
Threads and Synchronization

Yannis Smaragdakis, U. Athens

 2

Threads

● A thread is an independent flow of control
– i.e., an execution of a program

● with its own instruction pointer
● and stack, since that's determined by executed instructions

● Multiple threads may be in the same process
– or in the kernel
– they share everything else: heap, static area

● In a modern OS, threads (not processes) are the
fundamental unit of scheduling/execution

 3

User and Kernel-Level Threads

 4

Synchronization

● Shared memory: parts of the address space are
visible to two threads

● Can also be done with processes
– just map the same physical pages in two address spaces

● Threads and processes are a continuum
– shared memory can make processes be like threads

● Shared memory raises the need for synchronization
– otherwise: race conditions

 5

Mutex Locks

● Most common synchronization structure:
mutual-exclusion lock (mutex)

● In two states: locked or unlocked
● Operations:

– init: create, in unlocked state
– lock/acquire:

● if unlocked, atomically make it locked
● else, no progress until it is unlocked and successfully acquired

– unlock/release:
● set mutex to unlocked

● See xv6 spinlock and sleeplock implementations

 6

Condition Variables

● Used in combination with mutexes
– monitor-style programming

● General-purpose waiting for long periods of time
● Operations:

– init(): create, empty queue
– wait(m):

● atomically unlock mutex, put thread in “waiting” queue
● when thread exits waiting queue, lock/acquire mutex

– signal/notify:
● remove one thread from waiting queue

● Typically in user space - kernel has modest needs
– most general synchronization primitives, can implement all policies

 7

Semaphores (Dijkstra ~1965)

● Like enhanced mutexes
– mutexes = binary semaphores

● Instead of locked/unlocked, a counter
● Operations:

– init(n): create, with counter n
– down/P:

● if counter positive, atomically decrement
● else, no progress until it is positive

– up/V:
● increment counter

● Variations where increment/decrement are by >1

 8

Applications

● Lots of textbook synchronization problems
– bounded buffer
– readers/writers
– dining philosophers 0

4 1

3 2

0 1

4

3

2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

