and various
bookkeeping tasks.

3.3 Rewriting Engine

The term “rewriting engine” is a slight misnomer due to the fact that applying
binary changes to existing classes is not the only piece of functionality required to
enable indirect referencing. In addition to bytecode manipulation,4 the rewriting
engine generates several supporting classes and interfaces in source code form. Sub-
sequently, all the generated classes get compiled into bytecode using a regular Java
compiler. We next describe the main elements of the rewriting approach.

3.3.1 General Approach. The J-Orchestra rewrite first makes sure that all data
exchange among potentially remote objects is done through method calls. That
is, every time an object reference is used to access fields of a different object and
that object is either mobile or in a different anchored group, the corresponding
instructions are replaced with a method invocation that will get/set the required
data. For each mobile class, J-Orchestra generates a proxy that assumes the original
name of the class. For instance, consider an original class A:

class A {

void foo () { ... }

}

A’s proxy will be generated in source code form (slightly simplified) as follows:

class A implements java.io.Externalizable {

//ref can point either to remote implementation class or RMI stub.

A__interface ref;

...

void foo () {

try {

ref.foo ();

} catch (RemoteException e) {

//let the user provide custom failure handling

}

}//foo

}//A

4We use the BCEL library [Dahm 1999] for bytecode engineering.
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That is, a proxy class has the same method interface as the original class and
dynamically delegates to a remote implementation object. Remote implementa-
tion classes extend the RMI class UnicastRemoteObject. This means that they
can be registered as Java RMI remote objects and get passed by-reference over the
network—i.e., when used as arguments to a remote call, RMI remote objects do not
get copied. A remote reference is created instead and can be used to call methods
of the remote object. The implementation classes implement a generated interface
that defines all the methods of the original class and extends java.rmi.Remote.
Remote execution is accomplished by generating an RMI stub for the remote im-
plementation class. For our example class A, its remote interface and its remote
implementation class will have the form:

//Interface for A (generated in source code form)

interface A__interface extends java.rmi.Remote {

void foo () throws RemoteException;

}

//Remote implementation (generated in bytecode form

//by modifying original class A)

class A__remote extends UnicastRemoteObject implements A__interface {

void foo () throws RemoteException {

... // modified body of original A.foo()

}

}

Proxy classes handle several important tasks. One such task is the management of
globally unique identifiers. J-Orchestra maintains an “at most one proxy per site”
invariant via the help of such globally unique identifiers. Each proxy maintains
a unique identifier that it uses to interact with the J-Orchestra runtime system.
All proxies use standard Java RMI facilities to control distributed execution at
appropriate times—e.g., proxies implement java.io.Externalizable to take full
control of their own serialization. This enables the support for object mobility: at
serialization time, proxies can move their implementation objects as specified by a
given mobility scenario. Note that proxy classes are generated in source code, thus
enabling the sophisticated user to supply handling code for remote errors.

Objects of anchored classes, on the other hand, are accessed by other objects on
the same site without any proxy indirection. (Recall that classes become anchored
either by necessity, when the J-Orchestra classification determines that their objects
can be accessed by native code of other classes in the anchored group, or by choice,
when the user is trying to avoid the overhead of proxy indirection for accesses on a
certain site.) Yet anchored classes still require proxies, so that their methods can
be called by other parts of the application (i.e., mobile objects, or remote code).
Such proxies provide similar functionality as for mobile classes, but do not assume
the names of their original classes. An extra level of indirection is added through
special purpose classes called translators. Translators implement remote interfaces
and their purpose is to make anchored classes look like mobile classes as far as the
rest of the J-Orchestra rewrite is concerned, and to avoid the need to modify system-
level anchored classes. (The Java VM places constraints on adding, modifying, or
replacing system packages.) Regular proxies, as well as remote implementation
versions are created for translators, exactly like for mobile classes. Proxy objects
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could point to their targets either locally or over the network. Figure 3 shows
schematically what an object graph looks like during execution of both the original
and the J-Orchestra rewritten code. The two levels of indirection introduced by
J-Orchestra for anchored classes can be seen. Note that proxies may also refer
to their targets indirectly (through RMI stubs) if these targets are on a remote
machine.

mobile object

anchored objectmobile object

Run-time view of original application

mobile object

anchored objectmobile object

Run-time view of J-Orchestra rewritten application

proxy
proxy translator

Fig. 3. Results of the J-Orchestra rewrite schematically, for both mobile and an-
chored objects. Proxy objects could point to their targets either locally or over the
network.

In addition to giving anchored classes a “remote” identity, translators perform
one of the most important functions of the J-Orchestra rewrite: the dynamic trans-
lation of direct references into indirect (through proxy) and vice versa, as these
references get passed between anchored and mobile code. For instance, in Figure 4,
a mobile application object o holds a reference p to an object of (anchored) type
java.awt.Point. Object o can pass reference p as an argument to the method
contains of a java.awt.Component object. The problem is that the reference p

in mobile code is really a reference to a proxy for the java.awt.Point but the
contains method cannot be rewritten (e.g., has a native code implementation).
Thus, the unmodifiable code of method contains expects a direct reference to a
java.awt.Point (for instance, so it can assign it or compare it with a different ref-
erence). In general, the two kinds of references should be implicitly convertible to
each other at run-time, depending on what kind is expected by the code currently
being run.

It is worth noting that other systems with a rewrite strategy similar to that of
J-Orchestra [Philippsen and Zenger 1997; Spiegel 2002; Tatsubori et al. 2001] do
not offer a direct-indirect reference translation mechanism. Thus, in those systems
the partitioned application is correct only if objects passed to unmodifiable (sys-
tem) code are guaranteed to remain on the same site as that code. In contrast,
J-Orchestra ensures the absence of such run-time errors, by combining classifica-
tion information with the dynamic reference translation mechanism: No object is
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anchored object

java.awt.Componentproxy

proxy

anchored object

java.awt.Point

mobile object o

p
direct reference to 

the Point

Fig. 4. Mobile code refers to anchored objects indirectly (through proxies) but
anchored code refers to the same objects directly. Each kind of reference should be
derivable from the other.

accessed directly if it could be remote.
Reference translation takes place when a method is called on an anchored object.

The translator implementation of the method “unwraps” all method parameters
(i.e., converts them from indirect to direct) and “wraps” all results (i.e., converts
them from direct to indirect). Since all data exchange between mobile code and
anchored code happens through method calls (which go through a translator) one
can be certain that references are always of the correct kind. For a code example,
consider invoking (from a mobile object) methods foo and bar in an anchored class
C passing it a parameter of type P. Classes C and P are packaged in packages a and
b, respectively, and are anchored on the same site. The original class C and its
generated translator are shown below (slightly simplified):

//original anchored class C

package a;

class C {

void foo (b.P p) {...}

b.P bar () { return new b.P(); }

}

//translator for class C

package remotecapable.a;

class C__translator extends UnicastRemoteObject implements C__interface {

a.C originalC;

...

void foo (remotecapable.b.P p) throws RemoteException {

originalC.foo ((b.P) Runtime.unwrap(p));

}

remotecapable.b.P bar() throws RemoteException {

return (remotecapable.b.P)Runtime.wrap(originalC.bar());

}

}

Note that the classification algorithm is precisely what ensures that communi-
cation between anchored code and mobile code is only done through method calls
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in translator classes.5 As we will see later, other data exchange would result in
placing the relevant types in the same anchored group.

