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Abstract

We examine a policy for managing modem pools that
disconnects users only if not enough modems are avail-
able for other users to connect. Managing the modem
pool then becomes a replacement problem, similar to
buffer cache management (e.g., in virtual memory sys-
tems). When a new connection request is received, the
system needs to find a user to “replace”. In this paper we
examine such demand-disconnect schemes using exten-
sive activity data from actual ISPs. We discuss various
replacement policies and propose CIRG: a novel replace-
ment algorithm that is well suited for modem pools. In
general, the choice of algorithm is significant. A naive
algorithm (e.g., one that randomly replaces any user who
has been inactive for a while) incurs many tens of percent
more “faults” (i.e., disconnections of users who are likely
to want to be active again soon) than the LRU algorithm,
which, in turn, incurs 10% more faults than CIRG. For
good replacement algorithms, the impact can be signifi-
cant in terms of resource requirements. We show that the
same standards of service as a system that does not dis-
connect idle users can be achieved with up to 13% fewer
modems.

1 Introduction

A pool of modems is a time-shared resource: there
are typically many more potential users than can simul-
taneously connect. The most common instance of mo-
dem pools is in telephone-modem-based Internet Service
Providers (ISPs), where modems accept user connections
over the telephone network. When all modems are oc-
cupied, no more connections are allowed and the users
attempting to connect receive a busy signal. Although
ISPs strive to avoid busy signals, this is not always fea-
sible. The most common line of defense is to keep a
fixed ratio of subscribers to modems, with a value of
10:1 sometimes considered safe for avoiding busy sig-
nals. This policy, however, is hard to maintain consis-

tently (e.g., as usage patterns change in response to mar-
keting actions1) and cannot always protect fully against
busy signals. As an added measure, some ISPs try to
discourage subscribers from constant modem use by set-
ting usage limits and applying surcharges for exceeding
them. An additional widespread practice is to proactively
disconnect users who have been idle for some fixed time
interval or users who have been connected continuously
for some period of time. Recently, Douglis and Killian
[DK99] improved over fixed idle timeout policies with
adaptiveproactive disconnections of users. Their tech-
nique varies the idle time threshold for disconnecting a
user, based on the user's past activity patterns.

Although all of the above techniques are valuable for
certain scenarios, they do not acknowledge that, in the
most common case, the cost of allowing a user to stay
connected is a function of the current load. ISPs typ-
ically suffer a cost for prolonged usageonly when the
modem pool utilization has reached capacity.2 In other
words, it is commonly of no cost to ISPs to allow users
to stay connected when modems are available. The cost
of telephone lines is usually fixed for ISPs, regardless
of usage. Also, the cost of local phone calls in the US
is commonly fixed (or zero) for users, regardless of call
duration. To the best of our knowledge, the only pol-
icy in use that somewhat relates usage limits and cur-
rent load is the variable timeout policy: some ISPs have
shorter timeouts for pre-defined “peak hours” (e.g., 6pm
to midnight). Nevertheless, more sophisticated schemes
are easy to implement and, as we argue, inconvenience
users much less.

In this paper, we examine the case of treating a modem

1In one well-publicized case, a change in America Online usage
pricing caused many users to stay connected longer, allegedly result-
ing in a barrage of busy signals that prompted a lawsuit by dissatisfied
customers [Ano97].

2This is not to say that ISPs have no incentive for limiting usage
even when capacity is not reached. For instance, ISPs could limit usage
expectingthat the market will support higher prices for increased usage.
This is orthogonal to the concerns of this paper.



pool as a replacement buffer. That is, users are not dis-
connected until all modems are occupied. When a new
user attempts to connect with all existing modems occu-
pied, there are two possible outcomes: either there are
no “idle” users currently and the new user will be de-
nied service (busy signal) or one of the idle users will
bereplaced(i.e., disconnected in favor of the new user).
Strictly speaking, this approach is not easy to implement
exactly, because busy signals are generated by the tele-
phone network, not the ISP. Nevertheless, as we will ex-
plain, the policy can be easily approximated closely in an
actual modem pool.

The interesting question in replacement scenarios is
how to choose the user to replace. We examine three dif-
ferent replacement algorithms: LRU, CIRG, and RAN-
DOM. The LRU algorithm replaces the user who has
been inactive the longest. The CIRG algorithm (for Con-
ditional Inter-Reference Gap) is novel and is inspired
by Phalke's work on inter-reference gaps for access pre-
diction in virtual memory systems [Pha95]. In intuitive
terms, CIRG attempts to recognizeaccess patterns for
individual users and should be a good fit for the modem
pool domain. Finally, the RANDOM algorithm selects
any idle user for replacement. In Section 3 we discuss
in detail the replacement problem for modempools. The
problem is related but different from replacement in other
settings (e.g., virtual memory systems). The differences
in the problem and in the expected access patterns (e.g.,
nospatiallocality) guide the design of replacement algo-
rithms and we explain what the characteristics of a good
replacement algorithm should be.

For our experiments we used three extensive traces of
user activity, which cover several distinct circumstances.
The results of our simulations show that our approach is
much less inconvenient to users than proactive discon-
nections after a fixed period of inactivity. Similar to the
Douglis and Killian work [DK99], our metric for “in-
convenience” counts “faults”, that is, disconnections of
users who are likely to want to be active again soon. In
these terms, disconnecting users only when the modem
pool is full results in an order of magnitude fewer faults
than a fixed idle timeout policy. More interestingly, how-
ever, we show that the choice of replacement algorithm
is important. RANDOM has a much higher cost (by over
20% and up to 1000%) than LRU. LRU, in turn, per-
forms worse than CIRG, often by 10% or more. (Both
LRU and CIRG turn out to be very good predictors of
future idle times.) This shows that the naive approach of
disconnecting any idle user when the load is high is far
from ideal.

