
Clash of the Lambdas
Through the Lens of Streaming APIs

Aggelos Biboudis
University of Athens
biboudis@di.uoa.gr

Nick Palladinos
Nessos Information Technologies, SA

npal@nessos.gr

Yannis Smaragdakis
University of Athens
smaragd@di.uoa.gr

Abstract

The introduction of lambdas in Java 8 completes the slate of
statically-typed, mainstream languages with both object-oriented
and functional features. The main motivation for lambdas in Java
has been to facilitate stream-based declarative APIs, and, therefore,
easier parallelism. In this paper, we evaluate the performance im-
pact of lambda abstraction employed in stream processing, for a va-
riety of high-level languages that run on a virtual machine (C#, F#,
Java and Scala) and runtime platforms (JVM on Linux and Win-
dows, .NET CLR for Windows, Mono for Linux). Furthermore,
we evaluate the performance gain that two optimizing libraries
(ScalaBlitz and LinqOptimizer) can offer for C#, F# and Scala. Our
study is based on small-scale throughput-benchmarking, with sig-
nificant care to isolate different factors, consult experts on the sys-
tems involved, and identify causes and opportunities. We find that
Java exhibits high implementation maturity, which is a dominant
factor in benchmarks. At the same time, optimizing frameworks
can be highly effective for common query patterns.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Processors—Code generation; D.3.2 [Programming lan-
guages]: Language Classifications—Multiparadigm languages

General Terms Languages, Measurement, Performance

Keywords lambdas, java, scala, c#, f#, query optimization, query
languages, declarative

1. Introduction

Java 8 has introduced lambdas with the explicit purpose of enabling
streaming abstractions. Such abstractions present an accessible,
natural path to multicore parallelism—perhaps the highest value
domain in current computing. Other languages, such as Scala, C#,
and F#, have supported lambda abstractions and streaming APIs,
making them a central theme of their approach to parallelism.
Although the specifics of each API differ, there is a core of common
features and near-identical best-practices for users of these APIs in
different languages.

Streaming APIs allow the high-level manipulation of value
streams (with each language employing slightly different termi-
nology) with functional-inspired operators, such as filter, or map.
Such operators take user-defined functions as input, specified via
local functions (lambdas). The Java example fragment below shows
a “sum of even squares” computation, where the even numbers in
a sequence are squared and summed. The input to map is a lambda,
taking an argument and returning its square. This particular lambda
application is non-capturing: the bodies of the lambda expressions

in lines 3,4 use only their argument values, and no values from the
environment.

1 public int sumOfSquaresEvenSeq(int[] v) {
2 int sum = IntStream.of(v)
3 .filter(x -> x % 2 == 0)
4 .map(x -> x * x)
5 .sum();
6 return sum;
7 }

The above computation can be trivially parallelized with the ad-
dition of a .parallel() operator before the call to filter. This
ability showcases the simplicity benefits of streaming abstractions
for parallel operations.

In this paper, we perform a comparative study of the
lambda+streams APIs of four multi-paradigm, virtual machine-
based languages, Java, Scala, C#, and F#, with an emphasis on
implementation and performance comparison, across mainstream
platforms (JVM on Linux and Windows, .NET CLR for Windows,
Mono for Linux). We perform micro-benchmarking1 and aim to
get a high-level understanding of the costs and causes. Our goal
is the usual goal of microbenchmarking: to minimize most threats-
to-validity by controlling external factors. (The inherent drawback
of microbenchmarking, which we do not attempt to address, is the
threat that benchmarks are not representative of real uses.) In or-
der to control external factors, we attempt to select equivalent ab-
stractions in all settings, isolate dependencies, employ best-practice
benchmarking techniques, and repeatedly consult experts on the
different platforms.

Since lambdas+stream operators have arisen independently in
so many contexts and have been central in parallel programming
strategies, one would expect them to be well-understood: a main-
stream, high-value feature is expected to have fairly uniform im-
plementation techniques and trade-offs. Instead we find interesting
variation, even in the compilation to intermediate code (per plat-
form, e.g., across Java and Scala, which are both JVM languages).
Furthermore, we find that JIT optimization inside the VM does not
always interact predictably with the code produced for lambdas.
This was a minor surprise, given the maturity of the respective fa-
cilities.2

A second aspect of declarative streaming operations is that they
enable aggressive optimization [7]. Optimization frameworks, such
as LinqOptimizer [8] and ScalaBlitz [9, 10], recognize common

1 Code in https://github.com/biboudis/clashofthelambdas .
2 Although Java lambdas are standard only as of version 8, their arrival had
been forthcoming since at least 2006.



patterns of streaming operations and optimize them, by inlining,
performing loop fusion, and more.

In all, we find that Java offers high performance for lambdas
and streaming operations, primarily due to optimizing for non-
capturing lambdas. At the same time, Java suffers from the lack
of an optimizing framework—LinqOptimizer and ScalaBlitz give a
significant boost to C#/F# and Scala implementations, respectively,
when optimizations are applicable.

2. Implementation Techniques for Lambdas and
Streaming

As part of our investigation, we examined current APIs and imple-
mentation techniques for lambdas and streaming abstractions in the
languages and libraries under study. We detail such elements next,
so that we can refer to them directly in our experimental results.

2.1 Programming Languages

We begin with the API and implementation description for the
languages of our study: Java, Scala, and C#/F# (the latter are similar
enough that are best discussed together, although they exhibit non-
negligible performance differences).

2.1.1 Java

Java is probably the best reference point for our study, although
it is also the relative newcomer among the lambdas+streaming
facilities. We already saw examples of the Java API for streaming
in the Introduction. In terms of implementation, the Java language
team has chosen a translation scheme for lambdas that is highly
optimized and fairly unique among statically typed languages.