3.4 Object Mobility Specifics

One of the ways in which the advanced J-Orchestra user can tune partitioned
applications to improve distributed performance is through the use of mobility
policies. Object mobility can significantly affect the performance of a distributed
application. Mobile objects can exploit application locality and eliminate the need
for network communication.

Object mobility enables a per-instance rather than per-class distribution policy:
two objects of the same class can behave entirely differently at run-time based
on their uses (i.e., to which methods they are passed as parameters, etc.). Object
mobility in J-Orchestra is synchronous: objects move in response to method calls. J-
Orchestra supports three object moving scenarios: moving a parameter of a remote
method call to the site of the call, moving the return value of a remote method call
to the site of the caller, and moving “this” object to the site of the call. In terms
of design, our object migration policies are similar to what is commonly described
in the mobile objects literature [Black et al. 2007]. In terms of mechanisms, our
implementation bears many similarities to the one in JavaParty [Philippsen and
Zenger 1997].

Specifically, J-Orchestra supports mobility through a programming interface and
runtime services. J-Orchestra proxies are generated in source code form, which
makes it fairly straightforward to generate additional mobility-specific methods in
mobile classes’ proxies. The programmer can then use these generated methods as
primitives for implementing various mobility scenarios. In addition, each mobile
proxy contains a data member of type MigrationSchema, which specifies how the
object pointed to by the proxy should move. The default value of MigrationSchema
is by-reference, which means that an RMI stub is sent whenever a proxy is passed
as a parameter or returned as a result of a remote method call. Mobile proxies
enable flexible migration policies by implementing their own serialization. Assign-
ing the value by-move to the MigrationSchema of a mobile proxy will have the
object to which it is pointing move to a remote site. For example, the code below
demonstrates how the J-Orchestra mobility API can be used to specify that the
parameter p of the remote method foo be moved to the side of the remote method
invocation.

//proxy method; P is a proxy of a mobile class

public void foo (P p) {

try {

//the object pointed by p will move to the site

//of the method foo, unless p and foo are already collocated.

5This is only true at a first approximation, if we ignore anchoring by choice. Anchoring classes
by choice introduces more complications, as described in [Tilevich 2005, Ch.4.5.2]. The result is
that wrapping/unwrapping code occasionally needs to be added to call sites outside translator
objects—i.e., the caller class itself needs to be modified. Nevertheless, this is just an engineering
issue and the essence of the approach remains. A common case of such wrapping is self-reference,
i.e., access to an object through the “this” reference. An object always refers to itself directly, but
may pass a reference to other code that accesses the object indirectly, thus necessitating wrapping.
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p.getMigrationSchema().setByMove();

//the migration will take place during the serialization of p

// as part of the invocation of foo.

_ref.foo (p);

} catch (RemoteException e) {...}

}

In addition, the J-Orchestra mobility API contains methods that can be used to
move “this” object (i.e., the object pointed to by the mobile proxy) to and from
the site of a remote method invocation.

public void moveToRemoteSite (ObjectFactory remoteFac) {...}

public void moveFromRemoteSite (ObjectFactory remoteFac) {...}

An object that is being moved might contain some embedded proxies to other
objects, transitively reachable from it. This presents some interesting opportunities
for specifying complex mobility scenarios—e.g., “if object P moves, move also ob-
jects Q and R, if they are transitively reachable from it”. The existing J-Orchestra
infrastructure can be easily extended to support such mobility scenarios.

4. HANDLING JAVA LANGUAGE FEATURES

In this section, we describe how J-Orchestra handles various features of the Java
language. Some parts of the translation (e.g., the handling of static methods)
are straightforward and only add engineering complexity. The handling of other
elements (e.g., object identity, unmodifiable code), however, is far from trivial. We
treat concurrency and synchronization separately in Section 5 as it is a complex
and self-contained topic.

Maintaining the local execution semantics exactly is not always possible or effi-
cient. Thus, this section also identifies the few features for which J-Orchestra will
not guarantee, by need or by choice, that the partitioned application will behave
exactly like the original one.

4.1 Classification of Unmodifiable Code

As described in Section 3, before the J-Orchestra rewrite can introduce indirection
to enable a distributed memory abstraction, it must first determine which program
classes can be safely indirected. This is the task of the J-Orchestra classifier, which
categorizes each class as anchored or mobile and determines anchored class groups.
(More precisely, this is the preliminary classification that J-Orchestra performs
automatically, which the user can override for the final classification.)

Conceptually, the preliminary classification process has a simple goal. It needs to
compute for each class A and B an answer to the question: can references to objects
of class A leak to unmodifiable (native) code of class B? If the answer is affirmative,
A cannot be remote to B: otherwise if the unmodifiable code tries to access objects
of class A directly (e.g., to read their fields), without being aware that it accesses
an indirection (i.e., a proxy), a run-time error will occur. This criterion determines
whether A and B both belong to the same anchored group. If no constraint of this
kind makes class A be part of an anchored group, and class A itself does not have
native code, then it can be mobile.
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To obtain the classification information precisely, one would need to analyze the
implementation of native code. It is highly complicated to obtain the source code for
all platform specific runtimes, or to require VM implementors to export a model of
the behavior of their system just for the purpose of enabling safe indirection. Thus,
J-Orchestra follows a more pragmatic approach, using the type information at the
native code interface to derive a native code behavior model. The base J-Orchestra
rules for inferring anchored classes are as follows:

(1) A system class with native methods is anchored.

(2) A system class used as a parameter or return type for a method or static
method in a anchored class is co-anchored with that class (i.e., anchored and
in the same group).

(3) If a system class is anchored, then all class types of its fields or static fields are
co-anchored.

(4) If a system class, other than java.lang.Object, is anchored, then its subclasses
and superclasses are co-anchored.

(The rules reflect the essence of the analysis heuristic. We do not discuss vari-
ations such as arrays or exceptions—these are handled similarly to regular classes
holding references to the array element type and method return types, respectively.
Note that interface access does not impose restrictions since an interface cannot be
used to directly access state.) Rule 1 exists because no indirection technique can
guarantee to capture all field updates of an instance of a class with a native method.
The native method can always perform field updates without any indirection. Rule
2 is justified with a similar argument: if an object can be passed to native code,
native code can alias it and (either during the native method execution or during a
later invocation) change its state. Furthermore, the rule can be applied transitively:
if a class is anchored then we cannot replace all its uses with uses of an instrumented
version in some application package. Then all objects used as arguments of any
method (even non-native) may have their fields accessed directly. Rule 3 is like
rule 2 but for fields: native code can access objects transitively reachable from an
object that leaks to native code. Rule 4 is based on the specifics of the J-Orchestra
proxy indirection scheme and the Java restrictions on changing system packages.
(In other contexts, rules 2 and 4 can be weakened, as we explain elsewhere [Tilevich
and Smaragdakis 2006].)

