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Abstract. Meta-AspectJ (MAJ) is a language tool for generating As-
pectJ programs using code templates. MAJ itself is an extension of
Java, so users can interleave arbitrary Java code with AspectJ code tem-
plates. MAJ is a structured meta-programming tool: a well-typed gen-
erator implies a syntactically correct generated program. MAJ promotes
a methodology that combines aspect-oriented and generative program-
ming. Potential applications range from implementing domain-specific
languages with AspectJ as a back-end to enhancing AspectJ with more
powerful general-purpose constructs. In addition to its practical value,
MAJ offers valuable insights to meta-programming tool designers. It is a
mature meta-programming tool for AspectJ (and, by extension, Java): a
lot of emphasis has been placed on context-sensitive parsing and error-
reporting. As a result, MAJ minimizes the number of meta-programming
(quote/unquote) operators and uses type inference to reduce the need to
remember type names for syntactic entities.

1 Introduction

Meta-programming is the act of writing programs that generate other pro-
grams. Powerful meta-programming is essential for approaches to automating
software development. In this paper we present Meta-AspectJ (MAJ): a meta-
programming language tool extending Java with support for generating AspectJ
[9] programs. MAJ offers a convenient syntax, while explicitly representing the
syntactic structure of the generated program during the generation process. This
allows MAJ to guarantee that a well-typed generator will result in a syntacti-
cally correct generated program. This is the hallmark property of structured

meta-programming tools, as opposed to lexical or text-based tools. Structured
meta-programming is desirable because it means that a generator can be re-
leased with some confidence that it will create reasonable programs regardless
of its inputs.

Why should anyone generate AspectJ programs, however? We believe that
combining generative techniques with aspect-oriented programming results in
significant advantages compared to using either approach alone. MAJ can be
used for two general kinds of tasks: to implement generators using AspectJ and
to implement general-purpose aspect languages using generation. Specifically,
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MAJ can be used to implement domain-specific languages (i.e., to implement a
generator) by translating domain-specific abstractions into AspectJ code. MAJ
can also be used to implement general-purpose extensions of AspectJ (e.g., ex-
tensions that would recognize different kinds of joinpoints). Thus, MAJ enables
the use of AspectJ as an aspect-oriented “assembly language” [13] to simplify
what would otherwise be tedious tasks of recognizing patterns in an existing
program and rewriting them. A representative of this approach is our prior work
on GOTECH [18]: a system that adds distributed capabilities to an existing
program by generating AspectJ code using text templates.

The value and novelty of Meta-AspectJ can be described in two axes: its
application value (i.e., the big-picture value for potential users) and its techni-
cal contributions (i.e., smaller reusable lessons for other researchers working on
meta-programming tools). In terms of application value, MAJ is a useful meta-
programming tool, not just for AspectJ but also for Java in general. Specifically:

– For generating either AspectJ or plain Java code, MAJ is safer than any
text-based approach because the syntax of the generated code is represented
explicitly in a typed structure.

– Compared to plain Java programs that output text, generators written in
MAJ are simpler because MAJ allows writing complex code templates using
quote/unquote operators.

– MAJ is the only tool for structured generation of AspectJ programs that we
are aware of. Thus, to combine the benefits of generative programming and
AspectJ, one needs to either use MAJ, or to use a text-based approach.

In terms of technical value, MAJ offers several improvements over prior meta-
programming tools for Java. These translate to ease of use for the MAJ user,
while the MAJ language design offers insights for meta-programming researchers:

– MAJ shows how to minimize the number of different quote/unquote oper-
ators compared to past tools, due to the MAJ mechanism for inferring the
syntactic type (e.g., expression, declaration, statement, etc.) of a fragment
of generated code. This property requires context-sensitive parsing of quoted
code: the type of an unquoted variable dictates how quoted code should be
parsed. As a result, the MAJ implementation is quite sophisticated and not
just a naive precompiler. An additional benefit of this approach is that MAJ
emits its own error messages, independently from the Java compiler that is
used in its back-end.

– When storing fragments of generated code in variables, the user does not
need to specify the types of these variables (e.g., whether they are statements,
expressions, etc.). Instead, a special infer type can be used.

The above points are important because they isolate the user from low-level
representation issues and allow meta-programming at the template level.

We next present an introduction to the MAJ language design (Section 2),
discuss examples and applications (Section 3), describe in more depth the indi-
vidual interesting technical points of MAJ (Section 4), and discuss related and
future work (Section 5).
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2 Meta-AspectJ Introduction

2.1 Background: AspectJ

Aspect-oriented programming (AOP) is a methodology that advocates decom-
posing software by aspects of functionality. These aspects can be “cross-cutting”:
they span multiple functional units (functions, classes, modules, etc.) of the
software application. Tool support for aspect-oriented programming consists of
machinery for specifying such cross-cutting aspects separately from the main
application code and subsequently composing them with that code.