In the Java 8 declarative stream processing API, operators fall into
two categories: intermediate (always lazy—e.g., map and filter) and
terminal (which can produce a value or perform side-effects—e.g.,
sum and reduce). For concreteness, let us consider the pipeline
below. The following expression (serving as a running example in
this section) calculates the sum of all values in a double array.

1 public double sumOfSquaresSeq(double[] v) {
2 double sum = DoubleStream.of(v)
3 .map(d -> d * d)
4 .sum();
5 return sum;
6 }

The code first creates a sequential, ordered Stream of doubles
from an array that holds all values. (DoubleStream represents
a primitive specialization of Stream–one of three specialized
Streams, together with IntStream and LongStream.) The calls map

and sum are an intermediate and a terminal operation respectively.
The first operation returns a Stream and it is lazy. It simply de-
clares the transformation that will occur when the stream will be
traversed. This transformation is a stateless operation and is de-
clared using a (non-capturing) lambda function. The second oper-
ation needs all the stream processed up to this point, in order to
produce a value; this operation is eager and it is effectively the
same as reducing the stream with the lambda (x,y) -> x+y.

Implementation-wise, the (stateless or stateful) operations on a
stream are represented by objects chained together sequentially.
A terminal operation triggers the evaluation of the chain. In our
example, if no optimization were to take place, the sum operator

would retrieve data from the stream produced by map, with the lat-
ter being supplied the necessary lambda expression. This travers-
ing of the elements of a stream is realized through Spliterators.
The Spliterator interface offers an API for traversing and par-
titioning elements of a source and it can operate either sequen-
tially or in parallel. Spliterators are also equiped with more ad-
vanced functionality—e.g., they can detect structural interference
with the source while processing. The definition of a stream and
operations on it are usually described declaratively and the user
does not need to invoke operations on a Spliterator. However a
controlled traversal via a Spliterator or even a Java Iterator can
be effected by obtaining the corresponding instances from the ap-
propriate combinators. The Spliterator interface is shown below.

1 public interface Spliterator<T> {
2 boolean tryAdvance(Consumer<? super T> action);
3 void forEachRemaining(Consumer<? super T> action);
4 Spliterator<T> trySplit();
5 long estimateSize();
6 long getExactSizeIfKnown();
7 int characteristics();
8 boolean hasCharacteristics(int characteristics);
9 Comparator<? super T> getComparator();

10 }

Normally, for the general case of standard stream process-
ing, the implementation of the above interface will have a
forEachRemaining method that internally calls methods hasNext

and next to traverse a collection, as well as accept to apply an op-
eration to the current element. Thus, three virtual calls per element
will occur.

However, stream pipelines, such as the one in our exam-
ple, can be optimized. For the array-based Spliterator, the
forEachRemaining method performs an indexed-based, do-while
loop. The entire traversal is then transformed: instead of sum re-
questing the next element from map, the pipeline operates in the in-
verse order: map pushes elements through the accept method of its
downstream Consumer object, which implements the sum function-
ality. In this way, the implementation eliminates two virtual calls
per step of iteration and effectively uses internal iteration, instead
of external.

The following (simplified for exposition) snippet of code is taken
from the Spliterators.java source file of the Java 8 library and it
demonstrates this special handling, where a holds the source array
and i indexes over its length:

1 do { consumer.accept(a[i]); } while (++i < hi);

The internal iteration can be seen in this code. Each of the op-
erators applicable to a stream needs to support this inverted pat-
tern by supplying an accept operation. That operation, in turn, will
call accept on whichever Consumer<T> may be downstream. For
instance, the fragment of the map implementation below shows the
accept call (line 7) on the next operator (sum in our example). The
code also shows the call to apply, invoking the passed lambda func-
tion.



1 <T, R> Stream<R> map(Stream<T> source,
2 Function<T, R> mapper) {
3 return new MapperStream<T, R>(source) {
4 Consumer<T> wrap(Consumer<R> consumer) {
5 return new Consumer<T>() {
6 void accept(T v) {
7 consumer.accept(mapper.apply(v));
8 }
9 };

10 }
11 };
12 }

Having seen the implementation of streams, we now turn our at-
tention to lambdas. There could be several potential translations for
lambdas, such as inner-classes (for both capturing or non-capturing,
lambdas), translation based on MethodHandles—the dynamic and
strongly typed component that was introduced in JSR-292—and
more. Each option has some advantages and disadvantages. For
the translation of lambdas in Java 8, the compiler incorporates a
technique based on JSR-292 [11] and more specifically on the new
invokedynamic command [4, Chapter 6] and MethodHandles [3].

When the compiler encounters a lambda function, it desugars it
to a method declaration and emits an invokedynamic instruction at
that point. For instance, our sumOfSquaresSeq example compiles to
the bytecode below:

1 ... // v on the stack
2 invokestatic #7 // DoubleStream.of
3 invokedynamic #10, 0 // applyAsDouble
4 invokeinterface #11, 2 // DoubleStream.map
5 invokeinterface #8, 1 // DoubleStream.sum
6 dstore_1
7 dload_1
8 dreturn

Note the invokedynamic instruction on line 3, used to return
an object that represents a lambda closure. The method invoked
is LambdaMetafactory.metafactory—implemented as part of the
Java standard library. The fully dynamic nature of the call is
due to having a single implementation for retrieving objects for
any given method signature. This process involves three phases:
Linkage, Capture and Invocation. When invokedynamic is met
for the first time it must link this site with a method. For the
lambda translation case, an instance of CallSite is generated
whose target knows how to create function objects. This target
(LambdaMetafactory.metafactory) is a factory for function ob-
jects. The Capture phase may involve allocation of a new object that
may capture parameters or will always return the same object (if no
parameters are captured). The third phase is the actual invocation.
The advantage of this translation scheme is that, for lambdas that
do not capture any free variables, a single instance for all usages is
enough. Furthermore, the call site is linked only once for succes-
sive invocations of the lambda and, after that, the JVM inlines the
retrieved method’s invocation at the dynamic call site. Addition-
ally, there is no performance burden for loading a class from disk,
as there would be in the case of a fully static translation.