With these rules and the assumption that native code in different system libraries
(e.g., graphics code and sound code) does not share state, J-Orchestra can success-
fully place different system classes on different machines, while allowing safe access.
The safety is heuristic, however. It is impossible to recognize the interactions of
system classes with native code without making assumptions regarding native code
behavior. For instance, all classes in Java are subclasses of java.lang.Object,
which does have native methods. In theory, any native method can be receiving an
Object-typed argument, discovering its actual type using reflection and performing
on the object some action (e.g., reading fields) that would be undetected by the
J-Orchestra indirection. Thus, the correctness of the J-Orchestra classification is
mainly based on two assumptions regarding system classes:

—System classes without native methods have no special semantics. (Native code
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never treats their objects any differently from user-defined objects.)

—Native methods do not use dynamic type discovery (reflection, downcasting, or
any low-level type information recovery) on objects supplied through method
arguments.

The first assumption essentially states that the JVM is not allowed to handle
different types of objects specially when the objects just use plain bytecode in-
structions. For instance, the JVM is not allowed to detect the construction of an
object of a “special” type and keep a reference to this object that native code can
later use for destructive state updates. This is a reasonable assumption, conforming
to good software design practices. The second assumption states that native code
is strongly typed: if a reference is declared to be of type T, it can never be used to
access fields (method calls are fine) of a subclass of T. For instance, the assumption
prohibits native methods from taking an Object-typed argument, checking if it is
actually of a more specific type (e.g., Thread or Window), casting the object to that
type and directly accessing fields or methods defined by the more specific type.
This assumption also encodes a good design practice: code exploits the static type
system as much as possible for correctness checking. Although the assumption may
be violated locally, the hope is that it is rarely violated over the bytecode-native
code boundary.

These assumptions generally hold true with only few exceptions. The first as-
sumption does not hold, for instance, for classes in the java.lang.ref package.
The second assumption does not hold in the implementation of reflection classes
themselves. As we describe elsewhere [Tilevich and Smaragdakis 2006], we validated
these assumptions with two experiments: a code inspection of the C/C++ native
code of Sun’s JDK 1.4.2 for Solaris, and a dynamic analysis. Our code inspection
showed that the native implementations respect static typing and use dynamic type
discovery (i.e., reflection) sparingly. For instance, we found only 69 instances of the
JNI function IsInstanceOf, which is the main way to do dynamic type discovery
in native code. For comparison, there were thousands of uses of the Java user-
level counterpart, instanceOf in plain Java code in the Java system libraries. Our
dynamic analysis examined executions of mainstream Java benchmarks (including
the largest applications from the DaCapo suite and SPEC JVM’98) and found
only two instances of native code accesses that were not predicted by J-Orchestra’s
type-based classification heuristic.

Overall, our experience of using J-Orchestra for several years confirms that its
type-based analysis is useful and quite safe in practice. In the absence of complete
information on the behavior of native code, this analysis is a clear win. The only
general-purpose alternatives are to either not support indirection for any system
classes, or to leave the user with no assistance in determining the correctness of
applying indirection.

4.2 Static Methods and Fields

J-Orchestra has to handle remote execution of static methods. This also takes care
of remote access to static fields: just like with member fields, J-Orchestra replaces
all direct accesses to static fields of other classes with calls to accessor and mu-
tator methods. For handling static methods, J-Orchestra creates static delegator
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classes for every original class that has any static methods. Static delegators ex-
tend java.rmi.server.UnicastRemoteObject and define all the static methods
declared in the original class.

//Original class

class A {

static void foo (String s) {...}

static int bar () {...}

}

//Static Delegator for A--runs on a remote site

class A__StaticDelegator extends java.rmi.server.UnicastRemoteObject {

void foo (String s) { A__remote.foo (s); }

int bar () { return A__remote.bar (); }

}

For optimization purposes, a static delegator for a class gets created only in
response to calling any of the static methods in the proxy class. If no static method
of a class is ever called during a particular execution scenario, the static delegator
for that class is never created. Once created, the static delegator or its RMI stub is
stored in a member field of the class’s proxy and is reused for all subsequent static
method invocations.

A static delegator for a class shares the mobility properties of the class itself.
While a static delegator for an anchored class must be co-anchored with it, the
static delegator of a mobile class can potentially migrate at will, irrespective of the
locations of the existing objects of its class type.

4.3 Inheritance

Proxy classes, translator classes, and remote classes all mimic the inheri-
tance/subtyping hierarchy of their corresponding original classes. Furthermore,
one can think of the generation process for proxy and implementation (i.e., trans-
lator or remote) classes as a covariant function: a proxy of a subtype is a subtype
of the supertype’s proxy. Replacing direct references with references to proxies
preserves the original subtyping semantics: a proxy can be used when a supertype
instance is expected.

Proxy classes use delegation to invoke methods on implementation classes. The
base proxy class declares the delegatee field, which is shared by all proxy classes in
a hierarchy. Constructors of all (derived) proxy classes initialize the delegatee field
to the respective (derived) implementation type. Then each proxy in the hierarchy
casts the delegatee field to its respective implementation type when necessary for
delegation.

4.4 Object Creation

Creating objects remotely is a necessary functionality for every distributed object
system. J-Orchestra enables remote object creation by handling proxies’ construc-
tors differently from other methods. First, a proxy constructor calls a special-
purpose do-nothing constructor in its super class to avoid the regular object cre-
ation sequence. A proxy constructor creates objects using the services of the object
factory. J-Orchestra’s object factory is an RMI service running on every network
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node where the partitioned application operates. Every object factory is parame-
terized with configuration files specifying a symbolic location of every class in the
application and the URLs of other object factories. Object factory clients determine
object locations, handle remote object creations, and maintain various mappings
between the created objects and their proxies. The following example shows a por-
tion of the constructor code in a proxy class A. As can be seen, constructing the
proxy causes the creation of the appropriate remote object through a factory.

public A () {

//call super do-nothing constructor

super ((BogusConstructorArg)null);

//check if we are already initialized or are called from a subclass

if ((null != _remoteRef) || (!getClass ().equals (A.class)))

return;

...

//Call ObjectFactory

try {

_remoteRef = (A) ObjectFactory.createObject("A");

} catch (RemoteException e) { ... }

}

4.5 Arrays

Handling arrays is interesting from a language standpoint because they are the only
native generic type in Java. Conceptually, arrays are very similar to objects. For
instance, arrays are subclasses of java.lang.Object. An array can be thought of
as a class that supports the operations store and load. Just like other objects,
array are mutable and can be aliased: changes made through one reference have to
be visible to all other references to the same array.

J-Orchestra treats arrays very similarly to objects, although at the concrete level
the translation is different. All arrays are wrapped into special array front-end
classes for reference by the application. Application classes are modified to replace
array accesses with calls to the “store” and “load” methods of an array front-end.
The front-end is responsible for performing the appropriate operations on the array
itself. If the array type is mobile, then the array front-end is treated exactly like
a regular mobile class (i.e., a proxy is created for it). If, however, the array type
is anchored, the front-end has a dual role. It also serves as a system/application
translator and automatically wraps and unwraps the elements inserted into arrays.
For instance, the front-end for an anchored array of java.lang.Thread objects is
responsible for wrapping the thread objects when they are retrieved by application
code and unwrapping them when they are stored:

class java_lang_Thread_FrontEnd {

java.lang.Thread []_array;

anchored.java.lang.Thread aaload(int location) {

return (anchored.java.lang.Thread)Anchored.wrap (_array[location]);

}

void aastore (int location, anchored.java.lang.Thread elem) {

_array[location] = (java.lang.Thread)Anchored.unwrap (elem);

}

}
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It is worth noting that the same wrapping/unwrapping needs to be performed
for multidimensional anchored arrays. For instance, if a two dimensional array of
integers is anchored, then before each of its constituent arrays is retrieved, it needs
to be wrapped in a front-end for one dimensional integer arrays.