It is an interesting challenge to further quantify the
benefits of our approach (or of any other approach to dis-

connecting idle users). The difficulty is that disconnect-
ing users may encourage them to set up their connection
so that it appears to be permanently active. For this rea-
son, although we present results for a wide range of val-
ues, we concentrate on a range that guarantees a quality
of service similar to that of the trace collection environ-
ment. (The natural assumption is that when users are not
annoyed, they will not change their behavior.) We show
that, for CIRG, good quality of service can be maintained
with up to 13% fewer modems than a no-disconnections
policy. This result shows that when there are not enough
modems (e.g., due to a surge in subscriber numbers) the
impact can be softened significantly using our technique.

Our experiments are interesting, however, regardless
of the actual economics and current practices in the ISP
business. What we are really demonstrating is the kind of
activity patterns that the combination of human users and
modern Internet tools (e.g., browsers, email clients, etc.)
is expected to exhibit. In particular, we analyze which
techniques work well for predicting future idle times.
These results may be applicable to more contexts than
telephone-modem-based ISPs—practically in every case
a time-shared resource is accessed interactively by Inter-
net users and we want to predict future inactivity times.

2 Studied Workloads

We describe early on the workloads we studied, so that
we can use concrete examples in the subsequent discus-
sion.

The first of our traces is the one collected by Douglis
and Killian and used in their study [DK99]. This trace
consists of the activity over a week in May 1998, polled
every 30 seconds, of 100 users of a modem pool main-
tained by AT&T Labs. The modems in the pool served
as the uplink of an asymmetric connection (the down-
link was a cable connection). The setup where this trace
was collected is interesting because it uses static IP ad-
dresses. This makes disconnects less undesirable: all
TCP connections can stay open until the next modem
connection. Thus, the cost of disconnecting a user is
primarily in terms of the delay of reconnection. As a
consequence, the modem pool itself has an aggressive 15
minute idle timeout (which would probably be too short
for general ISPs). A few users have no inactivity timeout
(after their request) and can stay connected indefinitely.
An interesting characteristic of this setup is that all users
have a dedicated phone line. A direct consequence is that
users cannot be denied service but also that they have
less of an incentive to disconnect explicitly. In fact, the
trace we studied contains no disconnection information.
Douglis and Killian report that 15 users appeared active
at all times. (Actually this number depends on what is



defined as “at all times”: for a higher inactivity tolerance,
19 users appear active at all times.)

Our other two traces are from Telesys—the Internet
Service Provider for the University of Texas community.
In September 1998, Telesys was the largest ISP in the
Austin, Texas metropolitan area (we are not aware of
more recent data) with over 3,000 modems, serving over
34,000 subscribers [Aca98]. (The total number of sub-
scribers seems to be artificially high: unusually many
subscribers did not use their accounts at all during the
two periods of our study. The inflation in the number
of subscribers is probably due to the low cost of Telesys
for its restricted user base—many Telesys users can af-
ford to subscribe even though they rarely use the service.)
Our Telesys traces contain explicit disconnect informa-
tion, and users are allowed to stay connected indefinitely.
(Telesys does not disconnect idle users despite a stated
policy of a 2-hour idle timeout.) Telesys has not had
busy signals due to limited capacity in the past few years
[Aca98], hence no users were denied service during our
trace collection.

We collected the two traces of Telesys activity by re-
peatedly polling the modem servers in two-minute inter-
vals. The traces are from periods of significantly dif-
ferent activity. The first was collected in a period of
low activity (June 26 to July 6, 1999, which includes
the 4th of July holiday) with 18,086 distinct users ac-
cessing the system in this time period. The maximum
number of simultaneously connected users was 2,151,
and 5 users were connected at all times. In all, there
were over 315,000 connections (i.e., instances of users
connecting and disconnecting). The second trace was
collected in a high activity period (November 1 to 8,
1999). 21,221 distinct usersaccessed the system in that
time with a maximum of 3,024 users connected simul-
taneously. There were over 347,000 connections in total
and 11 users stayed connected throughout the week-long
tracing period. The number of connected users as a func-
tion of time for the Telesys traces is plotted in Figure 1.3

An interesting issue concerns users who stay perma-
nently connected (termed “workaholics” in the Douglis
and Killian study, with the term originating in Barbar´a
and Imieliński [BI94]). If “workaholics” are connected
regardless of disconnections (e.g., due to periodic tasks
using the network) they should be included in the study.
If they are active only because they try to “beat” the
disconnection policy of the tracing environment, they
should be excluded. This issue is significant only for our
first trace (from AT&T Labs) because of the idle time-

3No similar data can be plotted for the AT&T Labs trace since no
disconnection information is available. The set of connected users for
that trace depends on the disconnection policy used.
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Figure 1: Number of connected users as a function of
time. The first plot shows three “low usage” days be-
cause of the 4th of July holiday.

out that was in place when the trace was collected, and
because of the large percentage of “workaholics”. In the
Douglis and Killian study, “workaholics” were excluded
from the experiments. The reason was that after inter-
views with individual users, Douglis and Killian con-
cluded that their constant activity was due to programs
used as a response to the 15-minute idle timeout. (That
is, these users ran periodic tasks to simulate activity and
avoid automatic disconnections.) Similarly, we excluded
“workaholics” from our first trace. Nevertheless, we
have also performed all experiments with the full trace
and concluded that the inclusion of “workaholics” does
not fundamentally affect our results or our conclusions
(absolute counts may change but relative differences are
practically the same).