AspectJ [9] is a general purpose, aspect-oriented extension of Java. AspectJ
allows the user to define aspects as well as ways that these aspects should be
merged (“weaved”) with the rest of the application code. The power of AspectJ
comes from the variety of changes it allows to existing Java code. With AspectJ,
the user can add superclasses and interfaces to existing classes and can inter-
pose arbitrary code to method executions, field references, exception throwing,
and more. Complex enabling predicates can be used to determine whether code
should be interposed at a certain point. Such predicates can include, for instance,
information on the identity of the caller and callee, whether a call to a method is
made while a call to a certain different method is on the stack, etc. For a simple
example of the syntax of AspectJ, consider the code below:

aspect CaptureUpdateCallsToA {

static int num_updates = 0;

pointcut updates(A a): target(a) && call(public * update*(..));

after(A a): updates(a) { // advice

num_updates++; // update was just performed

}

}

The above code defines an aspect that just counts the number of calls to
methods whose name begins with “update” on objects of type A. The “point-
cut” definition specifies where the aspect code will tie together with the main
application code. The exact code (“advice”) will execute after each call to an
“update” method.

2.2 MAJ Basics

MAJ offers two variants of code-template operators for creating AspectJ code
fragments: ‘[...] (“quote”) and #[EXPR] or just #IDENTIFIER (“unquote”).
(The ellipses, EXPR and IDENTIFIER are meta-variables matching any syntax,
expressions and identifiers, respectively.) The quote operator creates representa-
tions of AspectJ code fragments. Parts of these representations can be variable
and are designated by the unquote operator (instances of unquote can only occur
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inside a quoted code fragment). For example, the value of the MAJ expression
‘[call(* *(..))] is a data structure that represents the abstract syntax tree
for the fragment of AspectJ code call(* *(..)). Similarly, the MAJ expression
‘[!within(#className)] is a quoted pattern with an unquoted part. Its value
depends on the value of the variable className. If, for instance, className

holds the identifier “SomeClass”, the value of ‘[!within(#className)] is the
abstract syntax tree for the expression !within(SomeClass).

MAJ also introduces a new keyword infer that can be used in place of a
type name when a new variable is being declared and initialized to a quoted
expression. For example, we can write:

infer pct1 = ‘[call(* *(..))];

This declares a variable pct1 that can be used just like any other program
variable. For instance, we can unquote it:

infer adv1 = ‘[void around() : #pct1 { }];

This creates the abstract syntax tree for a piece of AspectJ code defining (empty)
advice for a pointcut. Section 2.3 describes in more detail the type inference
process.

The unquote operator can also be used with an array of expressions. We
call this variant of the operator “unquote-splice”. The unquote-splice operator
is used for adding arguments in a quoted context that expects a variable number
of arguments (i.e., an argument list, a list of methods, or a block of statements).
For example, if variable argTypes holds an array of type names, then we can
generate code for a pointcut describing all methods taking arguments of these
types as:

infer pct2 = ‘[call(* *(#[argTypes])];

That is, if argTypes has 3 elements and argTypes[0] is int, argTypes[1] is
String, and argTypes[2] is Object, then the value of pct2 will be the abstract
syntax tree for the AspectJ code fragment call(* *(int, String, Object)).

Of course, since AspectJ is an extension of Java, any regular Java program
fragment can be generated using MAJ. Furthermore, the values of primitive Java
types (ints, floats, doubles, etc.) and their arrays can be used as constants
in the generated program. The unquote operator automatically promotes such
values to the appropriate abstract syntax tree representations. For example,
consider the code fragment:

void foo(int n) {

infer expr1 = ‘[ #n * #n ];

infer expr2 = ‘[ #[n*n] ];

...

}

If n holds the value 4, then the value of expr1 is ‘[ 4 * 4 ] and the value of
expr2 is ‘[ 16 ]. Similarly, if nums is an array of Java ints with value {1,2,3}
then the code fragment
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infer arrdcl = ‘[ int[] arr = #nums; ];

will set arrdcl to the value ‘[ int [] arr = {1,2,3}; ].

We can now see a full MAJ method that generates a trivial but complete
AspectJ file:

void generateTrivialLogging(String classNm) {

infer aspectCode =

‘[ package MyPackage;

aspect #[classNm + "Aspect"] {

before : call(* #classNm.*(..))