Determining whether an array needs to be anchored or can be mobile is an
interesting problem. Although arrays are implemented in native code, we can safely
assume that this code does not capture system-specific state and never directly
accesses fields of the arguments to “store” and “load” methods, as the code has no
knowledge of the types of the array elements. Therefore, arrays can be made mobile
(unless they themselves leak to native code—see next). Note that this means that
an array of objects of class C can be mobile even when class C is anchored—C objects
may cross the native code boundary, but as long as arrays of C objects do not cross
it, these arrays can be made mobile.

Nevertheless, the usual type-based anchored/mobile classification mechanism of
J-Orchestra can be too restrictive when applied to arrays. Recall that according
to the J-Orchestra classification, if a reference to a certain type can leak to native
code, then all references to this type are made anchored. The problem is that
the J-Orchestra classification algorithm is type based and primitive array types
are anonymous types. The same type, e.g., int[], can be used for very different
purposes, but the J-Orchestra classification heuristic is conservative for safety. For
instance, any application that passes an integer array to an anchored system class
will have to treat all its integer arrays (of the same or lower dimension) as anchored
on the same site! This restriction may even hinder the ability to safely place
different Java system classes on different network sites. If two entirely unconnected
system packages both exchange arrays of integers with some application’s code, then
both packages have to be placed on the same machine, because of the possibility
that they both refer to the same array. So far, this problem is addressed only
by having the user override the preliminary classification for arrays. Note that the
issue concerns the read-write use of arrays: if arrays are only written by application
code and read by system code (or vice-versa), they can safely be made mobile. The
latter is a common pattern for arrays shared between application and system code.

4.6 Object Identity

To support full object mobility, J-Orchestra assigns globally unique object identi-
fiers to all remote objects. Each execution site maintains a mapping between remote
objects and their proxies. In case of object migration to a remote site, the run-time
system first checks whether the site already has a proxy for the remote object. If
such a proxy is found, then its remote object field is reassigned. Otherwise, a new
proxy object is created. This arrangement preserves correct reference semantics in
the presence of full object mobility.

J-Orchestra employs a similar scheme to handle anchored objects’ wrapping.
When an object is unwrapped and re-wrapped, we should ensure that the iden-
tity of the proxy (the “wrap” object) is preserved. Consider an example method
returnMyArgument in anchored class A that takes an argument of another anchored
class B.

B returnMyArgument (B arg) { return arg; }
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J-Orchestra’s rewrite algorithm ensures that the following code fragment pre-
serves its original semantics, although in the translated code all objects will be
proxies for application-system translators.

B b = new B();

A a = new A();

B b1 = a.returnMyArgument(b);

assert_equal (b == b1);

When providing a wrapper for its return value, returnMyArgument in the
application-system translator for class A returns the existing proxy rather than
creating a new one.

Another complication results from the fact that Java RMI does not keep a per-site
identity for remote objects. If a remotely accessible object is used as a parameter
to a remote method, RMI transfers the object’s RMI stub. If the stub eventually
gets passed back to the site of the original remotely accessible object, the RMI
runtime will not recognize that it can use the object directly instead of the stub.
Application-system translators need to recognize this case when they are passed a
proxy for a locally anchored object, as they need to retrieve a local reference to the
anchored object from the proxy. Being able to do this correctly requires maintaining
a mapping between application-system translator RMI stubs and the correspond-
ing anchored objects. Fortunately, RMI guarantees the invariant that the identity
of a remote object and its stub as provided by the equals method is the same.
Furthermore, RMI guarantees that the hashCode of a remote object and its stub is
the same, allowing the mapping to be efficient. An anchored object can be inserted
into the mapping using its application-system translator (remote object) and re-
trieved using the remote object’s stub. For those anchored classes that override
the hashCode and/or equals methods providing their own implementations, spe-
cial care is taken to use the base class (java.rmi.server.UnicastRemoteObject)
versions of the methods.

4.7 Reflection and Dynamic Class Loading

Reflection can be used explicitly to render the J-Orchestra translation incorrect. For
instance, an application class may get an Object reference, query it to determine
its actual type, and fail if the type is a proxy. Nevertheless, the common case
of using reflection only to invoke methods of an object is compatible with the J-
Orchestra rewrite—the corresponding method will be invoked on the proxy object.
In fact, one of the first example applications distributed with J-Orchestra—the
JShell command line shell—uses reflection heavily.

We should note that offering full support for correctness under reflection is pos-
sible. For example, it is possible to create a J-Orchestra–specific reflection library
that will mimic the interface of the regular Java reflection routines but will take
care to always hide proxies. All reflection questions on a proxy object will instead
be handled by the remote object. With bytecode manipulation, we can replace all
method calls to Java reflection functionality with method calls to the J-Orchestra–
specific reflection library. We have considered this task to be too complex for the
expected benefit.

Similar observations hold regarding dynamic class loading. J-Orchestra is meant
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for use in cases in which the entire application is available and gets analyzed, so
that the J-Orchestra classification and translation are guaranteed correct. Cur-
rently, dynamically loading code that was not rewritten by J-Orchestra may fail
because the code may try to access remote data directly. Nevertheless, one can
imagine a loader installed by J-Orchestra that takes care of rewriting any dynam-
ically loaded classes before they are used. Essentially, this would implement the
entire J-Orchestra translation at load time. Unfortunately, classification cannot
be performed incrementally: unmodifiable classes may be loaded and anchored on
some nodes before loading another class makes apparent that the previous anchor-
ings are inconsistent. The only safe approach would be to make all dynamically
loaded classes anchored on the same network site.

4.8 Garbage Collection

Distributed garbage collection is a tough problem [Jones and Lins 1996]. J-
Orchestra relies on the RMI distributed reference counting mechanism for garbage
collection. This means that cyclic garbage, in which the cycle traverses the net-
work, will never be collected. Nevertheless, this aspect is orthogonal to the goal of
J-Orchestra—the system just inherits the garbage collection facility of the under-
lying middleware.

4.9 Inner Classes

On the Java language level, inner classes have direct access to all member fields
(including private and protected) of their enclosing classes. In order to enable
this access, the Java compiler introduces synthetic methods that access and mod-
ify member fields of enclosing classes. Synthetic methods are not visible during
Java source-to-bytecode compilation. Synthetic methods also need to be accessed
through a proxy, however. (The code inside a synthetic proxy method accesses the
synthetic method of its remote class.) This presents a problem for J-Orchestra: al-
though most J-Orchestra transformations are done directly in bytecode, proxies are
created in source code form (so that the user can manually edit them if needed for
failure or mobility handling). As a result, no Java compiler would be able to suc-
cessfully compile proxies with synthetic methods, since they call methods that do
not appear in the source. Removing the synthetic attributes (part of the meta-data
maintained in class binaries) from methods in remote classes eliminates the prob-
lem. The removal does not violate the Java security semantics because synthetic
methods have no access restrictions to begin with.

