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ABSTRACT
Current Java static analyzers, operating either on the source or byte-

code level, exhibit unsoundness for programs that contain native

code. We show that the Java Native Interface (JNI) specification,

which is used by Java programs to interoperate with Java code,

is principled enough to permit static reasoning about the effects

of native code on program execution when it comes to call-backs.

Our approach consists of disassembling native binaries, recovering

static symbol information that corresponds to Java method signa-

tures, and producing a model for statically exercising these native

call-backs with appropriate mock objects.

The approach manages to recover virtually all Java calls in native

code, for both Android and Java desktop applications—(a) achiev-

ing 100% native-to-application call-graph recall on large Android

applications (Chrome, Instagram) and (b) capturing the full native

call-back behavior of the XCorpus suite programs.

CCS CONCEPTS
• Software and its engineering → Compilers; • Theory of
computation → Program analysis.
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1 INTRODUCTION
Over two decades ago, Java ushered in the era of portable,

architecture-independent application development. The attempt to

make portable mainstream applications was originally met with

skepticism and became a critical point in Java adoption debates,

as well as in the focus of the language implementors. Within a

few years, the Java portability story was firmly established, and

since then it has been paramount in the dominance of Java—the

top ecosystem in current software development.
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An often-overlooked fact, however, is that platform-specific (na-
tive) code is far from absent in the Java world. Advanced appli-

cations often complement their platform-independent, pure-Java

functionality with specialized, platform-specific libraries. In An-

droid, for instance, Almanee et al. [1] find that 540 of the 600 top

free apps in the Google Play Store contain native libraries, at an

average of 8 libraries per app! (The architectural near-monopoly of

ARM in Android devices certainly does nothing to discourage the

trend.) Desktop and enterprise Java applications seem to use native

code much more sparingly, but native code still creeps in. Popular

projects such as log4j, lucene, aspectj, or tomcat use native code for
low-level resource access [11].

The presence of native code in a Java application hinders static

analysis, at any level. Failing to analyze the native parts of an

application causes analysis unsoundness [12, 30]. Concretely, Sui et
al. recently showed that native code is a core threat in call-graph

analysis [38]. Native code can call back to Java code, introducing

false negatives in reachability analysis—the static analysis that finds

which parts of the code are reachable. Reachability analysis is, for

instance, critical for Android: as part of packaging an Android

application for deployment, unreachable (dead) code is eliminated

via automated analysis. Modern Android development depends on

a manually-guided workflow (via the ProGuard [23] configuration

language) to explicitly capture the Java entry points used by native

code, so that reachable code does not get optimized away.

Other than such manual “fixes” of the analysis results, there

are few solutions to the problems of native-code-induced analysis

unsoundness. Reif et al. [33] find that “none of the [state-of-the-art

Java analysis] frameworks support cross-language analyses”. In

recent work, Lee proposes (as planned work) a hybrid Java/C static

analysis [26] that addresses the issue. However, this heavyweight

approach requires access and analysis of native source code, which

is a severe burden in practice. Source code for third-party native

libraries (and even metadata, such as DWARF information [8]) is

typically unavailable to the Java developer. Furthermore, analyzing

the source code of the native library is very hard—e.g., the code may

be in any of several languages (C, C++, Rust, Go), many of which

currently have no practically effective whole-program analysis

infrastructure.

In this paper, we present a technique for finding the call-backs

from native to Java bytecode,
1
via scanning of the binary libraries

and cross-referencing the information with the Java code structure.

Our approach recognizes uses of the Java Native Interface (JNI) API,

which provides the bridge between native and Java code. Specif-

ically, the technique identifies string constants that match Java

1
Java bytecode may not necessarily be produced from Java source code. For simplicity,

we merely write “Java code” in the rest of the paper, with the understanding that the

applicability of the technique extends transparently to all languages producing Java

bytecode.
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method names and type signatures in native libraries, and follows

their propagation (to find where method name strings are used

together with type signature strings). In this way, the technique

identifies entry points into Java code from native code, without

fully tracking calls (i.e., call-graph edges) inside native code.

