Static interfaces in C++

Brian McNamara and Yannis Smaragdakis

Georgia Institute of Technology
lorgon@cc.gatech.edu, yannis@cc.gatech.edu

Abstract

We present an extensible framework for defining and using “static interfaces” in C++. Static interfaces are especially useful as con-
straints on template parameters. That is, in addition to the ssmplate <class T> , template definitions can specify that

“isa” Foo, for some static interface namedo. These “isa-constraints” can be based on either inheritance (hnamed conformance:
publicly inheritsFoo), members (structural conformandehas these member functions with these signatures), or both. The con-
straint mechanism imposes no space or time overheads at runiiaal; functions are conspicuously absent from our frame-

work.

We demonstrate two key utilities of static interfaces. First, constraints enable better error messages with template code. By apply-
ing static interfaces as constraints, instantiating a template with the wrong type is an error that can be caught at the instantiation
point, rather than later (typically in the bowels of the implementation). Authors of template classes and template functions can also
dispatch “custom error messages” to report named constraint violations by clients, making debugging easier. We show examples of
the improvement of error messages when constraints are applied to STL code.

Second, constraints enable automatic compile-time dispatch of different implementations of class or function templates based on
the named conformance properties of the template types. For exagepi&> can be written to automatically choose the most
efficient implementation: use a hashtable implementatiorTifsa Hashable ”, or else a binary search tree iff“isa Less-
ThanComparable ”, or else a linked-list if merely T isaEqualityComparable ". This dispatch can be completely hidden from

clients ofSet , who just us&et<T> as usual.

1. Introducing static interfaces

We begin by demonstrating how static interfaces could be useful, and then show how to emulate them in
C++.

1.1 Motivation

To introduce the idea of “static interfaces”, we shall first consider an example using traditional “dynamic
interfaces”--that is, abstract classes:

struct Printable {
virtual ostream& print_on(ostream& o) const =0;
h
struct PFoo : public Printable {
ostream& print_on(ostream& o) const {
0 << "l am a PFoo" << end];
return o;
}
h
Here “PFoo isaPrintable " in the traditional sense of “isa”. We have dynamic polymorphisrAriat-
able variable can be bound at runtime to any kind of (concré&téjtable object. Both named and
structural conformance are enforced by the compiler: inheritance is an explicit mechanism for declaring
the intent to be a subtype (named conformance), and the pure virtual function implies that concrete sub-

classes must define an operation with that signature (structural conformance). These conformance guaran-
tees enable users to write functions like

ostream& operator<<(ostream& o, Printable& p) {
p.print_on(o);

return o;

}

so that $td::cout << p " works for anyPrintable objectp.

The problem with this mechanism for expressing interfaces is that it is sometimes overkill. Virtual func-
tions are a good way to express interfaces when we want dynamic polymorphism. But sometimes we only
need static polymorphism. In these cases, interfaces based on abstract classes introduce much needless
inefficiency. First, they add a vtable to the overhead of each instance of concrete objects (a space penalty).
Second, they introduce a point of indirection in calls to methods in the interface (a runtime penalty).
Finally, virtual ~ calls are unlikely to be inlined (an optimization penalty).

As aresult, libraries that exclusively use templates to achieve polymorphism (static polymorphism) usually
avoidvirtual ~ altogether. The STL is one common example. However, there are no explicit language con-
structs to express “static interfaces”. The only way to say, for example, that & tyge€ Printable and

that it supports therint_on() method with a particular function signature is to use abstract classes as
described above. Thus, when templates rely on such interface constraints being met by the template type,
the constraints are typically left implicit. At best, clients of template code may find constraints on template
parameters in the documentation.

SGlI's STL documentation [SGI] does an excellent job with template constraints; indeed, they go as far as
dubbing such constraints “concepts”, and their documentation describes “concept hierarchies”. Each con-
cept informally describes a particular interface requirement for a class. In order to use the STL, one must
instantiate templates with types that are “models” of particular conceptstikalityComparable
LessThanComparable , Forwardlterator , RandomAccesslterator , CopyConstructable , etc.

