
as con-

ce:
on-

e-

y apply-
antiation
an also
mples of

ased on
st

em in

amic

laring
e sub-
guaran-
Static interfaces in C++
Brian McNamara and Yannis Smaragdakis

Georgia Institute of Technology
lorgon@cc.gatech.edu, yannis@cc.gatech.edu

Abstract
We present an extensible framework for defining and using “static interfaces” in C++. Static interfaces are especially useful
straints on template parameters. That is, in addition to the usualtemplate <class T> , template definitions can specify thatT

“isa” Foo, for some static interface namedFoo. These “isa-constraints” can be based on either inheritance (named conformanT

publicly inheritsFoo), members (structural conformance:T has these member functions with these signatures), or both. The c
straint mechanism imposes no space or time overheads at runtime;virtual functions are conspicuously absent from our fram
work.

We demonstrate two key utilities of static interfaces. First, constraints enable better error messages with template code. B
ing static interfaces as constraints, instantiating a template with the wrong type is an error that can be caught at the inst
point, rather than later (typically in the bowels of the implementation). Authors of template classes and template functions c
dispatch “custom error messages” to report named constraint violations by clients, making debugging easier. We show exa
the improvement of error messages when constraints are applied to STL code.

Second, constraints enable automatic compile-time dispatch of different implementations of class or function templates b
the named conformance properties of the template types. For example,Set<T> can be written to automatically choose the mo
efficient implementation: use a hashtable implementation if “T isa Hashable ”, or else a binary search tree if “T isa Less-

ThanComparable ”, or else a linked-list if merely “T isaEqualityComparable ”. This dispatch can be completely hidden from
clients ofSet , who just useSet<T> as usual.

1. Introducing static interfaces

We begin by demonstrating how static interfaces could be useful, and then show how to emulate th
C++.

1.1 Motivation

To introduce the idea of “static interfaces”, we shall first consider an example using traditional “dyn
interfaces”--that is, abstract classes:

 struct Printable {
 virtual ostream& print_on(ostream& o) const =0;
 };
 struct PFoo : public Printable {
 ostream& print_on(ostream& o) const {
 o << "I am a PFoo" << endl;
 return o;
 }
 };

Here “PFoo isaPrintable ” in the traditional sense of “isa”. We have dynamic polymorphism; aPrint-
able variable can be bound at runtime to any kind of (concrete)Printable object. Both named and
structural conformance are enforced by the compiler: inheritance is an explicit mechanism for dec
the intent to be a subtype (named conformance), and the pure virtual function implies that concret
classes must define an operation with that signature (structural conformance). These conformance
tees enable users to write functions like

 ostream& operator<<(ostream& o, Printable& p) {
 p.print_on(o);

func-
e only
needless
enalty).
alty).

sually
con-

s as
te type,
plate

far as
h con-
must

ally,
d we

ea of
ork
mean-

uch less

tem-
econd,
ithout

fficult
eason”

gous
ters to
y

archies
rfaces

a tem-
 return o;
 }

so that “std::cout << p ” works for anyPrintable objectp.

The problem with this mechanism for expressing interfaces is that it is sometimes overkill. Virtual
tions are a good way to express interfaces when we want dynamic polymorphism. But sometimes w
need static polymorphism. In these cases, interfaces based on abstract classes introduce much
inefficiency. First, they add a vtable to the overhead of each instance of concrete objects (a space p
Second, they introduce a point of indirection in calls to methods in the interface (a runtime pen
Finally, virtual calls are unlikely to be inlined (an optimization penalty).

As a result, libraries that exclusively use templates to achieve polymorphism (static polymorphism) u
avoidvirtual altogether. The STL is one common example. However, there are no explicit language
structs to express “static interfaces”. The only way to say, for example, that a typeT “isa” Printable and
that it supports theprint_on() method with a particular function signature is to use abstract classe
described above. Thus, when templates rely on such interface constraints being met by the templa
the constraints are typically left implicit. At best, clients of template code may find constraints on tem
parameters in the documentation.