{ System.out.println("Method called"); }

}

];

System.out.println(aspectCode.unparse());

}

The generated aspect causes a message to be printed before every call of a
method in a class. The name of the affected class is a parameter passed to the
MAJ routine. This code also shows the unparsemethod that our abstract syntax
types support for creating a text representation of their code. The abstract
syntax types of the MAJ back-end1 also support other methods for manipulating
abstract syntax trees. One such method, addMember, is used fairly commonly:
addMember is supported by syntactic entities that can have an arbitrary number
of members (e.g., classes, interfaces, aspects, or argument lists). Although the
high-level MAJ operators (quote, unquote, unquote-splice) form a complete set
for generating syntax trees, it is sometimes more convenient to manipulate trees
directly using the addMember method.

2.3 Types and Inference

We saw earlier an example of the MAJ keyword infer:

infer adv1 = ‘[void around(): #pct1 {} ];

The inferred type of variable adv1 will be AdviceDec. (for “advice declaration”),
which is one of the types for AspectJ abstract syntax tree nodes that MAJ
defines. Such types can be used explicitly both in variable definitions and in the
quote/unquote operators. For instance, the fully qualified version of the adv1

example would be:

AdviceDec adv1 = ‘(AdviceDec)[void around(): #(Pcd)pct1 {} ];

1 We currently use modified versions of the AspectJ compiler classes for the MAJ
back-end, but may choose to replicate these classes in a separate MAJ package in
the future.
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The full set of permitted type qualifiers contains the following names: IDENT,
Identifier, NamePattern, Modifiers, Import, Pcd, TypeD, VarDec, JavaExpr,
Stmt, MethodDec, ConstructorDec, ClassDec, ClassMember, InterfaceDec,
DeclareDec, AdviceDec, CompilationUnit, PointcutDec, Pcd, AspectDec,
FormalDec, and AspectMember. Most of the qualifiers’ names are self-descriptive,
but a few require explanation: IDENT is an unqualified name (no dots), while
Identifier is a full name of a Java identifier, such as pack.clazz.mem.
NamePattern can be either an identifier, or a wildcard, or a combination of
both. Pcd is for a pointcut body (e.g., call(* *(..)), as in our example)
while PointcutDec is for full pointcut definitions (with names and the AspectJ
pointcut keyword).

Although MAJ allows the use of type qualifiers, these are never necessary for
uses of quote/unquote, as well as wherever the infer keyword is permitted. The
correct types and flavor of the operators can be inferred from the syntax and
type information. The goal is to hide the complexity of the explicit type qualifiers
from the user as much as possible. Nevertheless, use of types is still necessary
wherever the infer keyword cannot be used, notably in method signatures and
in definitions of member variables that are not initialized.

3 Applications

There are many ways to view the value of MAJ in the application domain (and,
by extension, the value of combining generative and aspect-oriented program-
ming, in general). One can ask why a generator cannot just perform the re-
quired modifications to a program without AspectJ, using meta-programming
techniques alone. Similarly, one can ask why AspectJ alone is not sufficient for
the desired tasks. We address both points below.

3.1 Why Do we Need AspectJ?

Aspect-oriented programming has significant value for building generators. A
vidid illustration is our previous work on the GOTECH generator [18]. GOTECH
takes a Java program annotated with JavaDoc comments to describe what parts
of the functionality should be remotely executable. It then transforms parts of
the program so that they execute over a network instead of running on a local
machine. The middleware platform used for distributed computing is J2EE (the
protocol for Enterprise Java Beans—EJB). GOTECH takes care of generating
code adhering to the EJB conventions and makes methods, construction calls,
etc. execute on a remote machine. Internally, the modification of the application
is performed by generating AspectJ code that transforms existing classes. (We
give a specific example later.)

A generator or program transformer acting on Java programs could com-
pletely avoid the use of AspectJ and instead manipulate Java syntax directly.
Nevertheless, AspectJ gives a very convenient vocabulary for talking about pro-
gram transformations, as well as a mature implementation of such transforma-
tions. AspectJ is a very convenient, higher-level back-end for a generator. It lets
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its user add arbitrary code in many points of the program, like all references
to a member, all calls to a set of methods, etc. If a generator was to repro-
duce this functionality without AspectJ, the generator would need to parse all
the program files, recognize all transformation sites, and apply the rewrites to
the syntax. These actions are not simple for a language with the syntactic and
semantic complexity of Java. For instance, generator writers often need to use
functionality similar to the AspectJ cflow construct. cflow is used for recog-
nizing calls under the control flow of another call (i.e. while the latter is still on
the execution stack). Although this functionality can be re-implemented from
scratch by adding a run-time flag, this would be a tedious and ad hoc replication
of the AspectJ functionality. It is much better to inherit a general and mature
version of this functionality from AspectJ.

Note that using AspectJ as a “bag of program transformation tricks” is per-
haps an unintended consequence of its power. AspectJ’s main intended use is for
cross-cutting: the functionality additions should span several classes. The abil-
ity to have one aspect affect multiple classes at once is occasionally useful but
secondary when the AspectJ code is generated instead of hand-written. On the
other hand, in order to support cross-cutting, aspect-oriented tools need to have
sophisticated mechanisms for specifying aspect code separately from the main
application code and prescribing precisely how the two are composed. This is
the ability that is most valuable to our approach.