These concepts exist explicitly only in the documentation; in the STL code they lie implicit. (Actually,
SGlI's own STL implementation now includes a kind of concept checking that is similar to the method we
shall eventually describe at the beginning of Section 3.1.)

Most users of the STL are aware of concepts--it is hard to use the STL effectively if one has no idea of
what aForwardlterator is, for example. Concepts are important to understanding the whole framework

of the STL, despite the fact that these concepts are not directly represented in C++. There are also mean-
ingful relationshipsamong concepts (e.g.RandomAccesslterator “isa” Forwardlterator) which

can only be expressed in documentation, as C++ has no explicit mechanisms to define concepts, much less
describe the relationships among them.

The problems with leaving concepts implicit in the code are numerous. First, detection of improper tem-
plate instantiations comes late (if at all), and the error messages are often cryptic and verbose. Second,
there is no obvious way to determine what “concept constraints” there are for a template parameter without
examining the implementation of the template extremely carefully. This makes using the template difficult
and error-prone (unless there is copious documentation). Finally, there is no way to have the code “reason”
about its own concept-constraints at compile-time (since the concepts are absent from the code).

In short, while C++ provides a nice mechanism for dynamic polymorphism, it provides no analogous
mechanism for static polymorphism. Abstract classes allow users to specify constraints on parameters to
functions which may be bound to differewbjectsat run-time However there is no mechanism to specify
constraints on parameterstemplateswhich may be bound to differetypesat compile-time As a result,
template code either must leave the constraints implicit, or make clever use abstract class hierarchies
(which makes the performance suffer dramatically). However, as we shall demonstrate, static interfaces
can give us the benefits of both approaches at once.

1.2 Imagining new language constructs

Let us imagine some new language constructs which let us explicitly express concepts. Consider a tem-

plate function that sorts a vector. We can imagine writing:

template <class T> interface LessThanComparable {
bool operator<(const T&) const;

h

struct Foo models LessThanComparable<Foo> {

bool operator<(const Foo&) const{ ... }
// other members

J§

template <class T isa LessThanComparable<T> >
/I sort the vector with "operator<" as the comparator
void Sort(vector<T>& v) {...}

Note that there are three new keyworaigerface lets us declare a static interface, which has a name
and a structure, and which imposes viaual overhead on the types that modelriodels lets us
declare that a type models the interface; the compiler will enforce that the type has the right meghods.
lets us express constraints on types; hewet() can only be called fovector<T> types whereT is a
model ofLessThanComparable<T>

This cleanly expresses what we would like to do. It is similar to the idea of “constrained generics” found in
some languages (like GJ [BOSW98]), only without the ability to do dynamic polymorphism (and therefore
without the associated performance penalties). It turns out we can do something very close to this using
standard C++.

1.3 Emulating Static Interfaces in C++
Here is how we expressstatic interface (a concept) in our framework:

template <class T> struct LessThanComparable {
MAKE_TRAITS; // a macro (explained later)
template<class Self> static void check_structural() {
bool (Self::*x)(const T&) const = &Self::operator<;
(void) x; // suppress "unused variable" warning

}

protected:
~LessThanComparable() {}

h
Note that we encode the structural conformance check as a template member function (which will be
explicitly instantiated elsewhere, wielf bound to the concrete type being considered) to ensure that
types conform structurally. This function takes pointers to the desired members to ensure that they exist.
The protected destructor prevents anyone from creating direct instances of this class (but allows subclasses
to be instantiated, which will be important in a moment). TheKE_TRAITSIine is a short macro for
defining an associated traits class; its importance and use will be described in Section 2.1.