3 Replacement Algorithms for Modem
Pools

The replacement problem in buffer management is a
general and well-studied problem. In this section we



identify the special characteristics of the replacement
problem in modem pools and appropriate replacement
algorithms for the modem pool domain.

3.1 User Activity Patterns

The primary difference of the modem pool setting rel-
ative to a general replacement setting is the possibility
of denial of service (that is, busy signals). Whereas re-
placement in general buffer management is based on al-
ways satisfying the incoming request, in modem pools it
is better to sometimes deny requests. The reason is both
subjective (because active users will get very annoyed at
losing a resource that they claimed first) but also often
objective: with dynamic IP address assignment, discon-
nections are costly as all existing TCP connections will
be terminated. Overall, there is no compelling reason to
always satisfy a request for connection in modem pools,
unlike, for instance, buffer management in memory hier-
archies. Hence, the modified replacement problem that
we study, includes a “minimum inactivity threshold” pa-
rameter. A user can be replaced only if she has been idle
for at least this much time. If no user can be replaced,
incoming connection requests are denied.

The purpose of a replacement algorithm is to recog-
nize regularities in the reference patterns and predict cor-
rectly which entities can be replaced with minimum cost.
Thus, the unique characteristics of the modem pool do-
main influence the choice of a replacement algorithm. A
characteristic of this domain is that there is no concept of
spatial locality, or, in general, any way to associate the
activity of two different users. “Spatial locality” refers to
the observation that once an entity becomes active, other
entities that are close to it in a well-defined space are
likely to also become active soon. For instance, in vir-
tual memory systems once a page is referenced, pages
next to it, either in the address space, or in the recency
space,4 are also likely to be referenced soon. No such in-
ference can be drawn in the case of modem pools. Indi-
vidual users are quite likely to have no interactions with
one another and there is rarely reason for their inactiv-
ity patterns to be correlated. The lack of spatial locality
means that replacement algorithms that may be success-
ful in other domains are unsuitable for modem pools. For
example, recently proposed algorithms for virtual mem-
ory replacement, like SEQ [GC97] (which detects regu-
larities in the address space) or EELRU [SKW99] (which
detects regularities in the recency space) are not appro-
priate for modem pool replacement.

The question then becomes, what kind of regularities
are there in modem activity? Clearly, activity patterns are

4The recency space is the total ordering of pages according to how
recently they were last referenced.

mainly dictated by human users but also Internet tools
(e.g., email clients, browsers, etc.). It is interesting to
examine whether strong regularities exist. For this, we
consider the distributions of idle times before a user be-
comes active for the three traces of our study, shown in
Figure 2.

There are a few observations we can make. First,
as expected, there is strongtemporal localityexhibited
by all traces: the number of times a connection is re-
activated generally decreases very rapidly as a function
of the idle time. A second observation is that there is
evidence of programmatic (i.e., periodic) behavior in all
traces. In the AT&T Labs trace, strong spikes of activ-
ity appear at 5 and 10 minutes of idle time. Addition-
ally, strong activity is observed after 14 minutes of idle
time, which is immediately before the inactivity timeout
of 15 minutes for this service. Further activity, however,
is evident for idle times (16 minutes) slightlylongerthan
the disconnection timeout. This suggests that some users
may have set their systems to reconnect immediately af-
ter a non-user-initiated disconnection. This is one of the
features that may interact with our simulations and are
discussed further in Section 4.1. The Telesys traces also
exhibit periodic activity, for instance, every 10, 20, and
30 minutes. Activity after exactly 5 or 15 minutes of idle
time could also be strong for the Telesys traces, but due
to the trace granularity (2 minutes) it cannot be distin-
guished very well.

We see, therefore, that the AT&T Labs and Telesys
workloads show evidence of both human and program-
matic activity. Recall that “workaholics” (i.e., users who
tend to be permanently connected) were excluded from
the AT&T trace. Hence, it is reasonable to believe that
the periodic activity observed is not just a response to the
inactivity timeout of the system. Such periodic activity
is significant (for instance, periodic stock price updates
are often more important to home traders than any inter-
active traffic).

Overall, and quite expectedly, Figure 2 shows that
human-produced activity has excellent temporal locality:
a connection receiving only human input tends to stay in-
active once it becomes inactive. Most of the activity seen
after some inactivity seems to be programmatically pro-
duced because it coincides with easily identifiable time
intervals. A good replacement algorithm should be able
to perform well for both kinds of activity.

3.2 The CIRG Algorithm

The CIRG replacement algorithm (forConditional
Inter-Reference Gap) is a novel (to our knowledge) algo-
rithm, loosely based on the Inter-Reference Gap model
proposed by Phalke [Pha95]. The term “inter-reference
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Figure 2: Idle time distributions for the three traces of
our study. The left ends of all traces rise quickly and are
excluded for clarity.

gap” is a synonym for idle time in the user activity do-
main. The CIRG algorithm keeps per-user information
about the most recently encountered idle times and uses
it to predict future idle times. In particular, for each user,
CIRG keeps a list, which we callidle. (We will later gen-
eralize this to multiple lists.) The first element of the list,
idle(1) is the user's idle time before the user last became
active. Fori > 1, the i-th element of the list,idle(i),
is the total idle time for a user the last time the user was
idle longer thanidle(i− 1) time units. For example, the
contents of theidle list could be:

2, 5, 13, . . .
(with minutes as the time unit) meaning that the user was
idle for 2 minutes before she last became active. The
last time the user was idle for more than 2 minutes, she
stayed idle for 5 minutes. The last time the user was idle
for more than 5 minutes, she stayed idle for 13, and so
on.