SGI's STL documentation [SGI] does an excellent job with template constraints; indeed, they go as
dubbing such constraints “concepts”, and their documentation describes “concept hierarchies”. Eac
cept informally describes a particular interface requirement for a class. In order to use the STL, one
instantiate templates with types that are “models” of particular concepts likeEqualityComparable ,
LessThanComparable , ForwardIterator , RandomAccessIterator , CopyConstructable , etc.
These concepts exist explicitly only in the documentation; in the STL code they lie implicit. (Actu
SGI's own STL implementation now includes a kind of concept checking that is similar to the metho
shall eventually describe at the beginning of Section 3.1.)

Most users of the STL are aware of concepts--it is hard to use the STL effectively if one has no id
what aForwardIterator is, for example. Concepts are important to understanding the whole framew
of the STL, despite the fact that these concepts are not directly represented in C++. There are also
ingful relationshipsamong concepts (e.g. aRandomAccessIterator “isa” ForwardIterator) which
can only be expressed in documentation, as C++ has no explicit mechanisms to define concepts, m
describe the relationships among them.

The problems with leaving concepts implicit in the code are numerous. First, detection of improper
plate instantiations comes late (if at all), and the error messages are often cryptic and verbose. S
there is no obvious way to determine what “concept constraints” there are for a template parameter w
examining the implementation of the template extremely carefully. This makes using the template di
and error-prone (unless there is copious documentation). Finally, there is no way to have the code “r
about its own concept-constraints at compile-time (since the concepts are absent from the code).

In short, while C++ provides a nice mechanism for dynamic polymorphism, it provides no analo
mechanism for static polymorphism. Abstract classes allow users to specify constraints on parame
functions, which may be bound to differentobjectsat run-time. However there is no mechanism to specif
constraints on parameters totemplates, which may be bound to differenttypesatcompile-time. As a result,
template code either must leave the constraints implicit, or make clever use abstract class hier
(which makes the performance suffer dramatically). However, as we shall demonstrate, static inte
can give us the benefits of both approaches at once.

1.2 Imagining new language constructs

Let us imagine some new language constructs which let us explicitly express concepts. Consider

me

s.

nd in
efore

using

ill be
that

exist.
classes

e

ails
plate function that sorts a vector. We can imagine writing:

 template <class T> interface LessThanComparable {
 bool operator<(const T&) const;
 };

 struct Foo models LessThanComparable<Foo> {
 bool operator<(const Foo&) const { ... }
 // other members
 };

 template <class T isa LessThanComparable<T> >
 // sort the vector with "operator<" as the comparator
 void Sort(vector<T>& v) { ... }

Note that there are three new keywords.interface lets us declare a static interface, which has a na
and a structure, and which imposes novirtual overhead on the types that model it.models lets us
declare that a type models the interface; the compiler will enforce that the type has the right methodisa
lets us express constraints on types; here,Sort() can only be called forvector<T> types whereT is a
model ofLessThanComparable<T> .

This cleanly expresses what we would like to do. It is similar to the idea of “constrained generics” fou
some languages (like GJ [BOSW98]), only without the ability to do dynamic polymorphism (and ther
without the associated performance penalties). It turns out we can do something very close to this
standard C++.

1.3 Emulating Static Interfaces in C++

Here is how we express astatic interface (a concept) in our framework:

 template <class T> struct LessThanComparable {
 MAKE_TRAITS; // a macro (explained later)
 template<class Self> static void check_structural() {
 bool (Self::*x)(const T&) const = &Self::operator<;
 (void) x; // suppress "unused variable" warning
 }
 protected:
 ~LessThanComparable() {}
 };

Note that we encode the structural conformance check as a template member function (which w
explicitly instantiated elsewhere, withSelf bound to the concrete type being considered) to ensure
types conform structurally. This function takes pointers to the desired members to ensure that they
The protected destructor prevents anyone from creating direct instances of this class (but allows sub
to be instantiated, which will be important in a moment). TheMAKE_TRAITSline is a short macro for
defining an associated traits class; its importance and use will be described in Section 2.1.