We use public inheritance to specify that a tyqmnforms to a particular static interface (that is, the type
modelsa concept):

struct Foo : public LessThanComparable<Foo> {
bool operator<(const Foo&) const{ ... }
/l whatever other stuff
h
Then we use thétaticlsA construct to determine if a type conforms to a static interface. (More details
of the implementation dtaticisA will be explained later.) The expression

StaticlsA< T, Sl >::valid

is a boolean value computed at compile-time that tells us if a Typenforms to a static interfac& . In
other words, the value isue iff “T isa SI ” (under the meaning déa we described in Section 1.2).
Thus, for example, iBort() , we can use

StaticlsA< T, LessThanComparable<T> >::valid

to determine if a particular instantiation of the template function is ok. Since the val®tatf
cIsA<T,SI>::valid is a compile-time boolean value, we can use template specialization to choose dif-
ferent alternatives for the template at compile-time, bas@tsaronformance.

2. Applications

In this section we show two useful applications SthticlsA : custom error messages and selective
implementation dispatch.

2.1 UsingstaticlsA to create understandable error messages

Now that we have seen the idea beh8tdticlsA , let us put it to use. Often a violation of the “concept
constraints” for template arguments causes the compiler to emit tons of seemingly useless error messages.
For example, with g++2.95.2 (which comes with an old SGI library), tryingtdasort() a collection

of NLCs (whereNLCis a type that doesot supportoperator<) causes the compiler to repdifty-seven

huge lines of error messages for one innocent-looking line of code. To emphasize the point, realize that this
tiny (complete) program

#include <algorithm>
struct NLC {}; // Not LessThanComparable
int main() {

NLC a[5];

std::sort(a, a+5);

}

compiled with g++ (without any command-line options to turn on extra warnings) produces a stream of
error messages beginning with

finclude/stl_heap.h: In function “void __adjust_heap<NLC *, int, NLC>(NLC *, int, int, NLC)"
finclude/stl_heap.h:214: instantiated from ~__make_heap<NLC * NLC,ptrdiff t>(NLC *, NLC *, NLC *,

ptrdiff_t *)'
finclude/stl_heap.h:225: instantiated from *make_heap<NLC *>(NLC *, NLC *)'
finclude/stl_algo.h:1562: instantiated from *__partial_sort<NLC *, NLC>(NLC *, NLC *, NLC *,
NLC *)'
finclude/stl_algo.h:1574: instantiated from “partial_sort<NLC *>(NLC *, NLC *, NLC *)'
finclude/stl_algo.h:1279: instantiated from *__introsort_loop<NLC *, NLC, int>(NLC *, NLC *,
NLC *, int)'

and continuing through functions in the bowels of the STL implementation that we did not even know
existed. On the other hand, singticlsA lets us detect template constraint conformance at the instan-
tiation point, we can use template specialization to dispatch “custom error messages” which succinctly
report the problem at a level of abstraction clients will be able to understand (as we shall illustrate pres-
ently).

Consider again thgort() function described above. We shall now @seaticlsA to generate a “custom
error message” if the template type does not conform td.essThanComparable<T> . The actual
Sort() function does not do any work, it simply forwards the work to a helper class, which will be spe-
cialized on a boolean value:

template <class T> inline void Sort(vector<T>& v) {
SortHelper< StaticlsA<T,LessThanComparable<T> >::valid >::dolt(v);

}

The helper class is declared as
template <bool b> struct SortHelper;
and it has two very different specializations. Tfae version does the actual work as we would expect:

template <> struct SortHelper<true> {
template <class T> static inline void dolt(vector<T>& v) {
I/l actually sort the vector, using operator< as the comparator

}
k

Thefalse version reports an error:

template <class T>
struct Error {};

template <> struct SortHelper<false> {
template <class T> static inline void dolt(vector<T>&) {
Error<T>::Sort_only_works_on_LessThanComparables;

}
k

Now, clients can do

vector<Foo> v; // recall: Foo isa LessThanComparable<Foo>
Sort(v);

and the vector gets sorted as we expect. But if clients try to sort a vector whose elements cannot be com-
pared...