The resulting technique informs the static analyses of the Doop

framework [5]. It is the first approach to effectively address un-

soundness in static reachability analysis, in the presence of binary

libraries. We evaluate the approach over large Android applications

(Chrome, Instagram) and the native-code-containing programs in

the XCorpus suite [11]. The two settings mandate different evalua-

tion methodologies: for the Android applications, no native source

code is available, yet the application has dynamic execution snap-

shots, showing Java methods called from native code. For the XCor-

pus programs, the bundled test suite does not exercise native call-

backs, yet the native source is available for manual inspection. In

both cases, our approach captures the full call-back behavior of the

native code.

2 BACKGROUND
This section introduces the Java Native Interface specification (Sec-

tion 2.1) and declarative static analysis (Section 2.2).

2.1 Java Native Interface
The Java Native Interface (JNI) [31] is an interface that enables

native libraries written in other programming languages, such as

C and C++, to communicate with the Java code of the application

inside the Java Virtual Machine (JVM). The JNI is a principled

form of a foreign function interface (FFI), a feature that mature

programming languages usually incorporate as an escape hatch to

third-party functionality or low-level operations. The JNI was first

supported in JDK release 1.1, to improve the interplay of Java with

native code (at a time when the JVM could itself be integrated with

native code, especially Web browsers) [29].

The JNI allows programmers to use native code in their applica-

tions without requiring any change to the Java VM, which means

that the native code can run inside any Java VM that offers JNI

support. Via JNI, it is possible to create new Java objects and update

them in native code functions, call Java methods of the same appli-

cation from native code, and load classes and inspect them. This

functionality is supported by an extensive API with appropriate

methods and data structures that let native code interact with Java

objects by using JVM concepts such as method and field descriptors.

Such descriptors are full signatures for methods and fields, as they

appear in bytecode, i.e. generics have been erased and types are

represented by their low-level counterparts.

Figure 1 shows the “hello world” program in JNI, which exhibits

the following features of the JNI API:

• The native function that implements native Java method JNIEx-
ample.hello(Object arg) is assumed to be named Java_JNIExample_hello
and take a corresponding jobject argument.

• The native function also accepts a JNIEnv pointer for a reference to

the JNI environment and a jobject for a reference to the receiver

object (this). The JNIEnv argument points to a structure storing

all JNI function pointers, which allow instantiation and use of

JNIEXPORT void JNICALL
Java_JNIExample_hello(JNIEnv *env ,
jobject thisObj , jobject arg) {
printf("Hello World!\n");
return;

}

Figure 1: "Hello world" native function example.

Table 1: Java Method Signatures Examples.

Method Signature
void m1() ()V

int m2(long) (J)I

void m3(String) (Ljava/lang/String;)V

String m4(String, int[]) (Ljava/lang/String;[I)Ljava/lang/String;

objects, conversion between native strings and Java strings, and

other functionality.

• The native function is decorated with macros that control the

native code linking (JNIEXPORT) and call convention (JNICALL) for

the specific platform for which the code will be compiled.

When using native code in an application, it is possible to call

back Java methods from native functions. In order to call back a

Java method, the programmer needs to find its method id object (of

JNI type jmethodID). This object is looked up by giving the name

of the containing class, the name of the method, and the low-level

signature of the method (JVM method descriptor). The signature is

a string of the form (parameters)return-value with some examples

of methods and their signatures shown in Table 1.

The process of calling back a method starts by getting a refer-

ence to the object’s class by using method FindClass() [24]. Then,

the method name and signature are given as arguments in the

function GetMethodID() of the class reference and the method id is

returned. The method id can be used to call the Java method using

the right function for the specific case, such as CallVoidMethod(),

Call<Primitive-type>Method() and CallObjectMethod(). As for the

type of the returned value of the called method, this can be void,

<Primitive-type> and Object, respectively. An example of the pro-

cess for calling a Java method that takes an Object argument and

returns an integer through native code is shown in Figure 2.

2.2 Points-To Analysis in Datalog
Datalog is a declarative logic-based programming language which

is designed to be used as a query language for deductive databases.

Our analysis uses the Doop framework, implemented in Datalog [5],

which provides a rich set of points-to analyses (e.g., context insensi-

tive, call-site sensitive, object sensitive) for Java bytecode. However,

because of the modular way of context representation in the frame-

work, code built upon any such analysis can be oblivious to the

exact choice of context (which is specified at run-time).