We use public inheritance to specify that a typeconforms to a particular static interface (that is, the typ
models a concept):

 struct Foo : public LessThanComparable<Foo> {
 bool operator<(const Foo&) const { ... }
 // whatever other stuff
 };

Then we use theStaticIsA construct to determine if a type conforms to a static interface. (More det
of the implementation ofStaticIsA will be explained later.) The expression

.

e dif-

ve

t
ssages.

at this

m of

now
tan-
cinctly
pres-

pe-
 StaticIsA< T, SI >::valid

is a boolean value computed at compile-time that tells us if a typeT conforms to a static interfaceSI . In
other words, the value istrue iff “ T isa SI ” (under the meaning ofisa we described in Section 1.2)
Thus, for example, inSort() , we can use

 StaticIsA< T, LessThanComparable<T> >::valid

to determine if a particular instantiation of the template function is ok. Since the value ofStati-
cIsA<T,SI>::valid is a compile-time boolean value, we can use template specialization to choos
ferent alternatives for the template at compile-time, based onT's conformance.

2. Applications

In this section we show two useful applications ofStaticIsA : custom error messages and selecti
implementation dispatch.

2.1 UsingStaticIsA to create understandable error messages

Now that we have seen the idea behindStaticIsA , let us put it to use. Often a violation of the “concep
constraints” for template arguments causes the compiler to emit tons of seemingly useless error me
For example, with g++2.95.2 (which comes with an old SGI library), trying tostd::sort() a collection
of NLCs (whereNLC is a type that doesnot supportoperator<) causes the compiler to reportfifty-seven
huge lines of error messages for one innocent-looking line of code. To emphasize the point, realize th
tiny (complete) program

 #include <algorithm>
 struct NLC {}; // Not LessThanComparable
 int main() {
 NLC a[5];
 std::sort(a, a+5);
 }

compiled with g++ (without any command-line options to turn on extra warnings) produces a strea
error messages beginning with

/include/stl_heap.h: In function `void __adjust_heap<NLC *, int, NLC>(NLC *, int, int, NLC)':
/include/stl_heap.h:214: instantiated from `__make_heap<NLC *,NLC,ptrdiff_t>(NLC *, NLC *, NLC *,

ptrdiff_t *)'
/include/stl_heap.h:225: instantiated from `make_heap<NLC *>(NLC *, NLC *)'
/include/stl_algo.h:1562: instantiated from `__partial_sort<NLC *, NLC>(NLC *, NLC *, NLC *,

NLC *)'
/include/stl_algo.h:1574: instantiated from `partial_sort<NLC *>(NLC *, NLC *, NLC *)'
/include/stl_algo.h:1279: instantiated from `__introsort_loop<NLC *, NLC, int>(NLC *, NLC *,

NLC *, int)'

and continuing through functions in the bowels of the STL implementation that we did not even k
existed. On the other hand, sinceStaticIsA lets us detect template constraint conformance at the ins
tiation point, we can use template specialization to dispatch “custom error messages” which suc
report the problem at a level of abstraction clients will be able to understand (as we shall illustrate
ently).

Consider again theSort() function described above. We shall now useStaticIsA to generate a “custom
error message” if the template typeT does not conform toLessThanComparable<T> . The actual
Sort() function does not do any work, it simply forwards the work to a helper class, which will be s
cialized on a boolean value:

 template <class T> inline void Sort(vector<T>& v) {
 SortHelper< StaticIsA<T,LessThanComparable<T> >::valid >::doIt(v);

t:

e com-

mes-
ly ver-

s” for

r

n of
 }

The helper class is declared as

 template <bool b> struct SortHelper;

and it has two very different specializations. Thetrue version does the actual work as we would expec

 template <> struct SortHelper<true> {
 template <class T> static inline void doIt(vector<T>& v) {
 // actually sort the vector, using operator< as the comparator
 }
 };

The false version reports an error:

 template <class T>
 struct Error {};

 template <> struct SortHelper<false> {
 template <class T> static inline void doIt(vector<T>&) {
 Error<T>::Sort_only_works_on_LessThanComparables;
 }
 };

Now, clients can do

 vector<Foo> v; // recall: Foo isa LessThanComparable<Foo>
 Sort(v);

and the vector gets sorted as we expect. But if clients try to sort a vector whose elements cannot b
pared...

 vector<NLC> v;
 Sort(v);

...then our compiler says:

 x.cc: In function `static void SortHelper<false>::doIt<NLC>(vector<NLC,allocator<NLC> > &)':
 x.cc:73: instantiated from `Sort<NLC>(vector<NLC,allocator<NLC> > &)'
 x.cc:78: instantiated from here
 x.cc:67: `Sort_only_works_on_LessThanComparables' is not a member of type `Error<NLC>'

and nothing else.