2.1.2 Scala

Scala is an object-functional programming language for the JVM.
Scala has a rich object system offering traits and mixin composi-
tion. As a functional language, it has support for higher-order func-
tions, pattern matching, algebraic data types, and more. Since ver-
sion 2.8, Scala comes with a rich collections library offering a wide

range of collection types, together with common functional com-
binators, such as map, filter, flatMap, etc. There are two Scala
alternatives for our purposes. One is lazy transformations of col-
lections: an approach semantically equivalent to that of other lan-
guages, which also avoids the creation of intermediate, allocated
results. The other alternative is to use strict collections, which are
better supported in the Scala libraries, yet not equivalent to other
implementations in our set and suffering from increased memory
consumption.

To achieve lazy processing, one has to use the view method on
a collection.3 This method wraps a collection into a SeqView. The
following example illustrates the use of view for performing such
transformations lazily:

1 def sumOfSquareSeq (v : Array[Double]) : Double = {
2 val sum : Double = v
3 .view
4 .map(d => d * d)
5 .sum
6 sum
7 }

Ultimately, SeqView extends Iterable[A], which acts as a factory
for iterators. As an example, we can demonstrate the common map

function by mapping the transformation function to the source’s
Iterable iterator:

1 def map[T, U](source: Iterable[T], f: T => U) = new
Iterable[U] {

2 def iterator = source.iterator map f
3 }

The Iterator’s map function can then be implemented by delega-
tion to the source iterator:

1 def map[T, U](source: Iterator[T], f: T => U):
Iterator[U] = new Iterator[U] {

2 def hasNext = source.hasNext
3 def next() = f(source.next())
4 }

Note that we have 3 virtual calls (next, hasNext, f) per element
pointed by the iterator. The iteration takes place in the expected, un-
optimized order, i.e., each operator has to “request” elements from
the one supplying its input, rather than having a “push” pattern,
with the producer calling the consumer directly.

The Scala translation is based on synthetic classes that are gen-
erated at compile time. For lambdas, Scala generates a class that
extends scala.runtime.AbstractFunction. For lambdas with free
variables (captured from the environment), the generated class in-
cludes private member fields that get initialized at instantiation
time.

The strict processing of Scala collections is similar to the above
lazy idioms from the end-user standpoint: only the view call is
omitted in our sumOfSquareSeq code example. Operators such as
map are overloaded to also process strict collections.

3 Scala has more APIs for lazy collections (e.g., “Streams”), but the views
API we employed is the exact counterpart, in spirit and functionality, to the
machinery in the other languages under study.



2.1.3 C#/F#

C# is a modern object-oriented programming language targeting
the .NET framework. An important milestone for the language was
the introduction of several new major features in C# 3.0 in order
to enable a more functional style of programming. These new fea-
tures, under the umbrella of LINQ [5, 6], can be summarized as
support for lambda expressions and function closures, extension
methods, anonymous types and special syntax for query compre-
hensions. All of these new language features enable the creation of
new functional-style APIs for the manipulation of collections.

F# is a modern .NET functional-first programming language
based on OCaml, with support for object-oriented programming,
based on the .NET object system.

In C# we have two ways of programming with data streams:

1) as fluent-style method calls

1 nums.Where(x => x % 2 == 0).Select(x => x * x).Sum();

2) or with the equivalent query comprehension syntactic sugar

1 (from x in nums
2 where x % 2 == 0
3 select x * x).Sum();

In F#, programming with data is just as simple as a direct pipeline
of various combinators.

1 nums |> Seq.filter (fun x -> x % 2 = 0)
2 |> Seq.map (fun x -> x * x)
3 |> Seq.sum

For the purposes of this discussion, we can consider that both
C# and F# have identical operational behaviors and both C#
methods (Select, Where, etc.) and F# combinators (Seq.map,
Seq.filter, etc.) operate on IEnumerable<T> objects and return
IEnumerable<T>.

The IEnumerable<T> interface can be thought of as a factory for
creating IEnumerator<T> objects:

1 interface IEnumerable<T> {
2 IEnumerator<T> GetEnumerator();
3 }

and IEnumerator<T> is an iterator for an on demand consumption
of values:

1 interface IEnumerator<T> {
2 // Return current position element
3 T Current { get; }
4 // Move to next element,
5 // returns false if no more elements remain
6 bool MoveNext();
7 }

Each of these methods/combinators implement a pair of interfaces
called IEnumerable<T> / IEnumerator<T> and through the compo-
sition of these methods a call graph of iterators is chained together.
The lazy nature of the iterators allows the composition of an ar-
bitrary number of operators without worrying about intermediate
materialization of collections between each call. Instead, each op-
erator call is interleaved with each other. As an example we can
present an implementation of the Select method.

1 static IEnumerable<R> Select<T, R>(IEnumerable<T>
source, Func<T, R> f) {

2 return new SelectEnumerable<T, R>(source, f);
3 }

The SelectEnumerable has a simple factory-style implementa-
tion:

1 class SelectEnumerable<T, R> : IEnumerable<R> {
2 private readonly IEnumerable<T> inner;
3 private readonly Func<T, R> func;
4 public SelectEnumerable(IEnumerable<T> inner,
5 Func<T, R> func) {
6 this.inner = inner;
7 this.func = func;
8 }
9 IEnumerator<R> GetEnumerator() {

10 return new SelectEnumerator(inner.GetEnumerator(),
func);

11 }
12 }

SelectEnumerator implements the IEnumerator<R> interface and
delegates the MoveNext and Current calls to the inner iterator.