Soot [42] is a framework that is used by Doop and is responsi-

ble for generating input facts for an analysis as a pre-processing

step. By using this framework, Doop expects as input the bytecode
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JNIEXPORT void JNICALL Java_JNIExample_callBack(JNIEnv *env , jobject thisObj , jobject obj) {
jclass cls = (*env)->FindClass(env , "JNIExample");
jmethodID method = (*env)->GetMethodID(env , cls , "exampleMethod", "(Ljava/lang/Object ;)I");
jint i = (*env)->CallIntMethod(env , thisObj , method , obj);
printf("callBack (): i = %d\n", i);

}

Figure 2: Call back Java method from native function example.

form of a Java program, which means the original source is not

needed but only the compiled classes are necessary. This allows for

analyzing programs whose source code is not available. The set of

asserted facts for a program is called its EDB (Extensional Data-

base) in Datalog semantics. The relations that are generated and

directly produced from the input Java program, and any relation

data added to the asserted facts by user defined rules, constitute

the EDB predicates.

VarPointsTo(obj , var) :-
AssignHeapAllocation(obj , var).

VarPointsTo(obj , to) :-
Assign(to , from), VarPointsTo(obj , from).

Figure 3: Simple Datalog example for IDB rules.

Following the pre-processing step a simple pointer analysis can

be expressed entirely in Datalog as a transitive closure computa-

tion (Figure 3). The Datalog code of the example consists of two

simple rules known as IDB (Intensional Database) rules in Datalog

semantics. These two rules are used to establish new facts from a

conjunction of facts that are already established. The rule of the

first line constitutes the base case of the computation and states

that upon the assignment of an allocated heap object to a variable,

this variable may point to that heap object. The second rule is the

recursive case which states that if the value of a variable is assigned

to another variable, then the second variable may point to any heap

object the first variable may point to. For instance, the recursive

rule of line 2 states that if Assign(to, from) and VarPointsTo(obj,

from) are both true for some values of from, to, and obj, then that

VarPointsTo(obj, to) is also true.

3 HELLOJNI EXAMPLE
This section describes our technique informally using an easy ex-

ample: a toy Java/C program that uses few string constants and

is easy to disassemble. We will use standard command-line tools

to show the essence of our technique, without yet introducing the

additional modeling and filtering (which will come in Section 4).

Assume we have a Java program (Figure 4) that defines native

functions (Figure 5).
2
Further, assume we compile this code on

Linux, on x86-64 hardware.

A pure-Java static analysis of the resulting program will miss the

calls from the native code for methods newJNIObj() and callBack().

2
Code adapted from online JNI tutorial [24].

However, we observe that necessary parts of the target methods

(names and signatures) appear in the native code as constant strings.

Investigating the problem, we first examine the resulting .so

library, which is in ELF format. ELF (Executable and Linkable For-

mat) [32] is a file format for binaries, libraries, and core files. In the

ELF library, string constants reside in the .rodata section [27]. We

use the readelf command [14] to view the ELF sections and find

the address of section .rodata and then view the strings in .rodata

(Figure 6). Since the section starts at address 2000, the strings “Hel-

loJNI”, “(Ljava/lang/Object;Ljava/lang/Object;)I”, and “helloMethod”

are at addresses 2035, 2050, and 2078 respectively.

Disassembling Java_HelloJNI_callBack() in Figure 7, shows lea

instructions with a computed addresses in comments (computed by

GDB
3
). These computed addresses are the references to the three

strings found in the previous step. Thus, we can deduce that the

native function uses these strings, one of which looks like a JVM

signature. Also, these three strings match the type, name, and JVM

signature of an existing Java method HelloJNI.helloMethod(), thus

the native function may be calling this Java method.

Finally, we can map the native function back to the origi-

nal Java method. While this in general can be arbitrarily diffi-

cult, in this example, we assume the default JNI behavior where

Java_HelloJNI_callBack() will be linked to an existing native Java

method HelloJNI.callBack(). Thus, we can form a call-graph edge

from HelloJNI.callBack() to HelloJNI.helloMethod().