The technique of trying to access

 Error<T>::some_text_you_want_to_appear_in_an_error_message

seems to work well on different compilers; for all practical purposes, it lets one create “custom error
sages”. Now the error is pinpointed, says what is wrong in no uncertain terms, and is not excessive
bose. This technique is mentioned in [CE00].

Custom error messages can be applied equally well to the algorithms in the STL by writing “wrapper
STL functions. By supplying a wrapper for functions likestd::sort() , we can create a function that is
as efficient asstd::sort (it simply forwards the work with an inline function that an optimizing compile
will easily elide), but will report meaningful errors if the type of element being sorted is not aLessT-
hanComparable . Rather than getting fifty-seven lines of gobbledegook from an improper instantiatio
std::sort() , we can get four lines of meaningful messages from our own version ofsort() .

The astute reader may be wondering what will happen with code like this:

asso-
rame-

o

ing:

t met.

e
ve), as
This is
 vector<int> v;
 Sort(v);

Clearly int does not (and cannot) inherit fromLessThanComparable . However, we would like this to
compile successfully. We use the usual “traits” trick to solve this problem; each static interface has an
ciated traits class, which can be specialized for types which conform to the interface “outside of the f
work”. Put another way, traits provide a way to declare conformance extrinsically.

We mentioned theMAKE_TRAITS macro before; here is its definition:

 #define MAKE_TRAITS \
 template <class Self> \
 struct Traits { \
 static const bool valid = false; \
 };

For any static interfaceSI , SI::Traits<T>::valid says whether or notT “isa” SI “outside the frame-
work” (that is, T exhibits named conformance toSI despite the lack of an inheritance relationship). T
declare named conformance extrinsically, we just specialize the template. For example, to say thatint isa
LessThanComparable<int> , we say

 template <>
 struct LessThanComparable<int>::Traits<int> : public Valid {};

whereValid is defined as just

 struct Valid {
 static const bool valid = true;
 };

More generally

 template <>
 struct SomeStaticInterface::Traits<SomeType> : public Valid {};

declares thatSomeType “isa” SomeStaticInterface .

At this point, we should take a moment to describe the behavior of

 StaticIsA<T,SI>::valid

which comprises the “brains” of our static interface approach. The behavior is essentially the follow

 if "T isa SI" according to the "traits" of SI, then
 return true
 else if T inherits SI (named conformance), then
 apply the structural conformance check
 return true
 else
 return false

Note that the structural conformance check will issue a compiler-error if structural conformance is no
For example, if classFoo inherits LessThanComparable<Foo> , but doesnot define anoperator< ,
then this structural conformance error will be diagnosed when

 StaticIsA<Foo,LessThanComparable<Foo> >::valid

is first evaluated (and thus thecheck_structural() member of the static interface is instantiated). Th
error message will be generated by the compiler (not a “custom error message” as described abo
there is no general way to detect the non-existence of such members before the compiler does.

iers, not

it to dis-
eled by
or

if no

is

error

ose to
oncept-
g con-

gn space

f that
unfortunate, as such errors tend to be verbose. Fortunately, these kinds of errors are errors by suppl
clients. As a result, they only need to be fixed once.