1 class SelectEnumerator<T, R> : IEnumerator<R> {
2 private readonly IEnumerator<T> inner;
3 private readonly Func<T, R> func;
4 public SelectEnumerator(IEnumerator<T> inner,
5 Func<T, R> func) {
6 this.inner = inner;
7 this.func = func;
8 }
9 bool MoveNext() { return inner.MoveNext(); }

10 R Current { get { return func(inner.Current); } }
11 }

For programmer convenience, both C# and F# offer sup-
port for automatically creating the elaborate scaffolding of the
IEnumerable<T> / IEnumerator<T> interfaces, but for our discus-
sion it is not crucial to understand the mechanisms.

From a performance point of view, it is not difficult to see that
there is a lot of virtual call indirection between the chained enu-
merators. We have 3 virtual calls (MoveNext, Current, func) per
element per iterator. Iteration is similar to Scala or to the generic,
unoptimized Java iteration: it is an external iteration, with each con-
sumer asking the producer for the next element.

In terms of lambda translation, C# lambdas are always assigned to
delegates, which can be thought of as type-safe function pointers,
and in F# lambdas are represented as compiler generated class
types that inherit FSharpFunc.

1 abstract class FSharpFunc<T, R> {
2 abstract R Invoke(T arg);
3 }

In both cases, if a lambda captures free variables, these variables
are represented as member fields in a compiler-generated class
type.

2.2 Optimizing Frameworks

We next examine two optimizing frameworks for streaming opera-
tions: ScalaBlitz and LinqOptimizer.



2.2.1 ScalaBlitz

ScalaBlitz is an open source framework that optimizes Scala col-
lections by applying optimizations for both sequential and parallel
computations. It eliminates boxing, performs lambda inlining, loop
fusion and specializations to particular data-structures. ScalaBlitz
performs optimizations at compile-time based on Scala macros [1].

By enclosing a functional pipeline into an optimize block, Scal-
aBlitz expands in place an optimized version of it:

1 def sumOfSquareSeqBlitz (v : Array[Double]) : Double = {
2 optimize {
3 val sum : Double = v
4 .map(d => d * d)
5 .sum
6 sum
7 }
8 }

This can be achieved because this library is implemented as a def
macro with the following signature:

1 def optimize[T](exp: T): Any = macro optimize_impl[T]

The optimize block is a function that starts with the additional
keyword macro. When the compiler encounters an application of
the macro optimize(expression), it will expand that application
by invoking optimize impl, with the abstract-syntax tree of the
functional pipeline expression as argument. The result of the macro
implementation is an expanded abstract syntax tree. This tree will
be replaced at the call site and will be type-checked.

2.2.2 LinqOptimizer

LinqOptimizer is an open source optimizer for LINQ queries. It
compiles declarative queries into fast loop-based imperative code,
eliminating virtual calls and temporary heap allocations. LinqOp-
timizer is a run-time compiler based on LINQ Expression trees,
which enable a form of metaprogramming based on type-directed
quotations.

In the following example, a lambda expression is assigned to a
variable of type Expression<Func<...>>.

1 Expression<Func<int, int>> exprf = x => x + 1;
2 Func<int, int> f = exprf.Compile(); // compile to IL
3 Console.WriteLine(f(1)); // 2

At compile time, the compiler emits code to build an expression
tree that represents the lambda expression. LINQ offers library sup-
port for runtime manipulation of expression trees (through visitors)
and also support for run-time compilation to IL. Using such fea-
tures, LinqOptimizer lifts queries into the world of expression trees
and performs the following optimizations:

1) inlines lambdas and performs loop fusion:

1 var sum = (from num in nums.AsQueryExpr() // lift
2 where num % 2 == 0
3 select num * num).Sum();
4 // effectively optimizes to
5 int sum = 0;
6 for (int index = 0; index < nums.Length; index++) {
7 int num = nums[index];
8 if (num % 2 == 0)
9 sum += num * num;

10 }

2) for queries with nested structure (SelectMany, flatMap) applies
nested loop generation:

1 var sum = (from num in nums.AsQueryExpr() // lift
2 from _num in _nums
3 where num % 2 == 0
4 select num * _num).Sum();
5 // effectively optimizes to
6 int sum = 0;
7 for (int index = 0; index < nums.Length; index++) {
8 for (int _index = 0; _index < _nums.Length;
9 _index++) {

10 int num = nums[index];
11 int _num = _nums[_index];
12 if (num % 2 == 0)
13 sum += num * _num;
14 }
15 }

3. Results

We next discuss our benchmarks and experimental results.

3.1 Microbenchmarks

In this work, we use 4 main microbenchmarks. We focus our efforts
on measuring iteration throughput and lambda invocation costs. In
all of our benchmarks we produce scalar values as the result of a
terminal operation (e.g., instead of producing a transformed list of
values), as we do not want to cause memory management effects
(e.g., garbage collection). Furthermore, we did not employ sorting
or grouping operators, in order to avoid interfering with algorithmic
details of library implementations (e.g., mergesort vs quicksort,
hash tables vs balanced trees, etc.).

We measure the performance of:

• sum iteration speed with no lambdas, just a single iteration.
• sumOfSquares a small pipeline with one map operation (i.e.,

one lambda).
• sumOfSquaresEven a bigger pipeline with a filter and map

chain of two lambdas.
• cart a nested pipeline with a flatMap and an inner operation,

again with a flatMap (capturing a variable), to encode a Carte-
sian product.