Using theidle list and the current idle time, the CIRG
algorithm computes how long a user stayed idle the last
time she was idle for as long as now.5 This is used as
an estimate of the total idle time until a user will next
become active. In our example, given a current idle time
of 7 minutes, CIRG will predict that the user will stay
idle for another 6 minutes (for a total of 13). The user
with the highest predicted future idle time is the one to
be replaced.

This scheme can easily be generalized to multiple
lists.6 That is, withk lists, CIRG can compute how long
a user stayed idle the lastk times she was idle for as long
as now. A reasonable estimate of future idle time will
then be the average of the predicted values from each of
thek lists. To keep the list lengths short, we can quantize
the idle times values (e.g., by rounding all idle times to
the closest multiple of 2 minutes).

We have experimented with the CIRG algorithm in
several different replacement settings. Overall, CIRG is,
as expected, good for detecting regular patterns in be-
havior. CIRG is not an ideal algorithm for some set-
tings (e.g., virtual memory replacement) because it keeps

5If the user has never been idle for as long as now, a reasonable
guess for the total idle time is twice the current idle time (i.e., an LRU-
like estimate can be employed: the user's predicted future idle time is
the same as her past idle time).

6The procedure for maintainingk lists, idle1, . . . , idlek is simple
but we outline it here for completeness. Each list has anupdate oper-
ation that takes an idle time parameter. The update operation for the
entire data structure (all lists) calls the update operation for the first
list, idle1, with parametert, when the user becomes active after being
idle for time t. The update operation for listi examines all elements
of list idlei in order from the beginning of the list. For each element
e = idlei(j), if e < t, the element is removed from listi and if i < k,
the update operation is called on listi+ 1 with parametere. Finally, t
is inserted in listidlei .



statistics in terms of time differences between accesses.
(As we explain in [SKW99], inter-reference time is not a
reliable metric of locality for modern programs because
they may access vastly different amounts of memory in
the same amount of time.) Nevertheless, we expected
CIRG to be appropriate for the modem replacement do-
main, which deals with human users and real-time idle-
ness.

An interesting aspect of CIRG is that, because it keeps
statistics per user, it can recognize an arbitrary number
of different periodic patterns. Thus, CIRG is a good al-
gorithm for dealing withmultipledifferent regular pat-
terns. Such patterns could occur because of Internet
tools pulling information (e.g., email clients download-
ing messages every 10 minutes, browsers updating the
displayed stock prices page every 5 minutes, etc.). Pat-
terns could also occur because of user habits (e.g., the
user usually takes 5-10 minute breaks).

4 Experimental Setup

Given the activity traces for the studied workloads, we
simulated different disconnection policies and modem
pool sizes. In this section, we discuss the assumptions
behind our experiments and the metrics used to evaluate
different approaches.

4.1 Validity of Simulations

Our experiments consist of simulations of modem
pools with different numbers of modems and different
disconnection policies than those in place during trac-
ing. Nevertheless, the actual user activity might have
been different if the actual simulated policies were in ef-
fect. For instance, one common user reaction to strict idle
timeout policies is to use programs that simulate activity
so that the connection appears to be always in use.

This interaction of policies and user decisions is some-
thing that no predictive study involving human users can
compensate for. Nevertheless, although this issue can
certainly affect the exact results of our experiments, it
should not affect the overall picture and our conclusions.
There are two reasons for this. First, the most important
of our observations are made under conditions that guar-
antee a quality of service similar to that of the tracing
environment: busy signals are extremely rare and dis-
connections of users who want to be active again soon
are very few. The second reason is more subtle but very
important. The most likely user reaction (if any) to in-
convenient disconnections is to simulate constant activ-
ity so that no disconnection occurs. This penalizes all
disconnection policies equally per user (the user simply
cannot be disconnected, and occupies a modem as long

as she wants). Thus, a policy that causes more user in-
convenience can be expected to be penalized more than
a policy that causes less inconvenience (because more
users will attempt to avoid disconnections in the former
case). Therefore, even though the absolute values of our
metrics may change, theirrelative differencesfor differ-
ent disconnections policies will only beaccentuatedby
the user's conscious choices. Hence, we believe that our
results will hold true when actually employed.

Apart from the case of a conscious user choice, how-
ever, there are cases when programmatically generated
activity may interact with our simulations. This means
that the actual behavior might not be identical to the sim-
ulated one if the studied workloads were indeed handled
with the disconnection policy under simulation. The dif-
ferences are expected to be insignificant, but we discuss
them here so that our assumptions are in the open. There
are two kinds of systematic activities that may be af-
fected by a different disconnection policy and may ap-
pear in our traces.

1. The user may have set her dial-in program to recon-
nect on non-user-initiated disconnections.

2. The user may have set her dial-in program tonot
dial in automatically every time an application at-
tempts to make a TCP connection.

The potential problem in case 1 is dual. First, the ob-
served behavior in our trace may include automatic re-
connections after disconnections. This is behavior that
would not have occurred if a different policy had not
caused the disconnection. This affects only our AT&T
Labs trace, which was collected in an environment with
a 15 minute idle timeout. Nevertheless, the activity at 16
minutes of idle time (see Figure 2) is not high enough to
suggest that this may be a significant interference. The
second possible problem with case 1 is that new activ-
ity will appear after every disconnection, but this activity
is not evident from the original trace. Therefore, all our
simulations should be viewed asaccurateunder the as-
sumption that users do not automatically reconnect on
disconnect. Even in the opposite case, however, this be-
havior is likely to affect all simulated policies equally.