2.2 Using static interfaces for static dispatch

Just as we can use template specialization to create custom error messages, we can similarly use
patch the appropriate implementation of a template function or class, based on the concepts mod
the template argument. For example, one could implement aSet with a hashtable, a binary search tree,
a linked list, depending on if the elements wereHashables , LessThanComparables , or Equality-
Comparables respectively. The code below says exactly that: clients may useSet<T> , andSet will auto-
matically choose the most effective implementation (or report a custom error message
implementation is appropriate):

enum { SET_HASH, SET_BST, SET_LL, SET_NONE };
template <class T> struct SetDispatch {
 static const bool Hash = StaticIsA<T,Hashable>::valid;
 static const bool LtC = StaticIsA<T,LessThanComparable<T> >::valid;
 static const bool EqT = StaticIsA<T,EqualityComparable<T> >::valid;
 static const int which = Hash?SET_HASH: LtC?SET_BST: EqT?SET_LL: SET_NONE;
};
template <class T, int which = SetDispatch<T>::which > struct Set;
template <class T> struct Set<T,SET_NONE> {
 static const int x = Error<T>::
Set_only_works_on_Hashables_or_LessThanComparables_or_EqualityComparables;
};
template <class T> struct Set<T,SET_LL> {
 Set() { cout << "Set list" << endl; }
};
template <class T> struct Set<T,SET_BST> {
 Set() { cout << "Set bst" << endl; }
};
template <class T> struct Set<T,SET_HASH> {
 Set() { cout << "Set hash" << endl; }
};

[Side note:SetDispatch might best be implemented withenums rather thanstatic const variables,
but we encountered bugs in our compiler when usingenums as template parameters.] The code above
simple:SetDispatch<T>::which computes information about the conformance ofT to various static
interfaces;Set then uses this information to dispatch the appropriate implementation (or a custom
message).

3. The Design Space of Constraint Checking

In the previous sections, we have described the most “radical” features of our framework. We ch
present these features first, as they are the key features that set our framework apart from other c
checking ideas that we are aware of. In fact, however, our framework gives the user a choice amon
cept-checking approaches which span the concept-checking design space. We describe the desi
and the components of our system in this section.

3.1 Traditional concept-checking approaches

Stroustrup describes a simple constraints mechanism in [Str94]. An up-to-date generalization o
approach can be seen in this code:

 template <class T>
 struct TraditionalLessThanComparable {

will
di-
tiation
al con-

ries
ciden-
named

itional
First,

cted to
which

lan-
know-
. Koenig
to.
ers to
aces

ant to
sense.
essing
mmon

cit
 T y;
 template <class Self>
 void constraints(Self x) {
 bool b = x<y;
 (void) b; // suppress spurious warning
 }
 };

 template <class T, class Concept>
 inline void Require() {
 (void) ((void (Concept::*)(T)) &Concept::template constraints<T>);
 }

 // just inside any template that wants to ensure the requirement:
 Require< Foo, TraditionalLessThanComparable<Foo> >();

A very similar approach is used in the latest versions of the SGI implementation of the STL [SGI]. We
call this approachtraditional conceptsand contrast it with static interfaces. Note that the benefit of tra
tional concepts is simply that the compiler will first issue its error messages at the template instan
point, rather than deeper in the bowels of the implementation. The key differences between tradition
cepts and static interfaces are:

1. Traditional concepts use no named conformance; they are entirely structural.

2. Traditional conceptscall methods in the required interface (x<y) rather than taking pointers to them.

The consequence of the first difference is that client classes (e.g., models ofTraditionalLess-
ThanComparable) do not need to explicitly state that they conform to theTraditionalLessThanCom-
parable protocol. In practical terms, this is a good property for legacy code and third-party libra
(including the STL) but a dangerous property for new development, because of the possibilities of ac
tal conformance. Its philosophy is also contrary to the design model of the C++ language that uses
inheritance (a subtype explicitly specifies its supertype) instead of structural inheritance.

The consequence of the second difference (calling methods instead of taking pointers) is that trad
concepts are more “forgiving” than static interfaces. Indeed, static interfaces are strict in two ways.
they require exact type conformance for the method signatures. For instance, if a method is expe
accept two integer arguments, static interfaces will reject a method accepting arguments of a type to
integers implicitly convert. Second, taking a pointer to a member of a typeT does not allow us to check for
non-member functions that take aT as an argument (most commonly, overloaded operators), as the
guage does not allow us to unambiguously make a pointer to such non-members functions without
ing the namespace these functions are defined in. This is perhaps a defect in the language standard
lookup (section 3.4.2 of [ISO98]) allows us tocall these same functions that we cannot take pointers
Nevertheless, Koenig lookup does not apply in the context of overload resolution when taking point
non-member functions (that is, in 13.4 of [ISO98]). Note that the latter is a limitation of static interf
(i.e., the scheme is being unnecessarily strict beyond our control).