vector<NLC> v;
Sort(v);

...then our compiler says:

x.cc: In function “static void SortHelper<false>::dolt<NLC>(vector<NLC,allocator<NLC> > &)"
x.cc:73: instantiated from "Sort<NLC>(vector<NLC,allocator<NLC> > &)’

x.cc:78: instantiated from here

x.cc:67: “Sort_only_works_on_LessThanComparables' is not a member of type "Error<NLC>'

and nothing else.
The technique of trying to access
Error<T>::some_text_you_want_to_appear_in_an_error_message

seems to work well on different compilers; for all practical purposes, it lets one create “custom error mes-
sages”. Now the error is pinpointed, says what is wrong in no uncertain terms, and is not excessively ver-
bose. This technique is mentioned in [CEQO].

Custom error messages can be applied equally well to the algorithms in the STL by writing “wrappers” for
STL functions. By supplying a wrapper for functions li&el::sort() , we can create a function that is

as efficient astd::sort (it simply forwards the work with an inline function that an optimizing compiler
will easily elide), but will report meaningful errors if the type of element being sorted is hestsr-
hanComparable . Rather than getting fifty-seven lines of gobbledegook from an improper instantiation of
std::sort() , we can get four lines of meaningful messages from our own versson®f

The astute reader may be wondering what will happen with code like this:

vector<int> v;
Sort(v);

Clearlyint does not (and cannot) inherit frobessThanComparable . However, we would like this to
compile successfully. We use the usual “traits” trick to solve this problem; each static interface has an asso-
ciated traits class, which can be specialized for types which conform to the interface “outside of the frame-
work”. Put another way, traits provide a way to declare conformance extrinsically.

We mentioned th®IAKE_TRAITSmacro before; here is its definition:

#define MAKE_TRAITS\
template <class Self>\
struct Traits {\
static const bool valid = false; \

g

For any static interfac8l , Sl::Traits<T>::valid says whether or nat “isa” S| “outside the frame-
work” (that is, T exhibits named conformance 8 despite the lack of an inheritance relationship). To
declare named conformance extrinsically, we just specialize the template. For example, to isay ibat
LessThanComparable<int> , we say

template <>
struct LessThanComparable<int>::Traits<int> : public Valid {};

whereVvalid is defined as just

struct Valid {
static const bool valid = true;

h
More generally

template <>
struct SomeStaticlnterface::Traits<SomeType> : public Valid {};

declares thasomeType “isa” SomeStaticinterface
At this point, we should take a moment to describe the behavior of
StaticlsA<T,SI>::valid
which comprises the “brains” of our static interface approach. The behavior is essentially the following:

if "T isa SI" according to the "traits" of Sl, then
return true

else if T inherits SI (named conformance), then
apply the structural conformance check
return true

else
return false

Note that the structural conformance check will issue a compiler-error if structural conformance is not met.
For example, if clas§oo inherits LessThanComparable<Foo> , but doesnot define anoperator<
then this structural conformance error will be diagnosed when

StaticlsA<Foo,LessThanComparable<Foo> >::valid

is first evaluated (and thus tliaeck_structural() member of the static interface is instantiated). The
error message will be generated by the compiler (not a “custom error message” as described above), as
there is no general way to detect the non-existence of such members before the compiler does. This is

unfortunate, as such errors tend to be verbose. Fortunately, these kinds of errors are errors by suppliers, not
clients. As a result, they only need to be fixed once.