The potential problem with case 2 is that during trac-
ing we may have missed some behavior because of the
disconnection policy that was in place in the tracing en-
vironment. That is, the user might have been active, had
she not been previously disconnected. (The issue clearly
is relevant to programmatic activity, not interactive user
activity—theuser would explicitly connect if she wanted
to use the network interactively.) This should not be a
problem—if the behavior was not important enough to
occur in the traced system, it was probably not important



enough to occur in any simulated systems. It should also
be noted that our traces reflect all activity that originated
from a user. We have no way of telling if some of this ac-
tivity would not have occurred if the user had previously
been disconnected. Hence, our simulations represent the
behavior of a system where users do dial in automatically
every time they are disconnected and an application tries
to access the network (e.g., every time their email client
needs to download messages).

4.2 Metrics

Our first metric of performance of a disconnection pol-
icy is, expectedly, the number of busy signals that the
policy incurs for a given number of modems. Neverthe-
less, this number depends primarily on the number of
users who can potentially be disconnected and the latter
number is almost the same for all replacement policies.
Our approach is to have an inactivity threshold (ortime-
out), t1. Any user who has been idle for more thant1
seconds can potentially be disconnected. The difference
between different policies is inwhichuser (or users) ac-
tually do get disconnected. Thus, the number of busy
signals is similar across different policies that all have
the same value oft1. (The numbers are not identical be-
cause the set of users that can be potentially disconnected
depends on which users were disconnected in the past.)
Therefore, the number of busy signals is a good indica-
tor of the overall quality of service, but it is not a good
differentiator of the various disconnection policies.

Our other performance metrics are identical to those
used in the work of Douglis and Killian. These metrics
attempt to measure user “inconvenience” due to discon-
nections. The approach consists of setting a threshold
t2. If a user is disconnected and does not become ac-
tive again withint2 seconds, then the disconnection is
deemed successful and is termed asoft fault. If, however,
the user becomes active withint2 seconds, the discon-
nection is considered ahard fault (or just fault). (Hard
faults were called “bumps” in the Douglis and Killian
study, a term borrowed from the disk spin-down domain
[DKB95].) The severityof a hard fault is a linear mea-
sure of how close the user's idle time after disconnec-
tion was to the thresholdt2. (That is, severity is a linear
function of idle time after disconnection, such that an
idle time t2 incurs severity 0, and an idle time 0 incurs
severity 1.) Two metrics that we used for evaluating dis-
connection policies are the number of hard faults and the
severity of hard faults. Nevertheless, the results using
these two metrics were very similar, with the fault sever-
ity slightly accentuating the differences between discon-
nection policies. Since the two metrics yield very similar
results, as well as due to lack of space, we will only use
the number of hard faults as a metric in the following

section.

The reason for considering only a few of the faults to
be significant has to do with the perceived inconvenience
of disconnections by the user. A user is wrongly dis-
connected if her network connection is idle but she is
actively using the machine and expects to be connected
(e.g., the user may be writing an email reply off-line,
which she will later send). In this case, the user will
notice the disconnection and reconnect explicitly. This
should be counted as a fault by the system because the
user was inconvenienced and the lack of network con-
nectivity was immediately noticed. On the other hand,
if a user is idle and stays idle after a disconnection, the
user was probably truly inactive. In this case, the in-
convenience of reconnecting is much less and the user is
likely to consider the disconnection justified.

Distinguishing between hard and soft faults may seem
strange to readers used to replacement problems. We be-
lieve, however, that this metric is truly appropriate for
the domain. Additionally, none of the results we present
change qualitatively if we consider the total number of
faults as a metric. That is, if disconnection policy A is
better than disconnection policy B using the number of
hard faults as a metric, then A is also better than B using
the number of total faults as a metric. What changes is
the quantification of how much better A is.

5 Experimental Results

We performed several experiments with different dis-
connection policies, which we outline below. For all the
experiments shown here,we set thresholdt1 to be equal
to t2. This means that a user can be disconnected only if
idle for more thant1 seconds, and the disconnection will
be a hard fault if the user's total idle time is not at least
2t1 seconds. The results obtained witht1 = t2 are fully
representative of all results we have observed for differ-
ent values oft1 andt2 (i.e., we observed no systematic
deviation when we experimented witht1 6= t2).

For the CIRG algorithm, we used three lists of past
idle times (i.e., the value of the parameterk of Section
3.2 is 3) and the predicted idle time was the average of
the predicted time using the three lists. We also per-
formed experiments with one and five lists and the results
were very similar.

5.1 Replacement vs. Fixed Timeouts

It is, in a sense, unfair to compare a replacement pol-
icy with a policy that proactively disconnects users even
when the modem pool is not fully utilized. A replace-
ment policy is always going to inconvenience fewer users



while incurring the same number of busy signals. It is,
however, interesting to quantify how much better the re-
placement approach is in a practical setting. Since fixed-
idle-threshold disconnection policies are widespread, we
show the results of a single experiment below, just as
a point of reference. We will not, however, insist on
such comparisons any further in the rest of the paper.
If keeping users connected has no cost, the replacement
approach clearly results in much less inconvenience for
users.
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Figure 3: Log plot of hard faults for three replacement
policies and a fixed idle threshold policy.

Figure 3 shows the numbers of hard faults incurred
when simulating a fixed-idle-threshold disconnection
policy and three replacement policies for our first Telesys
trace. The simulated modempool has 1,936 modems
(this number is 90% of the maximum number of users
who are connected simultaneously in this trace). The
threshold value,t1(= t2), varies from 600 to 2700 sec-
onds (10 to 45 minutes). (Recall thatt1 is the minimum
idle time before a user becomes eligible for disconnec-
tion.) For all values of the threshold, the replacement
algorithms incur at least one order of magnitude fewer
hard faults.