4.10 System.out, System.in, System.err, System.exit, System.properties

The java.lang.System class provides access to standard input, standard output,
and error output streams (exported as pre-defined objects), access to externally
defined “properties”, and a way to terminate the execution of the JVM. In a dis-
tributed environment, it is important to modify these facilities so that their behav-
ior makes sense. Different policies may be appropriate for different applications.
For example, when any of the partitions writes something to the standard output
stream, should the results be visible only on the network site of the partition, all
the network sites, or one specially designated network site that handles I/O? If one
of the partitions makes a call to System.exit, should only the JVM that runs that
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partition exit or should the request be applied to all the remaining network sites? J-
Orchestra allows defining these policies on a per-application basis. For this purpose,
J-Orchestra provides classes called RemoteIn, RemoteOut, RemoteErr, RemoteExit,
and RemoteProperties, whose implementation determines the application-specific
policy. For example, all references to System.out are replaced with RemoteOut.out

in all the rewritten code. An implementation of RemoteOut.out can return a stream
that redirects all the messages to a particular network site, for example.

5. HANDLING CONCURRENCY AND SYNCHRONIZATION

J-Orchestra enables Java thread synchronization in a distributed setting. This
mechanism addresses monitor-style synchronization (mutexes and condition vari-
ables), which is well-suited for a distributed threads model. (This is in contrast
to low-level Java synchronization, such as volatile variables and atomic operations,
which are better suited for symmetric multiprocessor machines.)

One of the primary design goals of J-Orchestra is to be able to run partitioned
programs with standard Java middleware. However, Java middleware mechanisms,
such as Java RMI or CORBA implementations, do not support thread coordination
over the network: synchronizing on remote objects does not work correctly, and
thread identity is not preserved for executions spanning multiple machines. We next
discuss the problem and how J-Orchestra solves it. The solution is of independent
research interest, as it improves on prior approaches in the general middleware
context.

5.1 Distributed Synchronization Complications

Modern mainstream languages such as Java or C# have built-in support for con-
currency. Specifically, Java provides the class java.lang.Thread for creating and
managing concurrency, synchronized methods and code blocks for mutual exclu-
sion, and monitor methods Object.wait, Object.notify, and Object.notifyAll

for managing state dependence. (An excellent reference for multithreading in Java
is Lea’s textbook [Lea 1997].)

Concurrency constructs usually do not interact correctly with middleware imple-
mentations, however. In particular, Java RMI does not propagate synchronization
operations to remote objects and does not maintain thread identity across different
machines.

To see the first problem, consider a Java object obj that implements a Remote

interface RI (i.e., a Java interface RI that extends java.rmi.Remote) (see Figure 5).
Such an object is remotely accessible through the RI interface. That is, if a client
holds an interface reference ri that points to obj, then the client can call methods
on obj, even though it is located on a different machine. The implementation of such
remote access is the standard RPC middleware technique [Birrell and Nelson 1984]:
the client is really holding an indirect reference to obj. Reference ri points to a
local RMI “stub” object on the client machine. The stub serves as an intermediary
and is responsible for propagating method calls to the obj object.

What happens when a monitor operation is called on the remote object, however?
There are two distinct cases: Java calls monitor operations (locking and unlocking
a mutex) implicitly when a method labeled synchronized is invoked and when it
returns. This case is handled correctly through RMI, since the stub will propa-
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gate the call of a synchronized remote method to the correct site. Nevertheless,
all other monitor operations are not handled correctly by RMI. For instance, a
synchronized block of code in Java corresponds to an explicit mutex lock oper-
ation. The mutex can be the one associated with any Java object. Thus, when
clients try to explicitly synchronize on a remote object, they end up synchronizing
on its stub object instead. This does not allow threads on different machines to
synchronize using remote objects: one thread could be blocked or waiting on the
real object obj, while the other thread may be trying to synchronize on the stub
ri instead. Similar problems exist for all other monitor operations. For instance,
RMI cannot be used to propagate monitor operations such as Object.wait and
Object.notify over the network. The reason is that these operations cannot be
indirected: they are declared in class Object to be final, which means that the
methods can not be overridden in subclasses that implement the Remote interfaces
required by RMI.

Remote object

Network

RMI stub

synchronized(ri) { ... }

synchronized(obj) { ... }

ri and obj point to the same object, but synchronization will be on 
RMI stub not on true Remote object.

Fig. 5. Referencing a remote RMI object directly and over the network.

The second problem concerns preserving thread identities in remote calls. The
Java RMI runtime starts a new thread for each incoming remote call. Thus, a
thread performing a remote call has no memory of its identity in the system. Fig-
ure 6 demonstrates the so-called “zigzag deadlock problem”, common in distributed
synchronization. Conceptually, methods foo, bar, and baz are all executed in the
same thread—but the location of method bar happens to be on a remote machine.
In actual RMI execution, thread-1 will block until bar’s remote invocation com-
pletes, and the RMI runtime will start a new thread for the remote invocations of
bar and baz. Nevertheless, when baz is called, the monitor associated with thread-
1 denies entry to thread-3: the system does not recognize that thread-3 is just
handling the control flow of thread-1 after it has gone through a remote machine.
If no special care is taken, a deadlock condition occurs.

5.2 Solution: Distribution-Aware Synchronization

The J-Orchestra approach to solving these distributed synchronization problems
is twofold: First, we maintain per-site “thread id equivalence classes,” which are
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Network

synchronized void foo()

void bar() {

}

thread-1 thread-2

synchronized void baz()

thread-3

thread-1 thread-3!

obj1 obj2

Fig. 6. The zigzag deadlock problem in Java RMI.

updated as execution crosses the network boundary. Second, we replace at the
bytecode level all uses of standard synchronization constructs with method calls to
a specialized per-site synchronization library. This synchronization library em-
ulates the behavior of monitor methods, such as monitorenter, monitorexit,
Object.wait, Object.notify, and Object.notifyAll, by using the thread id
equivalence classes. Furthermore, these synchronization library methods, unlike
the final methods in class Object that they replace, get correctly propagated over
the network using RMI when necessary so that they execute on the network site of
the object associated with the monitor.

In more detail, our approach consists of the following steps:

—Every instance of a monitor operation in the bytecode of the application is re-
placed, using bytecode rewriting, by a call to our own synchronization library,
which emulates the monitor-style synchronization primitives of Java

—Our library operations check whether the target of the monitor operation is
a local object or an RMI stub. In the former case, the library calls its local
monitor operation. In the latter case, an RMI call to a remote site is used to
invoke the appropriate library operation on that site. This solves the problem of
propagating monitor operations over the network. If we know statically that the
object is local, we avoid the runtime test and instead call a local synchronization
operation. This is the case for monitor operations on the this reference, as well
as other objects of anchored types that J-Orchestra guarantees will be on the
same site throughout the execution.