Again, we see that the trade-off is quite similar to before. For legacy or third party code, one may w
be as “forgiving” as possible, and, thus, the “traditional” concept checking described above makes
For a single, controlled project, however, static interfaces are more appropriate, as they allow expr
strict requirements. Instead, traditional concepts make a “best effort” attempt to catch some co
errors, but do not provide any real guarantees of doing so.

For an illustration consider the example ofTraditionalLessThanComparable , shown earlier. Writing
out expressions (like “x<y ”) to check concepts is particularly error-prone, by virtue of the many impli

ss sat-

this

e

e)

, the
ptible

g mech-

f detec-
e-nega-
itives
(con-

onver-
conversions available in C++. The problem is more evident in the return types of expressions. A cla
isfying the LessThanComparable concept should implement a “<” operator that is applied on given
types. Nevertheless, it is hard to ensure that the return type of this operator is exactlybool and not some
type that is implicitly convertible tobool . The latter can cause problems. As an example, consider
code:

 template <class T>
 void some_func() {
 Require< T, TraditionalLessThanComparable<T> >();

 T a, b, c, d;
 if(a<b || c<d) // Require() should ensure this is legal
 std::cout << "whatever" << std::endl;
 }

We would expect that any problems with the code will be diagnosed whenRequire() is instantiated.
Nevertheless, it is possible to get pastRequire() without the compiler complaining, but then die in th
body of the function. Here is one such scenario:

 struct Useless {};

 struct EvilProxy {
 operator bool() const { return true; }
 Useless operator||(const EvilProxy&) { return Useless(); }
 };

 struct Bar {
 EvilProxy operator<(const Bar&) const { return EvilProxy(); }
 };

 some_func<Bar>();

Indeed, we have been foiled by implicit conversions.Bar 's operator< does not, in fact, return abool ; it
returns a proxy object (implicitly convertible tobool). This proxy is malicious (as suggested by its nam
and conspires to make the expression

 a<b || c<d

of typeUseless rather than typebool .

Hopefully, template authors do not often run into such contrivedly “evil” instantiations. Nevertheless
point remains that implicit conversions can lead to surprises. The SGI STL implementation is susce
to problems of this kind. There are several examples one can devise that evade the concept checkin
anism, although they are not legal instances of the documented STL concepts.

The case of static interfaces vs. traditional concepts is an instance of the classic design trade-off o
tion mechanisms: one approach avoids most false-positives at the expense of producing many fals
tives, while the other does just the reverse. Ideally we would like the minimize both false-pos
(constraints that admit code which may turn out to be illegal or not meaningful) and false-negatives
straints that reject code which should be acceptable).

3.2 Enhancing Traditional Concepts

It is possible to strengthen traditional concepts in order to make them less susceptible to implicit c
sion attacks. Recall our example of a traditional concept with aconstraints() function with

 bool b = x<y;

) make
olves
rld,

ences

.
,

ection.

con-

r-

neral

ed con-
as the check. This check is vulnerable because implicit conversion can (purposely or inadvertently
this code legal, without satisfying the implicit requirements. The best solution that we have found inv
our own kind of proxy object. This object is designed to protect us from the “evil proxies” in the wo
and hence we call it “HeroicProxy”. We show the code for it and how it is used here:

 template <class T>
 struct HeroicProxy {
 HeroicProxy(const T&) {}
 };

 template <class T>
 struct MaybeOptimalLessThanComparable {
 const T y;
 template <class Self>
 void constraints(const Self x) {
 HeroicProxy<bool> b = x<y;
 (void) b; // suppress spurious warning
 }
 };