3.2 Why Do we Need Meta-Programming?

Despite its capabilities, there are several useful operations that AspectJ alone
cannot handle. For example, AspectJ cannot be used to create an interface iso-
morphic to the public methods of a given class (i.e., a new interface whose meth-
ods correspond one-to-one to the public methods of a class). This is an essential
action for a tool like GOTECH that needs to create new interfaces (home and
remote interfaces, per the EJB conventions) for existing classes. GOTECH was
used to automate activities that were previously [15] shown impossible to auto-
mate with just AspectJ. GOTECH, however, was implemented using text-based
templates. With MAJ, we can do much better in terms of expressiveness and
safety as the generated code is represented by a typed data structure instead of
arbitrary text.

In general, using meta-programming allows us to go beyond the capabilities
of AspectJ by adding arbitrary flexibility in recognizing where aspects should
be applied and customizing the weaving of code. For instance, AspectJ does not
allow expressing joinpoints based on properties like “all native methods”, “all
classes with native methods”, “all methods in classes that extend a system class”,
etc. Such properties are, however, simple to express in a regular Java program—
e.g., using reflection. Similarly, AspectJ does not allow aspects to be flexible with
respect to what superclasses they add to the class they affect, whether added
fields are private or public, etc. This information is instead hard-coded in the
aspect definition. With a meta-program written in MAJ, the generated aspect
can be adapted to the needs of the code body at hand.
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3.3 Example

The above points are best illustrated with a small example that shows a task
that is easier to perform with AspectJ than with ad hoc program transforma-
tion, but cannot be performed by AspectJ alone. Consider the MAJ code in
Figure 1. This is a complete MAJ program that takes a class as input, traverses
all its methods, and creates an aspect that makes each method argument type
implement the interface java.io.Serializable (provided the argument type
does not implement this interface already and it is not a primitive type). For
example, imagine that the class passed to the code of Figure 1 is:

class SomeClass {

public void meth1(Car c) { ... }

public void meth2(int i, Tire t) { ... }

public void meth3(float f, Seat s) { ... }

}

In this case, the list of all argument types is int, float, Car, Tire, and Seat. The
first two are primitive types, thus the MAJ program will generate the following
AspectJ code:

package gotech.extensions;

aspect SerializableAspect {

declare parents: Car implements java.io.Serializable;

declare parents: Tire implements java.io.Serializable;

declare parents: Seat implements java.io.Serializable;

}

The code of Figure 1 faithfully replicates the functionality of a template used in
GOTECH: the system needs to make argument types be serializable if a method
is to be called remotely. (We have similarly replicated the entire functionality of
GOTECH using MAJ and have used it as a regression test during the develop-
ment of MAJ.)

This example is a good representative of realistic uses of MAJ, in that the
cases where AspectJ alone is not sufficient are exactly those where complex con-
ditions determine the existence, structure, or functionality of an aspect. Observe
that most of the code concerns the application logic for finding argument types
and deciding whether a certain type should be augmented to implement interface
Serializable. MAJ makes the rest of the code be straightforward.

The example of Figure 1 is self-contained, but it is worth pointing out that
it could be simplified by making use of reusable methods to traverse a class or a
method signature. Java allows a more functional style of programming through
the use of interfaces and anonymous classes. These let us write general iteration
methods like forAllMethods or forAllArguments that could have been used in
this code.
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import java.io.*;

import java.lang.reflect.*;

import org.aspectj.compiler.base.ast.*;

import org.aspectj.compiler.crosscuts.ast.*;

public class MAJGenerate {

public static void genSerializableAspect(Class inClass, PrintStream out)

{

// Create a new aspect

infer serializedAspect = ‘[aspect SerializableAspect {}];

// Add Serializable to every method argument type that needs it

for (int meth = 0; meth < inClass.getMethods().length; meth++) {

Class[] methSignature =

inClass.getMethods()[meth].getParameterTypes();

for (int parm = 0; parm < methSignature.length; parm++) {

if (!methSignature[parm].isPrimitive() &&

!Serializable.class.isAssignableFrom(methSignature[parm]))

serializedAspect.addMember(‘[ declare parents:

#[methSignature[parm].getName()]

implements java.io.Serializable;

]

);

} // for all params

} // for all methods

infer compU = ‘[ package gotech.extensions;

#serializedAspect

];

out.print(compU.unparse());

}

}

Fig. 1. A routine that generates an aspect that makes method parameter types be
serializable
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4 Meta-AspectJ Design and Implementation

4.1 MAJ Design

We will next examine the MAJ design a little closer, in order to compare it to
other meta-programming tools.