In examining Figure 3 (as well as figures that follow)
it may seem awkward that the number of hard faults can
rise for higher thresholds. Recall, however, that the fig-
ures shown are produced fort1 = t2. When the thresh-
old t1 increases,t2 also increases, thus causing many soft
faults to be considered hard faults.

5.2 Comparison of Replacement Algorithms

A more interesting experiment concerns the compari-
son of different replacement algorithms. The first ques-
tion to be answered is whether a simple replacement al-
gorithm, like RANDOM, is good enough. RANDOM

corresponds to the simple idea of replacing any user who
has been idle for more thant1 seconds. The point of
reference for the comparison is the LRU algorithm—a
common benchmark in replacement problems. LRU re-
places the user who has been idle the longest (as long
as this is more thant1 seconds, in our case). The LRU
algorithm has been used in replacement settings rang-
ing widely (e.g., from virtual memory to web caching
[ASA+95]). The next step is to see whether a special-
ized algorithm can perform better than LRU. As we will
see, the CIRG algorithm meets this test.

Fixed Threshold, Variable Modem Pool Size Results.
Figure 4 shows the results of simulations for all three
replacement policies and a wide range of modempool
sizes. The value for thresholdt1 (and, consequently,t2)
is set to 600 seconds (10 minutes). We will later examine
how our results change under different threshold values.

The ranges of modem pool sizes that we examine con-
tain all reasonable values for practical applications, given
each workload. That is, for the low end of the studied
range, the workload incurs too many busy signals or too
much user inconvenience due to disconnections. For the
high end of the studied range, the workload incurs prac-
tically no hard faults or busy signals. For the Telesys
traces, the chosen range begins at around 70% of the
maximum number of simultaneously connected users in
the trace.

As can be seen from Figure 4, CIRG and LRU are sig-
nificantly better than RANDOM in terms of hard faults
incurred. The difference ranges from a few tens of per-
cent to over 1000%. Even more importantly, the rela-
tive difference is very significant for large modem pools,
which are the ones that are going to be encountered in
practice. For instance, it would be quite realistic to han-
dle the workload of the July Telesys trace with around
1,900 modems (this setup would suffer around 15 busy
signals in 10 days of use). For 1,906 modems, how-
ever, LRU incurs 370 hard faults, CIRG incurs 341, and
RANDOM incurs 926 faults. Thus, in terms of user in-
convenience, RANDOM may not be a good choice for a
practical setup. Additionally, we can see that CIRG out-
performs LRU. LRU systematically incurs 5% or more,
and sometimes over 20% more faults than CIRG.

The second observation we can make in Figure 4 con-
cerns the overall quality of service. We see clearly how
a disconnection policy helps maintain a low busy-signal
count with fewer modems. Combined with a replace-
ment algorithm that yields a low number of hard faults,
the result is a policy that guarantees good service under
heavy demand. For instance, the July Telesys workload
can be handled using CIRG with 1,875 modems while
incurring only 100 busy signals and 500 hard faults dur-
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Figure 4: Plots of hard faults (linear scale) and busy signals (log scale) for all traces and a variable number of modems.
The value for thresholdt1 is 600 seconds (10 minutes) andt2 = t1. The baseline in the busy signal plots is the number
of busy signals incurred with no disconnection policy in place (for the AT&T trace, no user would get explicitly
disconnected so this baseline is hardly meaningful). For the busy signal plots, often all three curves for RANDOM,
LRU, and CIRG coincide and cannot be distinguished.



ing the course of 10 days (recall that this trace contains
over 315,000 connections and user-initiated disconnec-
tions). This is 13% fewer modems than would be needed
if the system did not disconnect idle users. For compar-
ison, RANDOM needs 1,957 modems to reach 500 hard
faults.

Fixed Modem Pool Size, Variable Threshold Results.
Figure 5 shows how the numbers of hard faults and
busy signals vary for different values of the thresholdt1.
The modem pool sizes simulated are 52 modems for the
AT&T Labs trace, and 1,936 and 2,721 modems for the
Telesys July and November traces, respectively. These
modem pool sizes are 90% of the maximum number of
modems needed simultaneously for the Telesys traces.
For all three traces, the modempool size is such that
few busy signals are incurred for a 600 second thresh-
old. Thus, the sizes are such that they could very well be
used in practice to handle these workloads.

For the AT&T Labs trace, the values oft1 examined
are between 300 and 900 seconds (5 and 15 minutes, re-
spectively). Since the environment where the trace was
collected had a 15 minute inactivity timeout, these val-
ues seem reasonable. The values are certainly more ag-
gressive than what would be expected from a typical ISP,
but since the setup uses static IP addresses, the cost of
a disconnection is small (i.e., only the reconnection de-
lay and not the termination of open sessions). For the
Telesys traces, we experimented with threshold values
ranging from 600 seconds (10 minutes) to 2700 seconds
(45 minutes). These are more realistic settings for a gen-
eral purpose ISP where disconnections are more costly
due to the dynamic IP address assignment.

As we observe in Figure 5, the number of hard faults
may increase for higher threshold values, but not dra-
matically. LRU and CIRG remain the best predictors
of future idle time, with CIRG performing slightly bet-
ter. RANDOM performs significantly worse than both
for all settings that incur a tolerable number of busy sig-
nals (e.g., below 1,000 for the Telesys traces). The num-
ber of busy signals incurred by all policies increases, ex-
pectedly, for higher threshold values. By increasing the
minimum inactivity threshold for disconnections (t1), the
number of users who can potentially be disconnected de-
creases rapidly (as seen in the histograms of Figure 2).

