
Stack and Heap

1 / 13

Call Stack for Procedure Calls

◮ Each procedure (method/function) call pushes a new frame
(a.k.a. stack frame) on a stack

◮ The frame contains space for all the locals, including
arguments and return

◮ Also a pointer to previous “top of stack”

◮ For execution with variable-size stack frames, we need a stack
pointer (top of stack) and a frame pointer (base of current
stack frame)

◮ These are typically supported by the architecture (i.e., they
are registers)

2 / 13

Call Stack for Procedure Calls

int foo(int i) {

int j;

j = bar(3,i);

return j+baz(j);

}

int bar(int k, int l) {

int m = k * k + 7 * l + 3;

return m;

}

int baz(int n) { ... }

◮ What does the stack look like during the execution of foo?

3 / 13

The Stack as Memory

◮ The stack is a great way to remember things!
◮ Automatically managed: no need to “free” data on the stack
◮ Very efficient and fast, hardware-supported

◮ But: it only works when the lifetimes of data are hierarchical
◮ Newer data should die before older ones
◮ Data lifetimes are tied to procedure lifetimes

◮ For data that live longer, we have other structures: static data
and the heap

4 / 13

Static Data: Different Kinds

int e;

void fun() {

static char *root; ...

}

class A {

static int i; ...

};

◮ Static data can be global or local: do not confuse namespace
with lifetime

◮ The problem is that these are even more limited than the
stack!

◮ Static variables appear in the code
◮ We know the number of static variables at compile-time!
◮ Hence the name “static”

5 / 13

Heap

◮ The heap is the area to store data with (relatively) unknown
lifetimes

◮ You already know that we manage this with malloc/free or
new/delete

◮ What is the structure of the heap? How are malloc/free
implemented?

◮ Main idea: get space from OS, manage it internally
◮ Keep track of holes (from free)
◮ Keep track of unallocated data
◮ Keep other data structures for fast malloc/free

6 / 13

A Very Simple Allocator (K&R)

◮ Your C book had a dead-simple allocator (Chapter 8)

◮ Single free-list, ordered by address

◮ Header keeps size of allocated block

◮ Linear searches for both malloc and free

7 / 13

A Very Simple Allocator (Rewriting of K&R)

#include <stdbool.h>

#include <unistd.h>

typedef long Align; /* for alignment to

long boundary */

typedef union header { /* block header */

struct {

union header *ptr; /* next block if on

free list */

size_t size ; /* size of this block */

} s;

Align x; /* force alignment of blocks */

} Header;

static Header base = {0}; /* empty list to get

started */

static Header* freep = NULL ; /* start of free list */

8 / 13

A Very Simple Allocator (malloc–I)

void * kr_malloc (size_t nbytes) {

Header* p;

Header* prevp;

size_t nunits;

nunits = 1 + (nbytes + sizeof(Header) - 1) /

sizeof(header);

prevp = freep;

if (prevp == NULL) { /* no free list yet */

base .s.ptr = freep = prevp = &base ;

base .s.size = 0;

}

9 / 13

A Very Simple Allocator (malloc–II)

for (p = prevp ->s.ptr; ; prevp = p, p = p->s.ptr) {

if (p->s.size >= nunits) { /* big enough */

if (p->s.size == nunits) /* exactly */

prevp ->s.ptr = p->s.ptr;

else { /* allocate tail end */

p->s.size -= nunits;

p += p->s.size ;

p->s.size = nunits

}

freep = prevp;

return p+1;

}

if (p == freep) { /* wrapped around free list */

p = morecore (nunits);

if (p == NULL) return NULL; /* none left */

}

} /* for */

} /* kr_malloc */

10 / 13

A Very Simple Allocator (morecore)

#define NALLOC 1024

Header* morecore (unsigned int nu) {

char * cp;

Header* up;

if (nu < NALLOC) nu = NALLOC;

cp = sbrk (nu * sizeof(Header));

if (cp == (void *) -1)

return NULL ;

up = (Header *) cp;

up ->s.size = nu;

free ((void *)(up+1);

return freep;

}

11 / 13

A Very Simple Allocator (freep)

void free (void *ap) {

Header* bp = (Header *)ap - 1;

Header* p;

for (p=freep; bp <= p || bp >= p->s.ptr; p=p->s.ptr)

if (p >= p->s.ptr && (bp > p || bp < p->s.ptr))

break; /* freed before beginning or after end */

if (bp+bp ->s.size == p->s.ptr) { /* coalesce next */

bp ->s.size += p->s.ptr ->s.size ;

bp ->s.ptr = p->s.ptr ->s.ptr;

} else

bp ->s.ptr = p->s.ptr;

if (p+p->s.size == bp) { /* coalesce with prev */

p->s.size += bp ->s.size ;

p->s.ptr = bp ->s.ptr;

} else

p->s.ptr = bp;

freep = p;

}

12 / 13

What Do Realistic Allocators Do Differently?

◮ No linear search on free
◮ no need to have list address-ordered
◮ often coalescing done by keeping footers instead of just

headers, so that the previous block’s size is also known. More
overhead per allocated block.

◮ Best-fit-like policies instead of first-fit

◮ Lots of size classes, more complex data structure than linked
list

◮ bitmap allocation for small objects
◮ direct mmap for large ones

◮ Multi-threading support
◮ for avoiding malloc/free bottlenecks
◮ for avoiding false sharing
◮ huge performance impact!

13 / 13