Structured vs. Unstructured Meta-Programming. The value of a MAJ
quoted code fragment is an abstract syntax tree representation of the code frag-
ment. The MAJ operators ensure that all trees manipulated by a MAJ pro-
gram are syntactically well-formed, although they may contain semantic errors,
such as type errors or scoping errors (e.g., references to undeclared variables).
That is, MAJ is based on a context-free grammar for describing AspectJ syn-
tax. The MAJ expressions created using the quote operator correspond to words
(“words” in the formal languages sense) produced by different non-terminals of
this context-free grammar. Compositions of abstract syntax trees in ways that
are not allowed by the grammar is prohibited. Thus, using the MAJ operators,
one cannot create trees that do not correspond to fragments of AspectJ syn-
tax. For instance, there is no way to create a tree for an “if” statement with
5 operands (instead of 3, for the condition, then-branch, and else-branch), or
a class with a statement as its member (instead of just methods and instance
variable declarations), or a declaration with an operator in the type position,
etc. The syntactic well-formedness of abstract syntax trees is ensured statically
when a MAJ program is compiled. For example, suppose the user wrote a MAJ
program containing the declarations:

infer pct1 = ‘[call(* *(..))];

infer progr = ‘[ package MyPackage;

#pct1

];

The syntax error (pointcut in unexpected location) would be caught when this
program would be compiled with MAJ.

The static enforcement of syntactic correctness for the generated program
is a common and desirable property in meta-programming tools. It is often de-
scribed as “the type safety of the generator implies the syntactic correctness
of the generated program”. The property is desirable because it increases con-
fidence in the correctness of the generator under all inputs (and not just the
inputs with which the generator writer has tested the generator). This property
is the hallmark of structured meta-programming tools—to be contrasted with
unstructured, or “text-based”, tools (e.g., the C pre-processor or the XDoclet
tool [16] for Java). As a structured meta-programming tool, MAJ is superior to
text-based tools in terms of safety.

Additionally, MAJ is superior in terms of expressiveness to text-based gen-
eration with a tool like XDoclet [16]. MAJ programs can use any Java code to
determine what should be generated, instead of being limited to a hard-coded
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set of attributes and annotations. Compared to arbitrary text-based generation
with plain Java strings, MAJ is more convenient. Instead of putting Java strings
together with the “+” operator (and having to deal with low-level issues like ex-
plicitly handling quotes, new lines, etc.) MAJ lets the user use convenient code
templates.

Of course, static type safety implies that some legal programs will not be
expressible in MAJ. For instance, we restrict the ways in which trees can be
composed (i.e., what can be unquoted in a quote expression and how). The
well-formedness of an abstract syntax tree should be statically verifiable from
the types of its component parts—if an unquoted expression does not have the
right type, the code will not compile even if the run-time value happens to be
legal. Specifically, it is not possible to have a single expression take values of two
different abstract syntax tree types. For example we cannot create an abstract
syntax tree that may hold either a variable definition or a statement and in the
cases that it holds a definition use it in the body of a class (where a statement
would be illegal).

Qualifier Inference. MAJ is distinguished from other meta-programming tools
because of its ability to infer qualifiers for the quote/unquote operators, as well
as the ability to infer types for the variables initialized by quoted fragments. Hav-
ing multiple quote/unquote operators is the norm in meta-programming tools
for languages with rich surface syntax (e.g., meta-programming tools for Java [3],
C [20], and C++ [7]). For instance, let us examine the JTS tool for Java meta-
programming—the closest comparable to MAJ. JTS introduces several differ-
ent kinds of quote/unquote operators: exp{...}exp, $exp(...), stm{...}stm,
$stm(...), mth{...}mth, $mth(...), cls{...}cls, $cls(...), etc. Addition-
ally, just like in MAJ, JTS has distinct types for each abstract syntax tree form:
AST_Exp, AST_Stmt, AST_FieldDecl, AST_Class, etc. Unlike MAJ, however, the
JTS user needs to always specify explicitly the correct operator and tree type
for all generated code fragments. For instance, consider the JTS fragment:

AST_Exp x = exp{ 7 + i }exp;

AST_Stm s = stm{ if (i > 0) return $exp(x); }stm;

This written in MAJ is simply:

infer x = ‘[7 + i];

infer s = ‘[if (i > 0) return #x ;];

The advantage is that the user does not need to tediously specify what flavor of
the operator is used at every point and what is the type of the result. MAJ will
instead infer this information. As we explain next, this requires sophistication
in the parsing implementation.
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4.2 MAJ Implementation

We have invested significant effort in making MAJ a mature and user-friendly
tool, as opposed to a naive pre-processor. This section describes our implemen-
tation in detail.