2.2 Using static interfaces for static dispatch

Just as we can use template specialization to create custom error messages, we can similarly use it to dis-
patch the appropriate implementation of a template function or class, based on the concepts modeled by
the template argument. For example, one could implemé&et avith a hashtable, a binary search tree, or

a linked list, depending on if the elements wetashables , LessThanComparables , or Equality-

Comparables respectively. The code below says exactly that: clients magesd > , andSet will auto-

matically choose the most effective implementation (or report a custom error message if no
implementation is appropriate):

enum { SET_HASH, SET_BST, SET_LL, SET_NONE },
template <class T> struct SetDispatch {

static const bool Hash = StaticlSA<T,Hashable>::valid;

static const bool LtC = StaticlsA<T,LessThanComparable<T> >::valid;

static const bool EQT = StaticlsA<T,EqualityComparable<T> >::valid;

static const int which = Hash?SET_HASH: LtC?SET_BST: EqQT?SET_LL: SET_NONE;
h
template <class T, int which = SetDispatch<T>::which > struct Set;
template <class T> struct Set<T,SET_NONE> {

static const int x = Error<T>::
Set_only_works_on_Hashables_or_LessThanComparables_or_EqualityComparables;
h
template <class T> struct Set<T,SET_LL> {

Set() { cout << "Set list" << endl; }

template <class T> struct Set<T,SET_BST> {
Set() { cout << "Set bst" << endl; }

template <class T> struct Set<T,SET_HASH> {
Set() { cout << "Set hash" << endl; }

[Side note:SetDispatch might best be implemented witthums rather tharstatic const variables,

but we encountered bugs in our compiler when ugingms as template parameters.] The code above is
simple: SetDispatch<T>::which computes information about the conformancerdb various static
interfaces;Set then uses this information to dispatch the appropriate implementation (or a custom error
message).

3. The Design Space of Constraint Checking

In the previous sections, we have described the most “radical” features of our framework. We chose to
present these features first, as they are the key features that set our framework apart from other concept-
checking ideas that we are aware of. In fact, however, our framework gives the user a choice among con-
cept-checking approaches which span the concept-checking design space. We describe the design space
and the components of our system in this section.

3.1 Traditional concept-checking approaches

Stroustrup describes a simple constraints mechanism in [Str94]. An up-to-date generalization of that
approach can be seen in this code:

template <class T>
struct TraditionalLessThanComparable {

Ty,
template <class Self>
void constraints(Self x) {
bool b = x<y;
(void) b; /I suppress spurious warning

}
3

template <class T, class Concept>
inline void Require() {
(void) ((void (Concept::*)(T)) &Concept::template constraints<T>);

I just inside any template that wants to ensure the requirement:
Require< Foo, TraditionalLessThanComparable<Foo> >();

A very similar approach is used in the latest versions of the SGI implementation of the STL [SGI]. We will
call this approacltraditional conceptsand contrast it with static interfaces. Note that the benefit of tradi-
tional concepts is simply that the compiler will first issue its error messages at the template instantiation
point, rather than deeper in the bowels of the implementation. The key differences between traditional con-
cepts and static interfaces are:

1. Traditional concepts use no named conformance; they are entirely structural.
2. Traditional conceptsall methods in the required interfac&y) rather than taking pointers to them.

The consequence of the first difference is that client classes (e.g., mod@&adifonallLess-
ThanComparable) do not need to explicitly state that they conform to TheditionalLessThanCom-

parable protocol. In practical terms, this is a good property for legacy code and third-party libraries
(including the STL) but a dangerous property for new development, because of the possibilities of acciden-
tal conformance. Its philosophy is also contrary to the design model of the C++ language that uses named
inheritance (a subtype explicitly specifies its supertype) instead of structural inheritance.

The consequence of the second difference (calling methods instead of taking pointers) is that traditional
concepts are more “forgiving” than static interfaces. Indeed, static interfaces are strict in two ways. First,
they require exact type conformance for the method signatures. For instance, if a method is expected to
accept two integer arguments, static interfaces will reject a method accepting arguments of a type to which
integers implicitly convert. Second, taking a pointer to a member of aTygmes not allow us to check for
non-member functions that takeTaas an argument (most commonly, overloaded operators), as the lan-
guage does not allow us to unambiguously make a pointer to such non-members functions without know-
ing the namespace these functions are defined in. This is perhaps a defect in the language standard. Koenig
lookup (section 3.4.2 of [ISO98]) allows us tall these same functions that we cannot take pointers to.
Nevertheless, Koenig lookup does not apply in the context of overload resolution when taking pointers to
non-member functions (that is, in 13.4 of [ISO98]). Note that the latter is a limitation of static interfaces
(i.e., the scheme is being unnecessarily strict beyond our control).