—Every remote RMI call, whether on a synchronized method or not, is extended
to include an extra parameter. The instrumentation of remote calls is done by
bytecode transformation of the RMI stub classes. The extra parameter holds the
thread equivalence class for the current calling thread. Our library operations
emulate the Java synchronization primitives but do not use the current, machine-
specific thread id to identify a thread. Instead, a mapping is kept between threads
and their equivalence classes and two threads are considered the same if they map
to the same equivalence class. Since an equivalence class can be represented by
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any of its members, our current representation of equivalence classes is compact:
we keep a combination of the first thread id to join the equivalence class and an
id for the machine where this thread runs. This approach solves the problem of
maintaining thread identity over the network.

We illustrate the above steps with examples that show how they solve each of
the two problems identified earlier. We first examine the problem of propagating
monitor operations over the network. Consider a method as follows:

//original code

void foo (Object some_remote_object) {

this.wait(); ...

some_remote_object.notify();

}

Our rewrite will statically detect that the first monitor operation (wait) is local,
as it is called on the current object itself (this). The second monitor operation,
however, is potentially remote and needs to be redirected to its target machine
using an RMI call. The result is shown below. (Throughout the section, although
all the changes are applied to the bytecode directly, we show source code for ease
of exposition.)

//original code

void foo (Object some_remote_object) {

jorchestra.runtime.distthreads.wait_(this); //dispatched locally

...

jorchestra.runtime.ThreadInfo.

getThreadEqClass(some_remote_object).notify_();

//get thread equivalence info from runtime and dispatch through RMI

}

(The last instruction is an interface call, which implies that each remote object
needs to support monitor methods, such as notify . To avoid code bloat, our trans-
formation adds these methods to the topmost class of each inheritance hierarchy in
an application.)

Let’s now consider the second problem: maintaining thread identity over the
network. Figure 7 demonstrates how using the thread id equivalence classes can
solve the “zigzag deadlock problem” presented above.

These thread id equivalence classes enable our custom monitor operations to treat
all threads within the same equivalence class as the same thread. (We illustrate the
equivalence class by listing all its members in the figure, but, as mentioned earlier,
in the actual implementation only a single token that identifies the equivalence
class is passed across the network.) More specifically, our synchronization library
is currently implemented using regular Java mutexes and condition variables. For
instance, the following code segment (slightly simplified) shows how the library
emulates the behavior of the bytecode instruction monitorenter. (For readers
familiar with monitor-style concurrent programming, our implementation should
look straightforward.)

private synchronized void enter () {

while (_timesLocked != 0 && curThreadEqClass != _holderThreadId)
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Network

synchronized void foo()
{thread-1}

void bar() 

{

}

{thread-1, thread-2}

synchronized void baz()

{thread-1, thread-2, thread-3}

obj1 obj2

Fig. 7. Using thread id equivalence classes to solve the “zigzag deadlock problem”
in Java RMI.

try {

wait();

} catch(InterruptedException e) {...}

if (_timesLocked == 0) {

_holderThreadId = getThreadID();

}

_timesLocked++;

}

This causes threads that are not in the equivalence class of the holder thread to
wait until the monitor is unlocked.

5.3 Efficiency and Past Approaches

The complexity of maintaining thread equivalence classes determines the overall
efficiency of the solution. The key to efficiency is to update the thread equivalence
classes only when necessary—that is, when the execution of a program crosses
the network boundary. Adding the logic for updating equivalence classes at the
beginning of every remote method is not the appropriate solution: in many in-
stances, remote methods can be invoked locally within the same JVM. In these
cases, adding any additional code for maintaining equivalence classes to the remote
methods themselves would be unnecessary and detrimental to performance. In con-
trast, our solution is based on the following observation: the program execution will
cross the network boundary only after it enters a method in an RMI stub. Thus,
RMI stubs are the best location for updating the thread id equivalence classes on
the client site of a remote call. In this way, the rest of the application does not
need to be modified at all to propagate thread equivalence classes: only the code
performing the distributed communication changes.

Adding custom logic to RMI stubs can be done by modifying the RMI compiler,
but this would negate J-Orchestra’s goal of portability. Therefore, we use bytecode
engineering on standard RMI stubs to retrofit their bytecode so that they include
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the logic for updating the thread id equivalence classes. This is done completely
transparently relative to the RMI runtime by adding special delegate methods that
look like regular remote methods, as shown in the following code example. (To
ensure maximum efficiency, we pack the thread equivalence class representation
into a long integer.)

//Original RMI stub: two remote methods foo and bar

class A_Stub ... { ...

public void foo (int i) throws RemoteException {...}

int bar () throws RemoteException {...}

}

//Retrofitted RMI stub

class A_Stub ... { ...

public void foo (int i) throws RemoteException {

foo__tec (Runtime.getThreadEqClass(), i);

}

public void foo__tec (long tec, int i) throwsRemoteException {...}

public int bar () throws RemoteException {

return bar__tec (Runtime.getThreadEqClass());

}

public int bar__tec (long tec) throws RemoteException {...}

}

Remote classes on the callee site provide symmetrical delegate methods that
update the thread id equivalence classes information according to the received long
parameter, prior to calling the actual methods. Therefore, having two different
versions for each remote method (with the delegate method calling the actual one)
makes the change transparent to the rest of the application: neither the caller of
a remote method nor its implementor need to be aware of the extra parameter.
Remote methods can still be invoked directly (i.e., not through RMI but from code
on the same network site) and in this case they do not incur any overhead associated
with maintaining the thread equivalence information.

The J-Orchestra solution is not the first in the design space of enabling monitor-
style synchronization over middleware. Past solutions fall in two different camps.
A representative of the first camp is the approach of Haumacher et al. [2003], which
proposes a replacement of Java RMI that maintains thread identity over the net-
work. Employing special-purpose middleware is undesirable, however, for reasons
of portability and ease of deployment. Indeed, using standard middleware is one of
the primary design objectives of J-Orchestra. The second camp, represented by the
work of Weyns et al. [Weyns et al. 2002; 2004], advocates transforming the client
application, as in the J-Orchestra approach. Since clients do not know whether a
method they call is local or remote, the Weyns et al. solution consists of conserva-
tively re-writing all method calls in the application to pass one extra parameter—
the thread identifier. This is quite inefficient compared to the J-Orchestra approach
of only modifying RMI stubs.6 As detailed elsewhere [Tilevich and Smaragdakis

6A second disadvantage of the Weyns et al. approach compared to our solution is that adding
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2004], we found the overhead of the Weyns et al. technique to be between 5.5
and 12% of the total execution time for SPEC JVM’98 benchmark applications.
In contrast, the J-Orchestra technique has a zero overhead for actual benchmark
applications, and an overhead below 4% even in the worst-case micro-benchmark
of a do-nothing method over an infinitely fast network (local call).

5.4 Discussion

As we mentioned briefly earlier, the J-Orchestra distributed synchronization ap-
proach only supports monitor-style concurrency control. This is a standard
application-level concurrency control facility in Java, but it is not the only one and
the language has currently evolved to better support other models. For example,
high-performance applications may use volatile variables instead of explicit locking.
In fact, use of non-monitor-style synchronization in Java will probably become more
popular in the future. The JSR-166 specification has standardized many concurrent
data structures and atomic operations in Java 5. Although our technique does not
support all the tools for managing concurrency in the Java language, this is not
so much a shortcoming as it is a reasonable design choice. Low-level concurrency
mechanisms (volatile variables and their derivatives) are useful for synchronization
in a single memory space. Their purpose is to achieve optimized performance for
symmetric multiprocessor machines. In contrast, our approach deals with correct
synchronization over middleware—i.e., it explicitly addresses distributed memory,
resulting from partitioning. Programs partitioned with J-Orchestra are likely to be
deployed on a cluster or even a more loosely coupled network of machines. In this
setting, monitor-style synchronization makes perfect sense.