Qualifier Inference and Type System. It is important to realize that al-
though multiple flavors of quote/unquote operators are common in syntax-rich
languages, the reason for their introduction is purely technical. There is no fun-
damental ambiguity that would occur if only a single quote/unquote operator
was employed. Nevertheless, inferring qualifiers, as in MAJ, requires the meta-
programming tool to have a full-fledged compiler instead of a naive pre-processor.
(An alternative would be for the meta-programming tool to severely limit the
possible places where a quote or unquote can occur in order to avoid ambiguities.
No tool we are aware of follows this approach.) Not only does the tool need to
implement its own type system, but also parsing becomes context-sensitive—i.e.,
the type of a variable determines how a certain piece of syntax is parsed, which
puts the parsing task beyond the capabilities of a (context-free) grammar-based
parser generator.

To see the above points, consider the MAJ code fragment:

infer l = ‘[ #foo class A {} ];

The inferred type of l depends on the type of foo. For instance, if foo is of
type Modifiers (e.g., it has the value ‘[public]) then the above code would
be equivalent to:

ClassDec l = ‘[ #(Modifiers)foo class A {} ];

If, however, foo is of type Import (e.g., it has the value ‘[import java.io.*;])
then the above code would be equivalent to:

CompilationUnit l = ‘[ #(Import)foo class A {} ];

Thus, to be able to infer the type of the quoted expression we need to know the
types of the unquoted expressions. This is possible because MAJ maintains its
own type system (i.e., it maintains type contexts for variables during parsing).
The type system is simple: it has a fixed set of types with a few subtyping
relations and a couple of ad hoc conversion rules (e.g., from Java strings to
IDENTs). Type inference is quite straightforward: when deriving the type of an
expression, the types of its component subexpressions are known and there is a
most specific type for each expression. No recursion is possible in the inference
logic, since the infer keyword can only be used in variable declarations and the
use of a variable in its own initialization expression is not allowed in Java.

The types of expressions even influence the parsing and translation of quoted
code. Consider again the above example. The two possible abstract syntax trees
are not even isomorphic. If the type of foo is Modifiers, this will result in an
entirely different parse and translation of the quoted code than if the type of
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foo is Import (or ClassDec, or InterfaceDec, etc). In the former case, foo just
describes a modifier—i.e., a branch of the abstract syntax tree for the definition
of class A. In the latter case, the abstract syntax tree value of foo is at the same
level as the tree for the class definition.

Parser Implementation. The current implementation of the MAJ front-end
consists of one common lexer and two separate parsers. The common lexer
recoginizes tokens legal in both the meta-language (Java), and the object lan-
guage (AspectJ). This is not a difficult task for this particular combination of
meta/object languages, since Java is a subset of AspectJ. For two languages
whose token sets do not match up as nicely, a more sophisticated scheme would
have to be employed.

We use ANTLR [11] to generate our parser from two separate LL(k) gram-
mars (augmented for context-sensitivity, as described below). One is the Java’
grammar: Java with additional rules for handling quote and infer. The other is
the AspectJ’ grammar: AspectJ with additional rules for handling infer, quote
and unquote. Java’, upon seeing a quote operator lifts out the string between
the quote delimiters (‘[...]) and passes it to AspectJ’ for parsing. AspectJ’,
upon seeing an unquote, lifts out the string between the unquote delimiters and
passes it to Java’ for parsing. Thus, we are able to completely isolate the two
grammars. This paves way for easily changing the meta or object language for
future work, with the lexer caveat previously mentioned.

The heavy lifting of recognizing and type-checking quoted AspectJ is done in
AspectJ’. To implement context-sensitive parsing we rely on ANTLR’s facilities
for guessing as well as adding arbitrary predicates to grammar productions and
backtracking if the predicates turn out to be false. Each quote entry point pro-
duction is preceded by the same production wrapped in a guessing/backtracking
rule. If a phrase successfully parses in the guessing mode and the predicate
(which is based on the types of the parsed expressions) succeeds, then real pars-
ing takes place and token consumption is finalized. Otherwise, the parser rewinds
and attempts parsing by the next rule that applies. Thus, a phrase that begins
with a series of unquoted entities might have to be guess-parsed by a number of
alternate rules before it reaches a rule that actually applies to it.