The above steps assume that (a) the input program is easy to dis-

assemble (debugging metadata or other information offers function

boundaries), (b) there is away to statically compute the references to

the strings that are used, and (c) there is an easy way to map native

functions back to their Java entry points. These assumptions may

be violated: stripped or optimized binaries may be difficult to disas-

semble, address computation is platform- and compiler-dependent,

and JNI linking can be complex. The next section presents the full

technique, with more details on how to handle such difficult cases.

4 OUR TECHNIQUE
A summary of the steps of our technique follows:

PRE A pre-processing step finds all method names and signatures

in the Java code, forming a setM0.

FILT The native code of each library n is scanned for strings that

can be found inM, resulting in setMn ⊆ M0.

LOC The strings inMn
are localized: for each native function f

in library n, Ln
f is the set of strings being used in the body

of f .

3
https://www.gnu.org/software/gdb/

https://www.gnu.org/software/gdb/
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public class HelloJNI {
static {

System.load("libhello.so");
}

// Declare a native method sayHello () that receives nothing and returns void
private native void sayHello ();
private native Object newJNIObj ();
private native void callBack(Object obj);

static Object sObj;

// Test Driver
public static void main(String [] args) {

HelloJNI hj = new HelloJNI ();
hj.sayHello (); // invoke the native method
Object obj = hj.newJNIObj ();
System.out.println(obj.toString ());
sObj = hj.newJNIObj ();
System.out.println(sObj.toString ());
hj.callBack(new Object ());

}

public int helloMethod(Object obj1 , Object obj2) {
System.out.println(obj1.hashCode ());
System.out.println(obj2.hashCode ());
return 1;

}
}

Figure 4: Code of HelloJNI.java example file.

#include <jni.h>
#include <stdio.h>

// Implementation of native method sayHello () of HelloJNI class
JNIEXPORT void JNICALL Java_HelloJNI_sayHello(JNIEnv *env , jobject thisObj) {

printf("Hello World!\n");
return;

}

JNIEXPORT jobject JNICALL Java_HelloJNI_newJNIObj(JNIEnv *env , jobject thisObj) {
jclass cls = (*env)->FindClass(env , "HelloJNI");
jmethodID constructor = (*env)->GetMethodID(env , cls , "<init >", "()V");
return (*env)->NewObject(env , cls , constructor);

}

JNIEXPORT void JNICALL Java_HelloJNI_callBack(JNIEnv *env , jobject obj) {
jclass cls = (*env)->FindClass(env , "HelloJNI");
jmethodID helloMethod = (*env)->GetMethodID(env , cls , "helloMethod", "(Ljava/lang/Object;Ljava/lang/

Object ;)I");
jint i = (*env)->CallIntMethod(env , obj , helloMethod , obj , obj);
printf("callBack (): i = %d\n", i);

}

Figure 5: Code of HelloJNI.c example file.
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$ readelf --sections libhello.so
Section Headers:
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align
...
[13] .rodata PROGBITS 0000000000002000 00002000

00000000000001ab 0000000000000000 A 0 0 8
...
$ readelf -p .rodata libhello.so
String dump of section '.rodata':
...
[ 28] Hello World!
[ 35] HelloJNI
[ 3e] ()V
[ 42] <init>
[ 50] (Ljava/lang/Object;Ljava/lang/Object;)I
[ 78] helloMethod
...

Figure 6: Viewing section .rodata in the example program.

0x00000000000011d6 <+31>: lea 0xe58(%rip),%rsi # 0x2035
0x00000000000011dd <+38>: mov %rdx,%rdi
0x00000000000011e0 <+41>: callq *%rax
...
0x00000000000011fc <+69>: lea 0xe4d(%rip),%rcx # 0x2050
0x0000000000001203 <+76>: lea 0xe6e(%rip),%rdx # 0x2078
0x000000000000120a <+83>: callq *%rax

Figure 7: Disassembled native function Java_HelloJNI_callBack(), where string references are shown in comments.

INVO For each function f , any method whose name and signature

can be found in Ln
f is determined to be reachable from f ,

forming set In
f .