We developed this set for all four languages, Java, Scala, C# and
F#, for both sequential and parallel execution. For the latter three
we have also included optimized versions using ScalaBlitz and
LinqOptimizer. For Scala we also include alternate implementa-
tions, which employ more idiomatic strict collections (without the
views API). Arguably this approach is better supported in the Scala
libraries. Therefore we present separate measurements for Scala-
views and Scala-strict tests. In our following analysis, when we do
not refer to a Scala-strict test explicitly, Scala-views are implied.
Additionally, we include a baseline suite of benchmarks for the se-
quential cases.

We have run these benchmarks on both Windows and Linux,
although Windows is the more universal reference platform for
our comparison: it allows us to perform the C#/F# tests on the



industrial-strength implementation of the Microsoft CLR virtual
machine.

The purpose of baseline benchmarks is to assess the performance
difference between functional pipelines and the corresponding im-
perative, hand-written equivalents. The imperative examples make
use of indexed-based loop iterations in the form of for-loops (ex-
cept for the Scala case in which the while-loop is the analogue of
imperative iteration).

Input: All tests were run with the same input set. For the sum,
sumOfSquares and sumOfSquaresEven we used an array of N =
10, 000, 000 long integers, produced by N integers with a range

function. The cart test iterates over two arrays. An outer one of
1, 000, 000 long integers and an inner one of 10.

The Scala, C# and F# tests were compiled with optimization flags
enabled and for Java/Scala tiered compilation was left disabled (C2
JIT compiler only). Additionally, we fixed the heap size to 3GB for
the JVM to avoid heap resizing effects during execution.

3.2 Experimental Setup

Windows Ubuntu Linux

Version 8.1 13.10/3.11.0-20
Architecture x64 x64

CPU Intel Core i5-3360M vPro 2.8GHz
Cores 2 physical x 2 logical

Memory 4GB

Systems: We performed both Linux (see Figure 2) and Windows
(see Figure 1) tests natively on the same system via a dual-boot
installation.

Windows Ubuntu Linux

Java Java 8 (b132)/JVM 1.8
Scala 2.10.4/JVM 1.8
C# C#5 /CLR v4.0 C# mono 3.4.0.0/mono 3.4.0
F# F#3.1/CLR v4.0 F# open-source 3.0/mono 3.4.0

Microbenchmarking automation: For Java and Scala bench-
marks we used the Java Microbenchmark Harness (JMH) [13] tool:
a benchmarking tool for JVM-based languages that is part of the
OpenJDK. JMH is an annotation-based tool and takes care of all in-
trinsic details of the execution process. Its goal is to produce as ob-
jective results as possible. The JVM performs JIT compilation (we
use the C2 JIT compiler) so the benchmark author must measure
execution time after a certain warm-up period to wait for transient
responses to settle down. JMH offers an easy API to achieve that. In
our benchmarks we employed 10 warm-up iterations and 10 proper
iterations. We also force garbage collection before benchmark ex-
ecution. Regarding the CLR, warm-up effects take an infinitesimal
amount of time compared to the JVM [14]. The CLR JIT compiler
compiles methods exactly once and subsequent method calls invoke
directly the JITted version. Code is never recompiled (nor inter-
preted at any point). For the purpose of benchmarking C#/F# pro-
grams, as there is not any widely-used, state-of-the-art tool for mi-
crobenchmarking, we created the LambdaMicrobenchmarking util-
ity 4 written in C#, according to the common microbenchmarking
practices described in [12]. It calculates the average execution of
method invocations using the TimeSpan.TotalMilliseconds prop-
erty of the TimeSpan structure that converts ticks to whole and frac-

4 https://github.com/biboudis/LambdaMicrobenchmarking .

tional milliseconds. Our utility uses the Student-T distribution for
statistical inference; mean error and standard deviation. The same
distribution is employed in JMH as well. Our utility forces garbage
collection between runs. For all tests, we do not measure the time
needed to initialize data-structures (filling arrays), and neither the
run-time compilation cost of the optimized queries in the LinqOp-
timizer case nor the compile-time overhead of macro expansion in
the ScalaBlitz case.

3.3 Performance Evaluation

Languages: Among the languages5 of our study, Java exhibits
by far the best performance, in both sequential and parallel tests,
due to its advanced translation scheme. Notably, Java results show
not only that three out of four of our tests are very close to base-
line measurements but also that the parallel versions scale well.
Regarding the parallel versions, all microbenchmarks reveal that
even in cases where Java was very close to the baseline, perfor-
mance increases further achieving parallel speedups of 1.1x-1.6x.
For the cart benchmark, although Java has the best performance
among all streaming implementations, it still pays a considerable
cost for inner closures, as can be seen in comparison to the baseline
benchmark for the sequential case. During the execution of cart
the garbage collector was invoked 3 times (per iteration) for the
sequential version and 4 times for the parallel version, indicating
significant memory management activity. Scala Parallel Collec-
tions using the lazy, view, API seem to suffer in the parallel tests
quite significantly over all other implementations (note that the Y-
axis is truncated) due to boxing/unboxing, iterator, and function
object abstraction penalties. (For a more detailed analysis, see Sec-
tion 4.) The strict Scala API (which, although non-equivalent to
other implementations is arguably more idiomatic) performed sig-
nificantly better. Although we present results for a 3GB heap space,
we have also conducted the same tests under various constrained
heap spaces. In practice, Scala-strict benchmarks ran with about
4x more heap space than their Java counterparts, which is unsur-
prising given that all strict operators need to generate and process
intermediate collections. Still, the parallel Scala/Scala-strict bench-
marks were almost always the slowest among all implementations
on both Windows and Linux.