Again, we see that the trade-off is quite similar to before. For legacy or third party code, one may want to
be as “forgiving” as possible, and, thus, the “traditional” concept checking described above makes sense.
For a single, controlled project, however, static interfaces are more appropriate, as they allow expressing
strict requirements. Instead, traditional concepts make a “best effort” attempt to catch some common
errors, but do not provide any real guarantees of doing so.

For an illustration consider the exampleToaditionalLessThanComparable , shown earlier. Writing
out expressions (likexcy ") to check concepts is particularly error-prone, by virtue of the many implicit

conversions available in C++. The problem is more evident in the return types of expressions. A class sat-
isfying the LessThanComparable concept should implement a&™ operator that is applied on given
types. Nevertheless, it is hard to ensure that the return type of this operator is éxattlgnd not some

type that is implicitly convertible tdool . The latter can cause problems. As an example, consider this
code:

template <class T>
void some_func() {
Require< T, TraditionalLessThanComparable<T> >();

Ta,b,c,d;
if(a<b || c<d) // Require() should ensure this is legal
std::cout << "whatever" << std::endl;

}

We would expect that any problems with the code will be diagnosed Weenire() is instantiated.
Nevertheless, it is possible to get p&siquire() without the compiler complaining, but then die in the
body of the function. Here is one such scenario:

struct Useless {};

struct EvilProxy {
operator bool() const { return true; }
Useless operator]||(const EvilProxy&) { return Useless(); }

5

struct Bar {
EvilProxy operator<(const Bar&) const { return EvilProxy(); }

5

some_func<Bar>();

Indeed, we have been foiled by implicit conversioBar. 's operator< does not, in fact, returniaool ; it
returns a proxy object (implicitly convertible tmol). This proxy is malicious (as suggested by its name)
and conspires to make the expression

a<b || c<d
of typeUseless rather than typeool .

Hopefully, template authors do not often run into such contrivedly “evil” instantiations. Nevertheless, the
point remains that implicit conversions can lead to surprises. The SGI STL implementation is susceptible
to problems of this kind. There are several examples one can devise that evade the concept checking mech-
anism, although they are not legal instances of the documented STL concepts.

The case of static interfaces vs. traditional concepts is an instance of the classic design trade-off of detec-
tion mechanisms: one approach avoids most false-positives at the expense of producing many false-nega-
tives, while the other does just the reverse. Ideally we would like the minimize both false-positives
(constraints that admit code which may turn out to be illegal or not meaningful) and false-negatives (con-
straints that reject code which should be acceptable).

3.2 Enhancing Traditional Concepts

It is possible to strengthen traditional concepts in order to make them less susceptible to implicit conver-
sion attacks. Recall our example of a traditional concept withhstraints() function with

bool b = x<y;

as the check. This check is vulnerable because implicit conversion can (purposely or inadvertently) make
this code legal, without satisfying the implicit requirements. The best solution that we have found involves
our own kind of proxy object. This object is designed to protect us from the “evil proxies” in the world,
and hence we call it “HeroicProxy”. We show the code for it and how it is used here:

template <class T>
struct HeroicProxy {
HeroicProxy(const T&) {}

I

template <class T>
struct MaybeOptimalLessThanComparable {
const Ty;
template <class Self>
void constraints(const Self x) {
HeroicProxy<bool> b = x<y;
(void) b; /I suppress spurious warning
}
h
HeroicProxy takes useful advantage of the rules for implicit conversion sequences for binding references
([1S098] sections 13.3.3.1.4, 8.5.3 and others). We are assured that the resylt isfnot some user-
defined proxy object; the result might not béaol , but at worst it will be another “harmless” type like
int . We have alseonst -qualifiedx andy, to ensure thadperator< isn't trying to mutate its arguments.
MaybeOptimalLessThanCompare and theHeroicProxy comprise a middle-of-the-road approach,
which seeks to minimize both the false-positives and false-negatives of the structural constraint detection.