EDGE If the native function f implements a native Java method

m, we form a call-graph edge from native methodm to each

method in In
f .

4.1 Step PRE
This step takes place during the pre-processing stage of the static

analysis. In the Doop framework, this stage consists of “fact gen-

eration” (implemented using either Soot [42] or WALA [10]): the

extraction of database tables with input program information, for

later processing by Datalog rules. During the PRE phase, every

method encountered will save its name and JVM-level signature in

set M0.

4.2 Step FILT
We find the native code of the application by reading all files rec-

ognized as dynamic libraries (e.g., with filenames ending in .so

or .dll) from the input program. We extract the strings from the

native code and only keep those that match actual method names

or signatures in the program (by crossreferencing setM0, above).

The resulting set is M. As an optimization, if no method names or

no signatures are found, we stop the analysis of this library (since

the cross-product of names and signatures in the next step will be

empty).

Finding strings is easy, as these are constants stored in special

sections of the binary code (such as section “.rodata” in Linux ELF

files). In practice, we can use the GNU “strings” utility, roll our

own code to look for NULL-terminated strings, or use a special

disassembler. We choose the last option and use Radare2,
4
a free and

powerful reverse engineering framework, which is also employed

in other steps of our approach. As a side effect, Radare2 gives us

support for multiple hardware targets (x86, x86_64, arm64, and

armeabi) and operating systems (Linux, macOS, Windows).

This step also records global (or “static”) strings stored in the

binary (such as the strings in the “.data” section in Linux ELF files).

These strings are also useful for resolving JNI functionality related

to dynamic linking and may be used later, in step CALL.

4.3 Steps LOC and INVO
At this point, we can already perform step INVO crudely, to match

all found strings against the method names and type signatures

(a.k.a. “descriptors”) of the Java code. If a method finds both its

name and type signature inM, then that method can be assumed

to be called from the native code.

However, this can be too imprecise since a big native code library

may contain many strings: strings used in different functions can

accidentally match methods that will not be called in reality. Also,

the resulting information is too basic: we can only determine the

4
https://rada.re/

https://rada.re/
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.decl PossibleNativeCodeTargetMethod(method:Method , function:symbol , file:symbol)

PossibleNativeCodeTargetMethod(method , function , file) :-
NativeMethodTypeCandidate(file , function , descriptor),
NativeNameCandidate(file , function , name),
Method_SimpleName(method , name),
Method_JVMDescriptor(method , descriptor).

Figure 8: Datalog rule to find possible Java method calls by matching method names and type descriptors used in the same
native function.

// Mock arguments for methods called from native code.
MockValueConsMacro(mockId , frmType),
VarPointsTo(mockId , frm) :-

PossibleNativeCodeTargetMethod(method , function , file),
FormalParam(_, method , frm),
Var_Type(frm , frmType),
mockId = "<mock native object of type " + frmType + " from " + file + ":" + function + ">".

// Mock 'this ' for methods called from native code.
MockValueConsMacro(mockId , type),
VarPointsTo(mockId , this) :-

PossibleNativeCodeTargetMethod(method , function , file),
ThisVar(method , this),
Var_Type(this , type),
mockId = "<mock receiver of type " + type + " from " + file + ":" + function + ">".

Figure 9: Datalog rules to mock arguments and receivers of methods called from native code.

methods reachable from a native code library, which helps reacha-

bility computation but we cannot identify a call-site or other caller

identity.

To address both above issues (imprecision and loss of invocation

location), we perform step LOC, which finds which native code

function uses which strings. Then, we can match name/signature

strings per function, and solve the precision problem outlined above.

Knowing the function can also helpwith the construction of a native

call-graph edgeN(f ,m) from a native function f to a Java method

m.

To find all places in the binary code where strings are referenced,

we perform a “string cross-references” (a.k.a. “string x-refs”) anal-

ysis using Radare2. Radare2 can analyze binary code and convert

it to a stack-based IR, which then can be analyzed and partially

evaluated so that string references can be computed [9]. A string

x-refs analysis is needed since string references may not appear

as local constants but be formed at runtime, by Position Indepen-

dent Code [27, Chapter 8], by some layers of obfuscation, or by the

hardware architecture at hand.