In the sequential tests of C# and F# we observe a constant differ-
ence in favor of C# for sumOfSquares, sumOfSquaresEven and a
significant difference of 2.7x for the cart benchmark on Windows.
As seq<'T> is a type alias for .NET’s IEnumerable<T> we conclude
that the difference is attributed to different implementations of op-
erators. In the parallel benchmarks, as F# relies on the standard
library for .NET, it is driven by its performance. Thus, all parallel
benchmarks (Windows and Linux) show these two languages at the
same level.

In all cases, the parallel benchmarks of LINQ on mono scaled
poorly, revealing poor scaling decisions in the implementation. Ad-
ditionally, comparing the Windows and Linux charts for the respec-
tive baseline benchmarks, mono seems to have generated slower
code for the sumOfSquaresEven benchmark, in which the mod-
ulo operation is applied. This indicates that JIT compilation opti-
mizations can be improved significantly, especially in cases such as
the handwritten fused loop-if operation of the sumOfSquaresEven
situation.

5 Although it is easy to categorize benchmarks per language, and we refer
to languages throughout, it is important to keep in mind that the compar-
ison concerns primarily the standard libraries of these languages and only
secondarily the language translation techniques for lambdas.



Figure 1: Microbenchmark Results on Windows (CLR/JVM) in milliseconds / iteration (average of 10). Y-axis truncated for readability.



Figure 2: Microbenchmark Results on Linux (mono/JVM) in milliseconds / iteration (average of 10). Y-axis truncated for readability.



Windows Linux

Benchmark Java Scala Scala-Strict C# F# Java Scala Scala-Strict C# F#

sumBaseline 0.011 0.015 1.214 0.168 0.054 0.011 0.552 0.818
sumSeq 0.015 0.607 0.277 2.407 0.525 0.014 0.449 0.475 0.359 1.015
sumSeqOpt 0.010 0.536 0.212 0.022 0.248 0.730
sumPar 0.035 2.348 2.622 0.895 4.371 0.009 3.653 1.827 106.800 117.358
sumParOpt 0.017 0.075 0.196 0.026 1.400 2.010
sumOfSquaresBaseline 0.008 0.016 0.129 0.202 0.023 0.013 0.799 1.072
sumOfSquaresSeq 0.009 1.049 2.052 0.763 3.755 0.019 1.331 0.895 1.193 1.116
sumOfSquaresSeqOpt 1.104 0.215 0.292 0.238 0.583 0.171
sumOfSquaresPar 0.008 3.691 9.355 2.745 0.162 0.017 2.807 6.347 23.856 40.342
sumOfSquaresParOpt 0.036 0.433 0.094 0.136 0.782 0.485
sumOfSquaresEvenBaseline 0.044 0.085 0.204 0.393 0.059 0.035 0.906 1.270
sumOfSquaresEvenSeq 0.121 1.157 1.510 3.789 4.838 0.096 1.159 1.042 0.895 1.680
sumOfSquaresEvenSeqOpt 0.550 2.052 5.351 0.162 0.847 0.522
sumOfSquaresEvenPar 0.025 5.184 8.207 5.943 2.556 0.027 4.905 16.252 46.739 21.465
sumOfSquaresEvenParOpt 0.502 0.115 0.128 0.483 1.737 4.390
cartBaseline 0.060 0.041 0.015 1.007 0.010 0.010 0.040 0.113
cartSeq 0.749 6.195 3.939 4.284 5.840 0.510 2.437 5.486 0.954 2.791
cartSeqOpt 0.666 0.148 0.232 0.763 0.751 0.307
cartPar 0.131 13.167 13.165 4.954 7.855 0.243 7.641 7.484 10.963 7.546
cartParOpt 2.694 0.904 1.371 2.642 1.810 1.310
refBaseline 0.069 0.259 0.159 0.360 0.152 0.288 1.740 1.566
refSeq 0.221 1.077 0.719 1.267 3.415 0.237 0.438 0.353 1.269 0.639
refSeqOpt 0.284 2.082 1.437 0.235 2.409 1.643
refPar 0.119 5.123 0.853 8.548 2.556 0.271 6.904 0.765 44.879 27.644
refParOpt 0.247 0.782 0.187 0.112 1.445 2.592

Table 1: Standard deviations for 10 runs of each benchmark.

Among all standard parallel libraries, F# achieved the best scaling
of 2.6x-4.3x.

Optimizing frameworks: When streaming pipelines are
amenable to optimization, the improvement can be dramatic.

ScalaBlitz improved Scala in virtually all cases. Especially in the
sum benchmark, Scala was significantly improved, achieving an
execution time close to that of the Java/Scala baseline tests. Notable
are the 52x speed-up in relation to Scala Parallel Collections for the
sum benchmark on Windows, as well as 50x on Linux. Addition-
ally, ScalaBlitz achieved a 17x improvement for sumOfSquares
and 19x for sumOfSquaresEven (again for the parallel bench-
marks) on Windows. ScalaBlitz did not demonstrate improved per-
formance in the case of nested loops (sequential cart) but presented
a 5.7x speedup in the parallel version on Windows (and 5.2x on
Linux). Apart from the elimination of abstraction penalties, Scal-
aBlitz offers additional performance improvement in the parallel
optimized versions due to its iterators that allow fine-grained and
efficient work-stealing [10].