3.3 A Hybrid Approach

In the previous sections, we have shed light on the continuum of structural checking that “template con-
straints” may enforce. Although our primary focus and novelty of our work is on static interfaeesdso

supply enhanced traditional concepts in our framewdskers of our framework are, of course, encour-
aged to utilize the methods that are most suitable to their particular domain.

We now explain all the components of our framework. Given a static interface, which takes the general
form

struct AParticularStaticlnterface {
MAKE_TRAITS;
template <class Self>
void check_structural(Self) {
/I checking code, using any of the strategies just described

}

protected:
~AParticularStaticlnterface() {}

%
we define the following five “components” that users can use to specify template constraints.
(1) StaticlsA< T, AParticularStaticinterface >::valid

This checks both named and structural conformance using static interfaces, and returns the named con-
formance as a compile-time constant boolean.

(2) Named< T, AParticularStaticlnterface >::valid

This checks only named conformance, resulting in a compile-time constant boolean.

(3) RequireStructural< T, AParticularStaticlnterface >()
This applies the structural check without the named check by using traditional concepts.
(4) RequireNamed< T, AParticularStaticlnterface >()

This enforces the named check; equivalent to generating a custom erianifd<...>::valid is
false

(5) RequireBoth< T, AParticularStaticinterface >()

This enforces the StaticlsA check; equivalent to generating a custom error $#fati-
clsA<...>:valid is false

4. Limitations and Extensions

Detecting structural conformanc@&he first limitation is one that we have already mentioned: we cannot
detectstructural conformance, rather we can oelysureit with a compile-time check. C++ apparently

does not have a general way to detect the presence of members in a template type. Nevertheless, as men-
tioned above, this is only a tiny hindrance: if there is an error with a supplied class which purports to con-
form to a static interface, the compiler will emit its own error message (in the instantiation of the
check_structural() method in a static interface), and the problem can be fixed once-and-for-all in that
class (it is not a problem for clients).

Also, since our “custom error messages” and “static dispatch” (both described in Section 2) both require
that we cardetectconformance, this means they can only be usednaitiledconformance techniques.

Other kinds of constraintgzinally, we have only demonstrated constraints based on normal member func-
tions. One can imagine constraints based on other properties of a type, such as public member variables,
member template functions, nested types, etc. There are various clever tricks one can implement in
check_structural() to ensure some of these types of members. To unobtrusively ensure the existence
of a public member variable, simply try to take a pointer to it. To ensure that a nested type exists, try to cre-
ate atypedef for it. To ensure that a method is a template method, declare an empty ptivate
calleduniqueType as a member of the static interface class, and call the method WiilyaeType as a
parameter.

5. Related work

In [Str97], exercise 13.16, Stroustrup suggests constraining a template parameter. This exercise motivated
our work; our original (simpler) solutions were poor (they either had no structural conformance guarantees
or introduced needless overhead witkual) and we sought to improve upon them.

The idea of constraining template parameters has been around for a while--at least since Eiffel [Mey97].
Some languages, like Theta [DGLM95], have mechanisms to explicitly check structural conformance at
the instantiation point, but lack named conformance. This allows for accidental conformance. Recent lan-
guages like GJ [BOSW98] support both named and structural conformance checks--including F-bounded
constraints, which are necessary to express the generalized form of many common concepiss{like
ThanComparable). Clearly our work is intended to provide the same kind of mechanism for C++, though
our implementation goes beyond this, allowing code to use static interfaces for more than just constraints
(e.g., we can do selective implementation dispatch based on membership in a static interface hierarchy).