The parsing time of this approach depends on how many rules are tried
unsuccessfully before the matching one is found. In the worst case, our parsing
time is exponential in the nesting depth of quotes and unquotes. Nevertheless,
we have not found speed to be a problem in MAJ parsing. The parsing time
is negligible (a couple of seconds on a 1.4GHz laptop) even for clearly artificial
worst-case examples with a nesting depth of up to 5 (i.e., a quote that contains
an unquote that contains a quote that contains an unquote, and so on, for 5 total
quotes and 5 unquotes). Of course, more sophisticated parsing technology can
be used in future versions, but arguably parsing speed is not a huge constraint
in modern systems and we place a premium on using mature tools like ANTLR
and expressing our parsing logic declaratively using predicates.
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Translation. The MAJ compiler translates its input into plain Java code. This
is a standard approach in meta-programming tools [3, 4, 19]. For example, con-
sider the trivial MAJ code fragment:

infer dummyAspect = ‘[ aspect myAspect { } ];

infer dummyUnit = ‘[ package myPackage;

#dummyAspect

];

MAJ compilation will translate this fragment to Java code using a library for
representing AspectJ abstract syntax trees. The Java compiler is then called to
produce bytecode. The above MAJ code fragment will generate Java code like:

AspectDec dummyAspect =

new AspectDec(

null, "myAspect", null, null, null,

new AspectMembers(new AspectMember[] {null}));

CompilationUnit dummyUnit =

new MajCompilationUnit(

new MajPackageExpr(new Identifier("myPackage")),

null, new Decs(new Dec[] { dummyAspect }));

The Java type system could also catch ill-formed MAJ programs. If the un-
quoted expression in the above program had been illegal in the particular syntac-
tic location, the error would have exhibited itself as a Java type error. Neverthe-
less, MAJ implements its own type system and performs error checking before
translating its input to Java. Therefore, the produced code will never contain
MAJ type errors. (There are, however, Java static errors that MAJ does not
currently catch, such as access protection errors, uninitialized variable errors,
and more.)

Error Handling. Systems like JTS [3] operate as simple pre-processors and
delegate the type checking of meta-programs to their target language (e.g., Java).
The disadvantage of this approach is that error messages are reported on the
generated code, which the user has never seen. Since MAJ maintains its own
type system, we can emit more accurate and informative error messages than
those that would be produced for MAJ errors by the Java compiler.

Recall that our parsing approach stretches the capabilities of ANTLR to per-
form context-sensitive parsing based on the MAJ type system. To achieve good
error reporting we had to implement a mechanism that distinguishes between
parsing errors due to a mistyped unquoted entity and regular syntax errors.
While attempting different rule alternatives during parsing, we collect all error
messages for failed rules. If parsing succeeds according to some rule, the error
information from failed rules is discarded. If all rules fail, we re-parse the ex-
pression with MAJ type checking turned off. If this succeeds, then the error is
a MAJ type error and we report it to the user as such. Otherwise, the error is
a genuine syntax error and we report to the user the reasons that caused each
alternative to fail.
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Implementation Evolution and Advice. It is worth briefly mentioning the
evolution of the implementation of MAJ because we believe it offers lessons
for other developers. The original MAJ implementation was much less sophis-
ticated than the current one. The system was a pre-processor without its own
type system and relied on the Java compiler for ensuring the well-formedness of
MAJ code. Nevertheless, even at that level of sophistication, we found that it is
possible to make the system user-friendlier with very primitive mechanisms.

An important observation is that type qualifier inference can be performed
even without maintaining a type system, as long as ambiguous uses of the un-
quote operator are explicitly qualified. That is, qualifying some of the uses of
unquote allows having a single unqualified quote operator and the infer key-
word. For instance, consider the code fragment:

infer s = ‘[if (i > 0) return #x ;];

The syntactic types of s and x are clear from context in this case. Even the
early implementation of MAJ, without its own type system, could support the
above example. Nevertheless, in cases where parsing or type inference would be
truly dependent on type information, earlier versions of MAJ required explicit
qualification of unquotes—for instance:

infer l = ‘[ #(Modifiers)foo class A {} ];

Even with that early approach, however, parsing required unlimited lookahead,
making our grammar not LL(k).

5 Related Work and Future Work Directions

In this section we connect MAJ to other work in AOP and meta-programming.
The comparison helps outline promising directions for further research. We will
be selective in our references and only pick representative and/or recent work
instead of trying to be exhaustive.

In terms of philosophy, MAJ is a compatible approach to that of XAspects
[13], which advocates the use of AspectJ as a back-end language for aspect-
orientation. Aspect languages in the XAspects framework can produce AspectJ
code using MAJ.

It is interesting to compare MAJ to state-of-the-art work in meta-
programming. Visser [19] has made similar observations to ours with respect
to concrete syntax (i.e., quote/unquote operators) and its introduction to
meta-languages. His approach tries to be language-independent and relies on
generalized-LR parsing (GLR). We could use GLR technology for MAJ parsing
in the future. GLR is powerful for ambiguous grammars as it returns all possible
parse trees. Our type system can then be used to disambiguate in a separate
phase. Although parsing technology is an interesting topic, we do not consider it
crucial for MAJ. Our current approach with ANTLR is perhaps crude but yields
a clean specification and quite acceptable performance.
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Multi-stage programming languages, like MetaML [17] and MetaOCaml [6]
represent state-of-the-art meta-programming systems with excellent safety prop-
erties. For instance, a common guarantee of multi-stage languages is that the
type safety of the generator implies the type safety of the generated program.
This is a much stronger guarantee than that offered by MAJ and other abstract-
syntax-tree-based tools. It means that the meta-programming infrastructure
needs to keep track of the contexts (declared variables and types) of the gener-