LinqOptimizer improved in all cases the performance of the
C# and F# benchmarks. The result of LinqOptimizer univer-
sally demonstrates the smallest performance gap with the base-
line benchmarks, in absolute values. Especially in the cart bench-
mark, LinqOptimizer achieved a speed-up of 17x(sequential) and
13x(parallel) for C# and 42x and 25x respectively for F#. Among
the two .NET languages, F# is the one that benefits more by Lin-
qOptimizer in the sequential sumOfSquares and sumOfSquare-
sEven benchmarks. F# gets 14x and 3x improvements for these
benchmarks, respectively, while C# gets 9x and 1.5x for the se-
quential tests. In the case of cart, LinqOptimizer has employed the
nested loop optimization, which brings execution near the baseline
level.

In table 1 we present the standard deviation of all microbench-
marks. Among all measurements, the parallel collections of Scala
and C#/ F# on mono/Linux presented the highest deviations. Java
demonstrates the highest stability. The strict version of Scala for the

parallel sumOfSquares benchmark exhibit a relatively higher stan-
dard deviation, possibly because of memory effects. (Recall that the
strict implementations do not use a fixed heap size.)

4. Discussion

Our microbenchmarks paint a fairly clear picture of the current
status of lambdas+streaming implementations, as well as their fu-
ture improvement prospects. Java employs the most aggressive im-
plementation technique that does not perform invasive optimiza-
tion. Other languages could benefit from the same translation ap-
proach. At the same time, Java does not have an optimization
framework along the lines of ScalaBlitz or LinqOptimizer. The cart
microbenchmark showcases the need for such optimizations: C#/F#
are 7x faster in parallel performance than Java. For more realis-
tic programs, such benefits may arise more often. Hence, identify-
ing cases in which Java can benefit from a Stream API optimizing
framework (as in the closed-over variables of cart) is a promis-
ing direction. Scala is an outlier in most of our measurements.
We found that its performance, in both the strict and the non-strict
case, is subject to memory management effects. We first examined
whether such effects can be alleviated with the use of VM flags,
without intrusive changes to the benchmarks’ source code. Our
microbenchmark runs employ the default JVM setup of a paral-
lel garbage collector (GC) with GC ergonomics enabled by default.
GC ergonomics is an adaptive mechanism that tries to meet (in or-
der) three goals: 1) minimize pause time, 2) maximize throughput,
3) minimize footprint. Leaving GC ergonomics enabled is not al-
ways beneficial for Scala. We conducted the same tests without the
use of adaptive sizing (-XX:-UseAdaptiveSizePolicy) and no ex-
plicit sizing of generations (on Linux). For both strict and non-strict
(not optimized) parallel tests, we observed an improvement of 1.1x-
2.9x, with the parallel version of sumOfSquaresPar exhibiting the
maximum increase. However, removing adaptive sizing of the heap
also causes a performance degradation of about 10%-15% in the
majority of sequential tests. In limited exploration (also based on



(a) Windows tests (b) Linux tests

Figure 3: Microbenchmark with manual boxing. Y-axis in milliseconds / iteration (average of 10), truncated for readability.

suggestions by Scala experts) we found no other flag setup that sig-
nificantly affects performance.

The main problem with Scala performance is that the Scala Col-
lections are not specialized for primitive types. Therefore, Scala
suffers significant boxing and unboxing overheads for primitive
values, as well as memory pressure due to the creation of intermedi-
ate (boxed) objects. Prokopec et al. [10] explain such issues, along
with the effects of indirections and iterator performance. Method-
level specialization for primitive types can currently be effected in
two ways. One is the Scala @specialized annotation, which spe-
cializes chains of annotated generic call sites [2], while the other
is Miniboxing [15]. Use of the @specialized annotation causes the
injection of specialized method calls while preserving compatibil-
ity with generic code. The use of @specialized preserves sepa-
rate compilation by generating all variants of specialized methods,
hence leading to bytecode explosion. Partly due to such consider-
ations, Scala Collections do not employ the @specialized anno-
tation. Miniboxing presents a promising alternative that minimizes
bytecode size and defers transformations to load time. Currently
Miniboxing is offered as a Scala compiler plugin. Having special-
ized collections in the Scala standard library could greatly improve
performance in our benchmarks.

To demonstrate the above points, in Figure 3 we present an addi-
tional benchmark (refs), which executes a pipeline with reference
types and avoids automatic boxing of our input data. The bench-
mark operates on an array of 10, 000, 000 instances of a class,
Ref, employs two filter combinators, and finally returns the size of
the resulting collection. This benchmark effectively performs box-
ing manually, for all languages. In this benchmark, Java outper-
forms other streaming libraries but the difference is quite small.
Scala is now directly comparable to all other implementations,
since it performs no extraneous boxing compared to other lan-
guages. Both sequential and parallel tests for Java didn’t invoke
the GC. However, Scala in the Filtered trait, which is defined
in the GenSeqViewLike implementation trait, causes internal box-
ing for the size operator. The length definition in Filtered, which
delegates to the lazy value of index, and the array allocation in-
side that lazy value are responsible for this effect. In the Scala-
strict parallel test, nearly 100% of the allocated memory (origi-
nating both from the main thread and from the Fork/Join work-
ers) comes from the intermediate arrays, but the ample heap space
combined with the almost perfect inlining of the main internal
transformer (ParArrayIterator.filter2combiner quick) makes
the Scala version highly competitive.

Figure 3 exhibits a desirable property: if we consider the imple-
mentations that remove the incidental overheads that we identified

(and which otherwise dominate computation costs), all language
versions exhibit parallel scaling. Observe the parallel speedups in
the case of Java, Scala-strict, F#, and C# on Windows.

One final remark is on the choice of using the C2 JIT compiler
only (by using the -XX:-TieredCompilation flag). In both Scala
and Java tests, using tiered compilation degraded the performance
in the majority of our benchmarks. Concretely, for the Scala tests,
tiered compilation had only a minor positive effect on the sum tests
and an approximately 10% performance degradation in all other
cases. Regarding the Java cases, all tests, apart from the sequential
and parallel versions of the refs benchmark, presented performance
degradation.