HeroicProxy takes useful advantage of the rules for implicit conversion sequences for binding refer
([ISO98] sections 13.3.3.1.4, 8.5.3 and others). We are assured that the result ofx<y is not some user-
defined proxy object; the result might not be abool , but at worst it will be another “harmless” type like
int . We have alsoconst -qualifiedx andy, to ensure thatoperator< isn't trying to mutate its arguments
MaybeOptimalLessThanCompare and theHeroicProxy comprise a middle-of-the-road approach
which seeks to minimize both the false-positives and false-negatives of the structural constraint det

3.3 A Hybrid Approach

In the previous sections, we have shed light on the continuum of structural checking that “template
straints” may enforce. Although our primary focus and novelty of our work is on static interfaces,we also
supply enhanced traditional concepts in our framework. Users of our framework are, of course, encou
aged to utilize the methods that are most suitable to their particular domain.

We now explain all the components of our framework. Given a static interface, which takes the ge
form

 struct AParticularStaticInterface {
 MAKE_TRAITS;
 template <class Self>
 void check_structural(Self) {
 // checking code, using any of the strategies just described
 }
 protected:
 ~AParticularStaticInterface() {}
 };

we define the following five “components” that users can use to specify template constraints.

 (1) StaticIsA< T, AParticularStaticInterface >::valid

This checks both named and structural conformance using static interfaces, and returns the nam
formance as a compile-time constant boolean.

 (2) Named< T, AParticularStaticInterface >::valid

This checks only named conformance, resulting in a compile-time constant boolean.

not

as men-
con-
the
that

equire

func-
riables,
ent in
tence

to cre-

otivated
ntees

ey97].
ce at

nt lan-
unded

ugh
traints
rchy).

r than
spatch,

tor as
 (3) RequireStructural< T, AParticularStaticInterface >()

This applies the structural check without the named check by using traditional concepts.

 (4) RequireNamed< T, AParticularStaticInterface >()

This enforces the named check; equivalent to generating a custom error iffNamed<...>::valid is
false .

 (5) RequireBoth< T, AParticularStaticInterface >()

This enforces theStaticIsA check; equivalent to generating a custom error iffStati-
cIsA<...>::valid is false .

4. Limitations and Extensions

Detecting structural conformance.The first limitation is one that we have already mentioned: we can
detectstructural conformance, rather we can onlyensureit with a compile-time check. C++ apparently
does not have a general way to detect the presence of members in a template type. Nevertheless,
tioned above, this is only a tiny hindrance: if there is an error with a supplied class which purports to
form to a static interface, the compiler will emit its own error message (in the instantiation of
check_structural() method in a static interface), and the problem can be fixed once-and-for-all in
class (it is not a problem for clients).

Also, since our “custom error messages” and “static dispatch” (both described in Section 2) both r
that we candetect conformance, this means they can only be used withnamed conformance techniques.

Other kinds of constraints.Finally, we have only demonstrated constraints based on normal member
tions. One can imagine constraints based on other properties of a type, such as public member va
member template functions, nested types, etc. There are various clever tricks one can implem
check_structural() to ensure some of these types of members. To unobtrusively ensure the exis
of a public member variable, simply try to take a pointer to it. To ensure that a nested type exists, try
ate atypedef for it. To ensure that a method is a template method, declare an empty privatestruct
calledUniqueType as a member of the static interface class, and call the method with aUniqueType as a
parameter.

5. Related work

In [Str97], exercise 13.16, Stroustrup suggests constraining a template parameter. This exercise m
our work; our original (simpler) solutions were poor (they either had no structural conformance guara
or introduced needless overhead withvirtual) and we sought to improve upon them.

The idea of constraining template parameters has been around for a while--at least since Eiffel [M
Some languages, like Theta [DGLM95], have mechanisms to explicitly check structural conforman
the instantiation point, but lack named conformance. This allows for accidental conformance. Rece
guages like GJ [BOSW98] support both named and structural conformance checks--including F-bo
constraints, which are necessary to express the generalized form of many common concepts (likeLess-
ThanComparable). Clearly our work is intended to provide the same kind of mechanism for C++, tho
our implementation goes beyond this, allowing code to use static interfaces for more than just cons
(e.g., we can do selective implementation dispatch based on membership in a static interface hiera

Alexandrescu [Ale00a] devises a way to make “traits” apply to an entire inheritance hierarchy (rathe
just a single type). This seems to enable the same functionality as our selective implementation di
only without structural conformance checks.