ated program, even though this program has not yet been generated. Therefore
the system is more restrictive in how the static structure of the generator reflects
the structure of the generated program. By implication, some useful and legal
generators may be harder to express in a language like MetaOCaml. In fact, al-
though there is great value in multi-stage programming approaches, we are not
yet convinced that they are appropriate for large-scale, ad hoc generator devel-
opment. Current applications of multi-stage languages have been in the area of
directing the specialization of existing programs for optimization purposes.

An interesting direction in meta-programming tools is that pioneered by hy-

gienic macro expansion [10, 8]. Hygienic macros avoid the problem of unintended
capture due to the scoping rules of a programming language. For instance, a
macro can introduce code that inadvertently refers to a variable in the generation
site instead of the variable the macro programmer intended. Similarly, a macro
can introduce a declaration (binding instance) that accidentally binds identifier
references from the user program. The same problem exists in programmatic
meta-programming systems, like MAJ. In past work, we described generation

scoping [14]: a facility for controlling scoping environments of the generated
program, during the generation process. Generation scoping is the analogue of
hygienic macros in the programmatic (not pattern-based, like macros) meta-
programming world. Generation scoping does not offer any guarantees about
the correctness of the target program, but gives the user much better control
over the lexical environments of the generated program so that inadvertent cap-
ture can be very easily avoided. Adding a generation scoping facility to MAJ is
an interesting future work direction.

Other interesting recent tools for meta-programming include Template
Haskell [12]—a mechanism for performing compile-time computations and syn-
tax transformation in the Haskell language. Closer to MAJ are tools, like JSE
[1], ELIDE [5] and Maya [2] that have been proposed for manipulating Java
syntax. Most of these Java tools aim at syntactic extensions to the language
and are closely modeled after macro systems. The MAJ approach is different
both in that it targets AspectJ, and in that it serves a different purpose: it is
a tool for programmatic meta-programming, as opposed to pattern-based meta-
programming. In MAJ, we chose to separate the problem of recognizing syntax
(i.e., pattern matching and syntactic extension) from the problem of generating
syntax (i.e., quoting/unquoting). MAJ only addresses the issues of generating
AspectJ programs using simple mechanisms and a convenient language design.
Although meta-programming is a natural way to implement language extensions,
uses of MAJ do not have to be tied to syntactic extensions at all. MAJ can, for
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instance, be used as part of a tool that performs transformations on arbitrary
programs based on GUI input or program analysis. MAJ also has many indi-
vidual technical differences from tools like JSE, ELIDE, and Maya (e.g., JSE is
partly an unstructured meta-programming tool, Maya does not have an explicit
quote operator, etc.).

Complementing MAJ with a facility for recognizing syntax (i.e., performing
pattern matching on abstract syntax trees or based on semantic properties) is
a straightforward direction for future work. Nevertheless, note that the need for
pattern matching is not as intensive for MAJ as it is for other meta-programming
tools. The reason is that MAJ generates AspectJ code that is responsible for de-
ciding what transformations need to be applied and where. The beauty of the
combination of generative and aspect-oriented programming is exactly in the
simplicity of the generative part afforded by the use of aspect-oriented tech-
niques. Another promising direction for future work on MAJ is to make it an
extension of AspectJ, as opposed to Java (i.e., to allow aspects to generate other
aspects). We do not yet have a strong motivating example for this application,
but we expect it may have value in the future.

6 Conclusions

In this paper we presented Meta-AspectJ (MAJ): a tool for generating AspectJ
programs. The implementation of MAJ was largely motivated by practical con-
cerns: although a lot of research has been performed on meta-programming tools,
we found no mature tool, readily available for practical meta-programming tasks
in either Java or AspectJ. MAJ strives for convenience in meta-programming
but does not aspire to be a heavyweight meta-programming infrastructure that
supports syntactic extension, pattern matching, etc. Instead, MAJ is based on
the philosophy that generative tools have a lot to gain by generating AspectJ
code and delegating many issues of semantic matching to AspectJ. Of course,
this approach limits the ability for program transformation to the manipula-
tions that AspectJ supports. Nevertheless, this is exactly why our approach
is an aspect-oriented/generative hybrid. We believe that AspectJ is expressive
enough to capture many useful program manipulations at exactly the right level
of abstraction. When this power needs to be combined with more configurability,
generative programming can add the missing elements. We hope that MAJ will
prove to be a useful tool in practice and that it will form the basis for several
interesting domain-specific mechanisms.
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