5. Future Work

Several possibilities for further work arise. Our benchmark suite
can be enhanced with more complex microbenchmarks to capture
the case of streams that include a variable number of successive
combinators, such as filters. Additionally, an interesting followup
would be to examine how measurements are affected as a func-
tion of the number of processors. Regarding standard stream APIs,
C#, F# and Scala seem to use external iteration while Java uses
internal iteration. Thus an interesting direction is to implement in-
ternal iterator-based streaming APIs for the aforementioned lan-
guages. Finally, LinqOptimizer demonstrated how, by leveraging
the LINQ Expression tree API, optimized queries can be obtained,
while ScalaBlitz employed macros for compile-time optimizations.
Java can benefit from an optimizing framework. As Java can have
access to the internal compiler API, a very promising direction to
explore is the design and development of an optimizing framework,
designed as a javac plugin.

6. Conclusions

In this work, we evaluated the combined cost of lambdas and stream
APIs in four different multiparadigm languages running on two
different runtime platforms. We used benchmarks expressed with
the closest comparable datatypes that each language offers in or-
der to preserve semantic equivalence. Our benchmarks constitute
a fine grained set. Each benchmark builds upon the previous one
in terms of complexity. Additionally we run all benchmarks on
both Windows and Linux. Our results clearly show the benefit
of advanced implementation techniques in Java, but also the per-
formance advantage of optimizing frameworks that can radically
transform streaming pipelines.



Acknowledgments

We would like to thank Aleksey Shipilev, Paul Sandoz, Brian
Goetz, Alex Buckley, Doug Lea, and the ScalaBlitz developers,
Aleksandar Prokopec and Dmitry Petrashko, for their valuable
comments that helped strengthen this study. We gratefully ac-
knowledge funding by the European Union under a Marie Curie
International Reintegration Grant (PADECL) and a European Re-
search Council Starting/Consolidator grant (SPADE); and by the
Greek Secretariat for Research and Technology under an Excel-
lence (Aristeia) award (MORPH-PL.)

References
[1] E. Burmako. Scala Macros: Let Our Powers Combine!: On How Rich

Syntax and Static Types Work with Metaprogramming. In Proc. of
the 4th Workshop on Scala, page 3, Montpellier, France, 2013. ACM.

[2] I. Dragos. Compiling Scala for Performance. PhD thesis, IC, Lau-
sanne, 2010.

[3] B. Goetz. Translation of Lambda Expressions, Apr. 2012.
URL http://cr.openjdk.java.net/~briangoetz/lambda/
lambda-translation.html.

[4] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The
Java® Virtual Machine Specification : Java SE 8 Edition, Mar.
2014. URL http://docs.oracle.com/javase/specs/jvms/
se8/html/index.html.

[5] E. Meijer. The World According to LINQ. Queue, 9(8):60:6060:72,
Aug. 2011. ISSN 1542-7730.

[6] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling Object,
Relations and XML in the .NET Framework. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’06, pages 706–706, New York, NY, USA, 2006.
ACM.

[7] D. G. Murray, M. Isard, and Y. Yu. Steno: Automatic Optimization
of Declarative Queries. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, pages 121–131, New York, NY, USA, 2011. ACM.

[8] N. Palladinos and K. Rontogiannis. LinqOptimizer: an automatic
query optimizer for LINQ to objects and PLINQ., 2013. URL http:
//nessos.github.io/LinqOptimizer/.

[9] A. Prokopec and D. Petrashko. ScalaBlitz: Lightning-Fast Scala col-
lections framework, 2013. URL http://scala-blitz.github.
io/.

[10] A. Prokopec, D. Petrashko, and M. Odersky. On Lock-Free Work-
stealing Iterators for Parallel Data Structures. Technical report, 2014.

[11] J. Rose, D. Coward, O. Bini, W. R. Cook, S. Pedroni, and
J. Theodorou. JSR 292: Supporting dynamically typed languages on
the java platform, 2011. URL https://jcp.org/en/jsr/detail?
id=292.

[12] P. Sestoft. Microbenchmarks in Java and C#. 2013.
[13] A. Shipilev, S. Kuksenko, A. Astrand, S. Friberg, and H. Loef.

OpenJDK: jmh. URL http://openjdk.java.net/projects/
code-tools/jmh/.

[14] J. Singer. JVM versus CLR: a comparative study. In Proceedings
of the 2nd International Conference on Principles and Practice of
Programming in Java, pages 167–169. Computer Science Press, Inc.,
2003.

[15] V. Ureche, C. Talau, and M. Odersky. Miniboxing: Improving the
Speed to Code Size Tradeoff in Parametric Polymorphism Transla-
tions. In Proc. of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages and Applica-
tions (OOPSLA), pages 73–92, New York, NY, USA, 2013. ACM.

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html
http://docs.oracle.com/javase/specs/jvms/se8/html/index.html
http://docs.oracle.com/javase/specs/jvms/se8/html/index.html
http://nessos.github.io/LinqOptimizer/
http://nessos.github.io/LinqOptimizer/
http://scala-blitz.github.io/
http://scala-blitz.github.io/
https://jcp.org/en/jsr/detail?id=292
https://jcp.org/en/jsr/detail?id=292
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

	Introduction
	Implementation Techniques for Lambdas and Streaming
	Programming Languages
	Java
	Scala
	C#/F#

	Optimizing Frameworks
	ScalaBlitz
	LinqOptimizer


	Results
	Microbenchmarks
	Experimental Setup
	Performance Evaluation

	Discussion
	Future Work
	Conclusions