We can see from Figure 5 that with 10% fewer
modems than the maximum needed simultaneously, we
can get a low number of busy signals and hard faults,
for high threshold values—over half an hour for the July
Telesys trace. The November Telesys trace has worse lo-
cality and quickly incurs many busy signals for threshold
values above 20 minutes. This is to be expected: users
of Telesys who stay idle long, are likely to have ded-

icated phone lines for modem connections. Neverthe-
less, the increase of Telesys usage between the Summer
and Fall trace is mainly due to students. The percent-
age of students who can afford dedicated phone lines is
lower than the corresponding percentage of faculty and
staff. Thus, it is natural to have proportionally fewer
users who are idle for long in the November trace. We
believe that the July trace is more representative of typ-
ical ISP subscribers' behavior than the November trace,
but have taken no steps towards verifying this.

Soft Faults Finally, we present in Figure 6 the num-
bers of soft faults incurred by all the studied policies.
The first column presents the soft faults under constant
thresholdt1 and variable modem pool size. The second
column presents the numbers of soft faults under con-
stant modem pool size and variable threshold. All pa-
rameters are the same as for the corresponding plots in
Figures 4 and 5. As we explained earlier, the number
of soft faults is not an accurate indication of the perfor-
mance of a policy—soft faults represent correct predic-
tions that lead to successful disconnections. Neverthe-
less, we show the soft fault measurements for complete-
ness. The reader can refer to these plots to confirm that
the predictions made by CIRG and LRU were very of-
ten accurate—the number of soft faults is usually many
times higher than the number of hard faults.

6 Implementation Considerations and Ap-
plicability

The idea advocated in this paper is to consider dis-
connecting users only if a modem pool is fully occupied.
Following this approach, we studied different algorithms
for picking users to disconnect. Unfortunately, neither
modem servers7 nor modems have native support for the
policies we describe. Fortunately, however, the approach
is very easy to implement.

The most straightforward implementation would be
one that does not strictly perform replacement but keeps
a fixed number of modems unoccupied, as long as users
with idle time more thant1 exist. That is, for a small
numbern, if the number of available modems drops be-
low n and there are users idle for more thant1 seconds,
the system will disconnect one of these users and re-
peat the process. If there are no users idle for more than
t1 seconds, then all modems can be occupied and other
connections will get a busy signal. This implementation

7There is no established term for the devices that manage and im-
plement Internet protocols over multiple serial ports. Depending on
the exact functionality and marketing decisions ofeach maker, these
are calledmodem servers, remote access servers, terminal servers, or
communications servers
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Figure 5: Plots of hard faults (linear scale) and busy signals (log scale) for all tracesunder variable thresholdt1 (and
t2 = t1). The number of modems for each workload is fixed to a value that yields few busy signals for a 10 minute
threshold (for the Telesys workloads, this is 90% of the maximum number of simultaneously connected users in the
trace). The baseline in the busy signal plots is the number of busy signals incurred with no disconnection policy
in place. For the busy signal plots, often all three curves for RANDOM, LRU, and CIRG coincide and cannot be
distinguished.
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Figure 6: Plots of soft faults for all tracesunder variable number of modems (first column) and variable threshold
(second column). The parameters not shown on the plots are the same as those used in Figure 4 for the first column
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works well because it does not penalize the system in
cases of heavy load that cannot be alleviated with dis-
connections (all modems can be used). In case of a load
that could be lightened with disconnections, it only pe-
nalizes the system by keepingn modems available. The
numbern could be quite small relative to the pool size.
For the Telesys pool of over 3,000 modems, a value of
n = 20 would be reasonable (see below for the rate of
connections and disconnections in the Telesys traces).

Additionally, what makes a sophisticated modem dis-
connection policy easy to implement is that the data and
decisions involved are not significant for modern ma-
chines. For the Telesys modem pool (which is among the
largest unified pools encountered in practice) one has to
manage up to a few thousands of modems at any time and
a total number of users in the low tens of thousands. Han-
dling replacement policy data structures with this many
entries is a simple matter. Even for CIRG and LRU, the
more “costly” policies among the ones we studied, up-
dating the data structures and selecting a user to discon-
nect was, at most, a matter of milliseconds. The total
memory required was less than 2MB for CIRG and less
than 100KB for LRU at any time. Furthermore, the in-
put data change at human-time rates. Typically, 5 to 10
connections or disconnections per minute were observed
in the Telesys trace. As we saw in our experiments, our
polling interval of 2 minutes was sufficient for obtaining
data such that accurate predictions can be made.

In fact, the problem is computationally simple enough
that even a centralized remote implementation is suffi-
cient. (This is certainly not the only option but we dis-
cuss it here because of its simplicity.) That is, a re-
mote workstation can be periodically polling all the ter-
minal servers and sending messages that will initiate user
disconnections. Many modern communications servers
support SNMP (see [CFSD90] and [MR91] for the proto-
col and the relevant MIB entries), so both the polling and
the disconnection commands can be sent remotely over
the Internet. Alternatively, a centralized implementation
with small proxies that will perform the disconnections
at every server seems to be a simple option.

To see how feasible this is, during our trace collection,
we polled the over 100 Telesys terminal servers remotely
over the Internet using the “finger” command (which
uses theFinger user informationprotocol[Zim91]). This
method is clearly inefficient because the protocol is not
optimized for periodic polling and because the informa-
tion we needed was less than 5% of the total transmitted
data. Nevertheless, our polling took around 50 seconds
when done serially and around 15 seconds when done
with one process per terminal server (the vast majority
of processes finished within 3 seconds but a couple took

longer). Although we have no way of analyzing the de-
lay, it is reasonable to assume that it is primarily due to
delay of processing at the terminal server and secondar-
ily due to network latency. The former can be minimized
with a less inefficient polling protocol. The latter could
be reduced if our machine storing the trace was at closer
network proximity of the servers. Nevertheless, even the
15 seconds taken for a remote, inefficient poll are per-
fectly acceptable—user statistics will not have changed
significantly in this time.