We should note here that static disassembly is not a solved prob-

lem [2]. For example, binary files may contain complex constructs,

such as overlapping code and inline data in executable regions. In

our technique, function boundaries (and the assignment of sym-

bols to specific functions where they are used) may not be always

recovered with full accuracy.

The output of the LOC step is Ln
f : the set of string con-

stants of library n being used in the body of native func-

tion f . At the analysis level, this is expressed as relations

NativeMethodTypeCandidate and NativeNameCandidate, which relate

string constants that match method names and type descriptors

(e.g., "(Ljava/lang/Object;Ljava/lang/Object;)I" in Figure 5) to a

library filename and native function identifier. The final step is a

Datalog query (shown in Figure 8) that matches method names and

descriptors appearing in the same native function.

4.3.1 Mock Objects. Finding methods callable from native code

does not immediately imply their full treatment in the static analysis.

To fully statically model the effects of the native-to-Java call-back,

we need to provide appropriate values to the call’s parameteres,

including the implicit “this” receiver passed to non-static methods.

We create “mock” objects, i.e., appropriate artificial objects, for such

arguments, following a policy of single-object-per-type-and-call.

This is illustrated in the rules of Figure 9.

The first rule in Figure 9 is used to create a mock id for every ar-

gument and its type of every reachable method by joining the pred-

icate PossibleNativeCodeTargetMethod(method, function, file)

and the predicates FormalParam(_, method, frm) and Var_Type(frm,

frmType). The second rule has a similar behavior, creating a mock

object for the receiver (“this”) of Java methods found in native

code.

4.3.2 Constructor Filtering. Constructors are regular Java methods

that are called when new objects are created. Native allocations
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// A filtered version of the cross -product.
.decl HighlyProbableNativeCodeTargetMethod(method:Method , function:symbol , file:symbol)
// Accept calls to non -constructors.
HighlyProbableNativeCodeTargetMethod(method , function , file) :-

PossibleNativeCodeTargetMethod(method , function , file),
!ClassConstructor(method , _).

// Accept calls to constructors if instance methods are reachable.
HighlyProbableNativeCodeTargetMethod(method , function , file) :-

PossibleNativeCodeTargetMethod(method , function , file),
ClassConstructor(method , type),
Method_DeclaringType(instanceMethod , type),
Reachable(instanceMethod),
!Method_Modifier ("final", instanceMethod).

// Accept calls to constructors if instance fields are used.
HighlyProbableNativeCodeTargetMethod(method , function , file) :-

PossibleNativeCodeTargetMethod(method , function , file),
ClassConstructor(method , type),
Field_DeclaringType(field , type),
( StoreHeapInstanceField(field , _, _, _, _)
; LoadHeapInstanceField(_, _, field , _, _)),
!Field_Modifier ("final", field).

Figure 10: Filtering the cross-product for constructors.

// Native allocations detected by the native scanner.
.decl NativeAllocation(constructor:Method , function:symbol , file:symbol , type:ReferenceType)

NativeAllocation(constructor , function , file , type) :-
HighlyProbableNativeCodeTargetMethod(constructor , function , file),
ClassConstructor(constructor , type).

// Native allocations trigger finalization code in the Android runtime. See:
// https :// android.googlesource.com/platform/libcore /+/ master/luni/src/main/java/java/lang/ref/

FinalizerReference.java
ReachableMethodFromNativeCode(finalizerAdd) :-

NativeAllocation(_, _, _, _),
finalizerAdd = "<java.lang.ref.FinalizerReference: void add(java.lang.Object)>",
isMethod(finalizerAdd).

Figure 11: Native allocations.

are common in native code [38], so constructors are often called

by native libraries. Since all constructors have the same low-level

name (<init>), they only differ in signature and thus our technique

may become too imprecise, lacking this core piece of distinguishing

information. To address this issue, we employ a heuristic: we only

accept calls to Java constructors from native code, if instances of

the constructed type are used. We assume that type is used if an in-

stance method is already reachable or if an instance field is accessed

(Figure 10). This heuristic is successful in practice, since native code

constructs objects that will be passed to the Java program to be

actually used there. The result of this filtering step, which runs in

mutually recursive fashion with the rest of the analysis, is predicate

HighlyProbableNativeCodeTargetMethod(method, function, file).