On the other hand, in the future we can use the lower-level Java concurrency
control mechanisms to optimize the J-Orchestra runtime synchronization library for
emulating Java monitors. Our current library is itself implemented using monitor-
style programming (synchronized blocks, Object.wait, etc.). With the use of
optimized low-level implementation techniques, we can gain in efficiency. We believe
it is unlikely, however, that such a low-level optimization in our library primitives
will make a difference for most client applications of our distributed synchronization
approach.

6. APPLICABILITY AND DISCUSSION

The previous sections presented in detail the most interesting technical aspects of
J-Orchestra and its transformation machinery. Armed with this understanding,
we can next try to raise the level of discussion and capture the broader picture of
J-Orchestra’s applicability and value. This continues the user-level argument and
examples of Section 2, but with a more precise and general treatment.

an extra argument is not valid for methods that may be called by unmodifiable native code, or
through standard interfaces. E.g., a Java applet overrides methods init, start, and stop that
are called by Web browsers hosting the applet. Adding an extra argument to these methods in
an applet would invalidate it.
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Applicability

Automatic partitioning is not a substitute for general distributed systems develop-
ment. The important insight about the approach is not that it is widely applicable,
but that it can be applicable to a non-trivial subset of applications. Correctness
is not a primary issue: With a small number of exceptions, discussed in Section 4,
J-Orchestra can handle a large subset of the Java language, and, as a consequence,
can correctly partition a large class of realistic unsuspecting applications. Among
these, however, partitioning with J-Orchestra will prove useful only for well-defined
cases.

The main issue for automatically partitioned applications is performance. There
are several aspects of the J-Orchestra performance that can be measured. In the
past [Tilevich and Smaragdakis 2002b; 2004; Tilevich et al. 2005], we reported re-
sults on the overhead of adding proxies, of registering remote objects, of maintaining
concurrency semantics, etc. We also compared to other distributed execution or
monitoring techniques to demonstrate end-to-end benefit. The J-Orchestra argu-
ment in its core is not about such low-level performance differences, however. In
our successfully partitioned applications, the overheads of J-Orchestra indirection
are unmeasurably low: Co-anchored objects access each other directly, and only a
tiny fraction of the program’s references incur any overhead. The real overheads
are not part of the J-Orchestra technology, but concern the unavoidable cost of
network communication. Procedure calls over a middleware mechanism like Java
RMI are many thousands of times slower than local calls. Most of this overhead
cannot be eliminated, as it hinges on network latency and bandwidth limitations.
Thus, the fundamental question that determines whether an application can be effi-
ciently partitioned with J-Orchestra has to do with the application’s locality, under
its original structure. Namely, can the application tolerate making communication
between some of its parts thousands of times slower?

To describe the applications that can be successfully partitioned, we draw inspi-
ration from parallel processing, in which the term embarrassingly parallel describes
problems that can be seamlessly segmented into parallel tasks, with little inter-
task communication. By analogy, we introduce the term embarrassingly loosely
coupled to describe applications that can benefit from automatic partitioning with
J-Orchestra. Such applications must satisfy two criteria:

(1) they must consist of components that exchange little data with the rest of the
application

(2) these components must be statically identifiable by examining the structure of
the application code at the class or the module level.

By examining the relationship among application classes, the user of J-Orchestra
(aided by our analysis tools) should be able to identify distinct components com-
prising multiple classes. Then, during run-time, the data coupling among these
components should be very small. In other words, an application should have very
clear communication and locality patterns. Since the application logic will not
change after partitioning has taken place, a large number of remote accesses will
be detrimental to performance.

Most partitioned applications will take longer to run, and for some applications
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näıve partitioning can render them unusable. To improve the performance of a
partitioned application, various optimizations can reduce the number of remote
calls such as using an optimal static class placement and using object mobility.
In modern networks, in which improvements in bandwidth have surpassed those
in latency, object mobility offers great potential benefit. (I.e., it is faster to move
much of the data that a remote method will operate on and move it back on method
return, rather than have the method send remote messages to read or update data
values.)

To obtain a reasonable estimate of whether partitioning an application is likely
to incur a prohibitively large performance overhead, online and offline profile tech-
niques should take into consideration both the initial static placement of objects
and their potential mobility. Having multiple profiling samples can help the pro-
grammer decide whether the incurred overhead is acceptable.

Preconditions

In addition, unmodifiable code (e.g., OS or JVM code) should not use objects shared
among partitions. Otherwise, the application structure must change to make parti-
tioning possible. Also, the resulting distributed application should primarily have
synchronous communication patterns. If good performance or reliability requires
asynchronous communication, the application structure must change.

Embarrassingly loosely coupled applications can be partitioned automatically
without significant loss in performance due to network communication. However,
in order to get any benefit, the application needs to have a reason to be distributed.
The foremost reason for distributing an application with J-Orchestra is to take
advantage of remote hardware or software resources (e.g., a processor, a database,
a graphical screen, or a sound card).

Of course, one reason to partition an application is to take advantage of par-
allelism. Distinct machines will have distinct CPUs. If the original centralized
application is multi-threaded, we can use multiple CPUs to run threads in parallel.
Although distribution-for-parallelism is a potential application of J-Orchestra, we
have not examined this space so far. The reason is that parallel applications either
are written to run in distributed memory environments in the first place, or have
tightly coupled concurrent computations.

These and other limitations make automatic partitioning particularly well suited
for resource-driven distribution, especially when the application has distinct parts
that each deal with different hardware or software resources. A typical resource-
driven distribution scenario is a centralized application needing to access resources
located on one or more remote machines scattered around the network, each possess-
ing unique resources, such as a large graphical display screen, high-quality speak-
ers, a digital camera, etc. In most cases, the different parts of such an application
are loosely coupled. Although network communication can be a bottleneck, most
successful applications of automatic partitioning can achieve high performance for
loosely coupled applications by placing the code near the resource it accesses. The
gains of placing the relevant code near a resource are precisely the reason for par-
titioning an application, rather than executing it remotely in its entirety.

To summarize, we can characterize the domain of J-Orchestra as partitioning
embarrassingly loosely coupled applications for resource-driven distribution.
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7. RELATED WORK

Much research work is closely related to J-Orchestra, either in terms of goals or in
terms of methodologies, and we discuss some of this work next.

Several recent systems other than J-Orchestra can also be classified as automatic
partitioning tools. In the Java world, the closest approaches are the Addistant
[Tatsubori et al. 2001] and Pangaea [Spiegel 2000; 2002] systems. The Coign sys-
tem [Hunt and Scott 1999] has promoted the idea of automatic partitioning for
applications based on COM components.