7 Proactive Disconnections

The main idea explored in this paper is that of per-
forming user replacement in modempools. The general
problem we are addressing, however, is that of predict-
ing future idle times for user connections to the Internet.
Thus, our mechanisms could find application in other
domains. A prominent opportunity appears in the case
of proactive user disconnections. This is the problem
studied by Douglis and Killian [DK99]. Their adaptive
timeout technique aims at reducing the total connect time
across users. Proactive disconnects are interesting when
either the service provider or the user is charged more
for longer connection times. (As Douglis and Killian ad-
mit, “Examples of this in the general ISP market are rare,
but some services that function effectively as ISPs do ob-
serve this property.”) The tradeoffs involved in such a
setting are interesting. For instance, there may be a con-
nection initiation fee for users, so a disconnection should
be performed only if the charge of staying connected is
higher than the charge of connecting anew.

The formulation of the proactive disconnection prob-
lem is similar to that of the replacement problem. There
are two thresholds,t1 andt2. t1 is the minimum idle time
before a user is eligible for disconnection.t2 is the min-
imum user inactivity time after an automatic disconnec-
tion, for the disconnection to be considered successful.
(“Successful” may mean cost-effective, psychologically
acceptable, or both.)

It is interesting to consider a proactive disconnection
algorithm based on the same predictions of future idle
time as those made by our replacement algorithms. We
have implemented an algorithm calledCIRG-proactive
that uses the same information as the CIRG replacement
policy to estimate the future idle time for every user and
disconnects any user with an expected future idle time
that is longer thant2. For instance, assume a value of 5
minutes fort2, and a user who has been idle for 6 minutes
and has anidle list:

2, 5, 13, . . .
(these values in minutes). The user will be disconnected,
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Figure 7: Fault severity and absolute number of faults
vs. relative connect time for three policies: a fixed time-
out policy, CIRG-proactive, and the Douglis and Killian
technique (“adaptive timeout”). Connection times are
normalized with respect to the connection time of an op-
timal, off-line policy.

since her expected future idle time is 7 (for a total idle
time of 13).

We have performed experiments with CIRG-proactive
and compared it to the Douglis and Killian technique.
We should emphasize that our results are preliminary.
The reason is that we have not re-implemented the
Douglis and Killian mechanism. Hence, we could not ex-
amine its effects on our long traces (the Telesys traces).
Instead, we use the measurements already computed by
Douglis and Killian for the AT&T Labs trace and com-
pare them to the performance of CIRG-proactive.

Figure 7 presents the results of our comparison. It
shows two scatter plots: one of fault severities and con-
nection times and another of absolute fault counts and
connection times. Both show results for a fixed time-
out policy, CIRG-proactive, and the Douglis and Kil-

lian technique applied to the AT&T Labs trace, with 15
workaholics excluded. Connection times are normalized
with respect to the connection time of an optimal, off-
line (i.e., clairvoyant) policy. That is, the optimal pol-
icy would encounter 0 faults for a relative connect time
of 1. The value oft2 is 5 minutes and the values oft1
for the fixed timeout policy are 2, 5, 10, and 15 min-
utes. (These values are chosen to be identical with those
used by Douglis and Killian in their study.) The values
of t1 for CIRG-proactive are all integral minute values
from 1 to 15 minutes. 18 data points for the Douglis and
Killian technique are plotted,each for a different combi-
nation of adaptivity (multiplicative or additive) and dif-
ferent parameters. As we are comparing to the approach
as a whole, we do not distinguish between the different
flavors of the Douglis and Killian technique (for this, the
reader is referred to [DK99]).

We can see from Figure 7 that CIRG-proactive per-
forms on average just as well as the Douglis and Kil-
lian policy and they both perform significantly bet-
ter than fixed timeouts. Nevertheless, the values for
the Douglis and Killian approach are clustered together
in the connect-time/user-inconvenience space, while
CIRG-proactive offers a wider range of options in the
tradeoff between user inconvenience and total connect
time. It is worth noting that CIRG-proactive offers this
wide range of options with only a single parameter that
can be tuned (thet1 minimum idle time for disconnec-
tion) while the Douglis and Killian approach has several
degrees of variability (additive vs. multiplicative adap-
tivitywith two numeric parameters for each variant). The
wide range of CIRG-proactive values means that we can
argue that CIRG-proactive is strictly better than a fixed
timeout policy: For each fixed timeout point in the plot,
we can find a CIRG-proactive point that is below it and
to its left. That is, for each fixed timeout setting, we can
find a value oft1 for CIRG-proactive so that it incurs
both a lower fault severity (or fewer faults)and a lower
total connect time. The Douglis and Killian technique
provides no such guarantee for the values shown.

8 Conclusions

In this paper, we examined a disconnection policy for
modem pools that performs replacements: users are dis-
connected only if not enough modems are available for
other users to connect. Our idea is certainly not revolu-
tionary but it is nicely evolutionary. If any disconnection
policy based on inactivity is to be used, a replacement
scheme works best and is easy to apply in practical set-
tings. In our study, we examined several replacement
algorithms, and compared their performance in terms of
busy signals and user inconvenience.



Perhaps more importantly, however, this paper stud-
ied the regularities that arise in Internet users' inactivity
times. Based on our analysis, we proposed the CIRG al-
gorithm and showed that it is a very good predictor of
future idle times. Our hope is that the main elements of
the CIRG approach will also find applications in other
domains.
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