Alexandrescu also presents an “inheritance detector” in [Ale00b]. Our framework employs this detec
a general purpose named-conformance detection-engine, which is at the heart of our system.

tion in
lasses
sable
class

r. Our
. Users
s, and

a
ble to

tech-
pts, and
.

type

past:

ning
Baumgartner and Russo [BR95] implement a signature system for C++, which is supported as an op
the g++ compiler. Unlike our work, the emphasis of this system is on structural subtyping, so that c
can conform to a signature without explicitly declaring conformance. In practice, the system is only u
in the context of runtime polymorphism for retrofitting an abstract superclass on top of pre-compiled
hierarchies. Thus, the Baumgartner and Russo work is an alternative implementation ofdynamic, and not
static, interfaces.

6. Evaluation and Conclusions

Static interfaces allow us to express “concepts” in C++ and have them enforced by the compile
StaticIsA mechanism is a reusable way to detect and ensure named and structural conformance
of our framework can define their own interfaces, as well as types that conform to those interface
then useStaticIsA to ensure that templates are instantiated properly.

We have demonstrated idioms that rely onStaticIsA to create informative error messages which are
significant improvement over those error messages the compiler gives. This is a result of being a
directly express “concepts” inside C++. Our techniques also make code more self-documenting.

We have witnessed much “ad hoc trickery” to mimic template constraints in the past. We believe the
niques described here provide a more effective, general, and reusable strategy than previous attem
we hope our work will help evolve C++ to better meet the demands of future template programmers

Our source code can be found at:

http://www.cc.gatech.edu/~yannis/static-interfaces/

7. References

[Ale00a] Alexandrescu, A. “Traits on Steroids.”C++ Report 12(6), June 2000.

[Ale00b] Alexandrescu, A. “Generic Programming: Mappings between Types and Values.”C/C++
Users Journal, October 2000.

[BR95] Baumgartner, G. and Russo, V. “Signatures: A language extension for improving
abstraction and subtype polymorphism in C++.”SoftwarePractice& Experience, 25(8), pp.
863-889, Aug. 1995.

[BOSW98] Bracha, G., Odersky, M., Stoutamire, D. and Wadler, P. “Making the future safe for the
Adding Genericity to the Java Programming Language.” OOPSLA, 1998.

[CE00] Czarnecki, K. and Eisenecker, U.Generative Programming. Addison-Wesley, 2000.

[DGLM95] Day, M., Gruber, R., Liskov, B. and Myers, A. “Subtypes vs. Where Clauses: Constrai
Parametric Polymorphism.” OOPSLA, 1995.

[ISO98] ISO/IEC 14882: Programming Languages -- C++. ANSI, 1998.

[Mey97] Meyer, B.Object-Oriented Software Construction (Second Edition). Prentice Hall, 1997.

[SGI] Standard Template Library Programmer's Guide (SGI).
http://www.sgi.com/Technology/STL/

[Str94] Stroustrup, B.The Design and Evolution of C++. Addison-Wesley, 1994.

[Str97] Stroustrup, B.The C++ Programming Language (Third Edition). Addison-Wesley, 1997.

	Static interfaces in C++
	Brian McNamara and Yannis Smaragdakis
	Georgia Institute of Technology lorgon@cc.gatech.edu, yannis@cc.gatech.edu
	1. Introducing static interfaces
	1.1 Motivation
	1.2 Imagining new language constructs
	1.3 Emulating Static Interfaces in C++

	2. Applications
	2.1 Using StaticIsA to create understandable error messages
	2.2 Using static interfaces for static dispatch

	3. The Design Space of Constraint Checking
	3.1 Traditional concept-checking approaches
	3.2 Enhancing Traditional Concepts
	3.3 A Hybrid Approach

	4. Limitations and Extensions
	5. Related work
	6. Evaluation and Conclusions
	7. References