All three systems do not address the problem of distribution in the presence
of unmodifiable code. Coign is the only one of these systems to have a claim
at scalability, but the applications partitioned by Coign consist of independent
components to begin with. Coign does not address the hard problems of application
partitioning, which have to do with pointers and aliasing: components cannot share
data through memory pointers. Such components are deemed non-distributable and
are located on the same machine. Practical experience with Coign showed that this
is a severe limitation for the only real-world application included in Coign’s example
set (the Microsoft PhotoDraw program). The overall Coign approach would not
be feasible for applications written in a general-purpose language (like Java, C,
C#, or C++) in which pointers are prevalent, unless these applications have been
developed following a strict component-based implementation methodology.

The GARF system [Guerraoui et al. 1997] uses automatic program distribution
to simplify the creation of reliable distributed applications. GARF was imple-
mented in Smalltalk on top of the Isis group communication system [Birman and
Van Renesse 1994]. The GARF runtime uses the reflective capabilities of Smalltalk
[Goldberg and Robson 1983] to introduce distribution and replication to centralized
applications. Compared to the static binary rewrite of J-Orchestra, the dynamic
approach of the GARF system’s distribution is on the other end of the design space.
Nevertheless, GARF’s approach of achieving reliability by replicating critical com-
ponents over multiple machines is a promising future work direction in automatic
partitioning.

The Pangaea system [Spiegel 2000; 2002] has very similar goals to J-Orchestra.
Pangaea, however, includes no support for making Java system classes remotely
accessible. Thus, Pangaea cannot be used for resource-driven distribution, as most
real-world resources (e.g., sound, graphics, file system) are hidden behind system
code. Pangaea utilizes interesting static analyses to aid partitioning tasks (e.g.,
object placement) but these analyses ignore unmodifable (system) code.

The JavaParty [Haumacher et al. 2003; Philippsen and Zenger 1997] system is
closely related to J-Orchestra. The similarity is not so evident in the objectives,
since JavaParty only aims to support manual partitioning and does not deal with
system classes. However, the implementation techniques of JavaParty are very sim-
ilar to the ones of J-Orchestra, especially for the newest versions of JavaParty. For
distributed synchronization, JavaParty relies on KaRMI, a drop-in replacement for
RMI, that maintains correct multithreaded execution over the network efficiently.
In contrast, J-Orchestra implements distributed synchronization on top of standard
middleware.

J-Orchestra bears similarity with such diverse systems as DIAMONDS [Craig
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et al. 1993], FarGo [Holder et al. 1999], and AdJava [Fuad and Oudshoorn 2002].
DIAMONDS clusters are similar to J-Orchestra anchored and mobile groups. FarGo
groups are similar to J-Orchestra anchored groups. Notably, however, FarGo has
focused on grouping classes together and moving them as a group. In fact, groups
of J-Orchestra objects that are all anchored by choice could well move, as long as
all objects in the group move. We have not yet investigated such mobile groups,
however.

The pioneering work at MCC in the early 90’s identified classes as suitable entities
for performing resource allocation in distributed systems. The experimental system
described by Chatterjee [1992] uses class profiling as a guide for assigning objects
to the nodes of a distributed system. J-Orchestra has fully explored the idea of
resource-based partitioning at the class or group of classes level of granularity,
demonstrating the feasibility and scalability of the approach.

Automatic partitioning is essentially a distributed shared memory (DSM) tech-
nique. Nevertheless, automatic partitioning differs from traditional DSMs in several
ways. First, automatic partitioning systems such as J-Orchestra do not change the
runtime system, but only the application. Traditional DSM systems like Munin
[Carter et al. 1991], Orca [Bal et al. 1998; Bal and Kaashoek 1993], and, in the
Java world, cJVM [Aridor et al. 1999; Aridor et al. 2000], and Java/DSM [Yu and
Cox 1997] use a specialized run-time environment in order to detect access to re-
mote data and ensure data consistency. Also, DSMs have usually focused on paral-
lel applications and require programmer intervention to achieve high-performance.
In contrast, automatic partitioning concentrates on resource-driven distribution,
which introduces a new set of problems (e.g., the problem of distributing around
unmodifable system code, as discussed earlier). Among distributed shared memory
systems, the ones most closely resembling the J-Orchestra approach are object-
based DSMs, like Orca [Bal et al. 1998; Bal and Kaashoek 1993].

Mobile object systems, like Emerald [Black et al. 2007] have formed the inspira-
tion for many of the J-Orchestra ideas on object mobility scenarios. The novelty of
J-Orchestra is not in the object mobility ideas but in the rewrite that allows them
to be applied to an oblivious centralized application.

A promising direction for future work in automatic partitioning would be to give
the user more control and enable more drastic modifications of the original appli-
cation. For instance, the proxying approach of J-Orchestra should be a good fit
for adding flexibility in configuring the communication protocol, as in the BAST
system [Garbinato and Guerraoui 1997]. This flexibility would allow choosing an
unreliable (but more efficient) communication protocol on a per-case basis. At the
same time, such flexibility would fit well with another promising future direction:
that of allowing the replication of components from the original centralized appli-
cation and transforming a single call into a multicast message in the distributed
application. Such transformations open the door for automatic partitioning to han-
dle a much larger space of distributed applications, at the expense of requiring more
user intervention.

Approaches to richer middleware can simplify the implementation of the J-
Orchestra distributed synchronization approach. For instance, DADO [Wohlstadter
et al. 2003; Wohlstadter and Devanbu 2006] enables passing custom information
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between client and server of a remote call. This would be an easy alternative to
our custom bytecode transformations of stubs and skeletons. Nevertheless, using
DADO would not eliminate the need for bytecode transformations that replace
monitor control methods and synchronization blocks.

Both the D [Lopes 1997] and the Doorastha [Dahm 2000] systems allow the user
to easily annotate a centralized program to turn it into a distributed application.
Although these systems are higher-level than explicit distributed programming,
they are significantly lower-level than J-Orchestra. The entire burden is shifted
to the programmer to specify which semantics is valid for a specific class (e.g.,
whether objects are mobile, whether they can be passed by-copy, and so forth).
Programming in this way requires complete understanding of the application be-
havior and can be error-prone: a slight error in an annotation may cause insidious
inconsistency errors.

8. CONCLUSIONS

This article has discussed J-Orchestra, a software system and broader project on
separating distribution concerns. The goal of this project has been to investigate
whether software tools working with standard mainstream languages, systems soft-
ware, and virtual machines can effectively and efficiently separate distribution con-
cerns from application logic for object-oriented programs. We believe that this work
will contribute to the development of versatile tools and technology with practical
value, innovative designs, and the potential to become mainstream in the future.

A common question we are asked concerns our choice of the name “J-Orchestra.”
The reason for the name is a strong analogy between application partitioning and
the way orchestral music is often composed. Many orchestral pieces are not origi-
nally written for orchestral performance. Instead, only a piano score is originally
composed. Later, an “orchestration” process takes place that determines which
instruments should play which notes of the completed piano score. In fact several
well-know orchestral pieces are a result of orchestrating piano music that had never
been intended by their composer for orchestral performance. In addition, some
piano pieces have several brilliant but totally different orchestrations. With J-
Orchestra, we provide a state-of-the-art “orchestration” facility for Java programs.
Taking into account the unique capabilities of network nodes (instruments) we
partition Java applications for harmonious distributed execution. We believe that
automatic application partitioning represents a huge promise and that J-Orchestra
is a general and powerful automatic partitioning tool.
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