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Threads

● A thread is an independent flow of control
– i.e., an execution of a program 

● with its own instruction pointer
● and stack, since that's determined by executed instructions

● Multiple threads may be in the same process
– or in the kernel
– they share everything else: heap, static area

● In a modern OS, threads (not processes) are the 
fundamental unit of scheduling/execution
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User and Kernel-Level Threads
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Synchronization

● Shared memory: parts of the address space are 
visible to two threads

● Can also be done with processes
– just map the same physical pages in two address spaces

● Threads and processes are a continuum
– shared memory can make processes be like threads

● Shared memory raises the need for synchronization
– otherwise: race conditions
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Mutex Locks

● Most common synchronization structure: 
mutual-exclusion lock (mutex)

● In two states: locked or unlocked
● Operations:

– init: create, in unlocked state
– lock/acquire: 

● if unlocked, atomically make it locked
● else, no progress until it is unlocked and successfully acquired

– unlock/release:
● set mutex to unlocked

● See xv6 spinlock and sleeplock implementations
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Condition Variables

● Used in combination with mutexes
– monitor-style programming

● General-purpose waiting for long periods of time
● Operations:

– init():  create, empty queue
– wait(m):

● atomically unlock mutex, put thread in “waiting” queue
● when thread exits waiting queue, lock/acquire mutex

– signal/notify:
● remove one thread from waiting queue

● Typically in user space - kernel has modest needs
– most general synchronization primitives, can implement all policies
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Semaphores (Dijkstra ~1965)

● Like enhanced mutexes
– mutexes = binary semaphores

● Instead of locked/unlocked, a counter
● Operations:

– init(n): create, with counter n
– down/P: 

● if counter positive, atomically decrement
● else, no progress until it is positive

– up/V:
● increment counter

● Variations where increment/decrement are by >1
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Applications

● Lots of textbook synchronization problems
– bounded buffer
– readers/writers
– dining philosophers 0
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