Alexandrescu [Ale00a] devises a way to make “traits” apply to an entire inheritance hierarchy (rather than
just a single type). This seems to enable the same functionality as our selective implementation dispatch,
only without structural conformance checks.

Alexandrescu also presents an “inheritance detector” in [Ale00b]. Our framework employs this detector as
a general purpose named-conformance detection-engine, which is at the heart of our system.

Baumgartner and Russo [BR95] implement a signature system for C++, which is supported as an option in
the g++ compiler. Unlike our work, the emphasis of this system is on structural subtyping, so that classes
can conform to a signature without explicitly declaring conformance. In practice, the system is only usable
in the context of runtime polymorphism for retrofitting an abstract superclass on top of pre-compiled class
hierarchies. Thus, the Baumgartner and Russo work is an alternative implementatioraofi¢ and not

static, interfaces.

6. Evaluation and Conclusions

Static interfaces allow us to express “concepts” in C++ and have them enforced by the compiler. Our
StaticlsA mechanism is a reusable way to detect and ensure hamed and structural conformance. Users
of our framework can define their own interfaces, as well as types that conform to those interfaces, and
then usestaticlsA to ensure that templates are instantiated properly.

We have demonstrated idioms that rely $taticlsA to create informative error messages which are a
significant improvement over those error messages the compiler gives. This is a result of being able to
directly express “concepts” inside C++. Our techniques also make code more self-documenting.

We have withessed much “ad hoc trickery” to mimic template constraints in the past. We believe the tech-
niques described here provide a more effective, general, and reusable strategy than previous attempts, and
we hope our work will help evolve C++ to better meet the demands of future template programmers.

Our source code can be found at:

http://www.cc.gatech.edu/~yannis/static-interfaces/

7. References
[Ale0O0a] Alexandrescu, A. “Traits on Steroid€*+ Report 12(6), June 2000.

[AleO0Ob] Alexandrescu, A. “Generic Programming: Mappings between Types and ValD&St+
Users Journal, October 2000.

[BR95] Baumgartner, G. and Russo, V. “Signatures: A language extension for improving type
abstraction and subtype polymorphism in C+$dftware Practice& Experience, 25(8), pp.
863-889, Aug. 1995.

[BOSW98] Bracha, G., Odersky, M., Stoutamire, D. and Wadler, P. “Making the future safe for the past:
Adding Genericity to the Java Programming Language.” OOPSLA, 1998.

[CEOQQ] Czarnecki, K. and Eisenecker, Beneratre Programming. Addison-Wesley, 2000.

[DGLM95] Day, M., Gruber, R., Liskov, B. and Myers, A. “Subtypes vs. Where Clauses: Constraining
Parametric Polymorphism.” OOPSLA, 1995.

[1S098] ISO/IEC 14882: Programming Languages -- C++. ANSI, 1998.
[Mey97] Meyer, B.Object-Oriented Softare Construction (Second Edition). Prentice Hall, 1997.

[SGI] Standard Template Library Programmer's Guide (SGI).
http://lwww.sgi.com/Technology/STL/

[Stro4] Stroustrup, BThe Design and Elution of C++. Addison-Wesley, 1994.
[Stro7] Stroustrup, BThe C++ Programming Language (Third Edition). Addison-Wesley, 1997.

	Static interfaces in C++
	Brian McNamara and Yannis Smaragdakis
	Georgia Institute of Technology lorgon@cc.gatech.edu, yannis@cc.gatech.edu
	1. Introducing static interfaces
	1.1 Motivation
	1.2 Imagining new language constructs
	1.3 Emulating Static Interfaces in C++

	2. Applications
	2.1 Using StaticIsA to create understandable error messages
	2.2 Using static interfaces for static dispatch

	3. The Design Space of Constraint Checking
	3.1 Traditional concept-checking approaches
	3.2 Enhancing Traditional Concepts
	3.3 A Hybrid Approach

	4. Limitations and Extensions
	5. Related work
	6. Evaluation and Conclusions
	7. References