4.3.3 Marking Native Allocations. Native allocations are easy to

spot: creating an object in native code needs the native code to call

a Java constructor method, so we can record such allocations in

predicate NativeAllocation(constructor, function, file, type),

where a constructor method is called from a function in a library

file, to construct some type (Figure 11). As a detail of the Java

implementation, we also model the reachability of a method in the

library class java.lang.ref.FinalizerReference.

4.4 Step EDGE
Knowing the native function that calls a Java methodm is useful

but we would like to also know if this function implements some

Java method m′
marked with the native keyword. If that is the

case, then we should inform the pure-Java call graph and build

an edge fromm′
tom. Step EDGE takes care of this computation

by observing how JNI links native code functions to Java native

method entry points.
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1 static const char *classPathName = "jackpal/androidterm/compat/FileCompat$Api8OrEarlier";
2 static JNINativeMethod method_table [] = {
3 { "testExecute", "(Ljava/lang/String ;)Z", (void *) testExecute },
4 };
5

6 int init_FileCompat(JNIEnv *env) {
7 if (! registerNativeMethods(env , classPathName , method_table ,
8 sizeof(method_table) / sizeof(method_table [0]))) {
9 return JNI_FALSE;
10 }
11

12 return JNI_TRUE;
13 }

Figure 12: Example use of JNI function RegisterNatives().

There are essentially two approaches to this linking: (a) the auto-

matic one, where the default JNI behavior automatically connects

native and Java code, and (b) the programmable one, where the JNI

code itself configures these entry points.

4.4.1 Automatic Linking. The automatic linking is easy to handle

(and model as logic): the JNI specification follows a default naming

convention that links a Java method with this declaration:

package x.y;
class C {

native meth(Object obj);
}

with function Java_x_y_C_meth, possibly with a signature suffix in

the case of method overloading.

4.4.2 Configurable Linking. The JNI specification offers a method

RegisterNatives() that allows code to programmatically link native

methods against Java “native” method entry points [29, Section

8.3]. This functionality can be useful for overriding the default JNI

naming convention for native functions as shown in Figure 12 (code

taken from the Android-Terminal-Emulator Android application
5
).

Another use of JNI programmable linking is to allow for relinking

different native methods to the same Java method.

We observe that some JNI uses of RegisterNatives() depend on

strings and structures defined outside functions, which go into a

different section in the binary code (and gathered in step FILT).

On Android, applications may have to resort to a custom linker

(“crazy linker”
6
) to allow for flexibility in finding native code and

portability across different Android versions. In particular, the de-

fault Web browser on Android (Chrome) and its assorted system

framework (WebKit
7
) depend on such configurable linking [19].

RegisterNatives() works by accepting triplets (name, signature,

function), where name and signature describe the Java method and

function is a pointer to the native function. Our technique can

recover the data structures containing these triplets, for native code

that is amenable to function boundary analysis and implicit-jump

analysis.

5
https://github.com/jackpal/Android-Terminal-Emulator

6
https://chromium.googlesource.com/android_tools/+/

53862978424412e190e9bc40c7637a71fdd7d298/ndk/sources/android/crazy_linker/

README.TXT

7
https://developer.chrome.com/multidevice/webview/overview

5 DISCUSSION
This section discusses pragmatics concerning our technique’s ap-

plication: we show how to integrate with optimization tools used

in Android development (Section 5.1), how the approach works in

context-sensitive settings (Section 5.2), and the preconditions as

well as variations of its applicability (Section 5.3).

5.1 Example Client Analysis: Code
Optimization

An application of our technique (which we are actively exploring

in a tool for wide use) is in the context of optimization of Android

applications (“apps”). Android apps often use special tools (the

two most common being ProGuard [23] and R8 [20]) to optimize

the code that will be shipped to the “app store” and will then be

downloaded by users. Two core tasks carried out by these tools are:

(1) Code shrinking: Android app binaries are big by design, since
they have to include any library they may use, if it is not part

of the standard platform. Since smaller app sizes correlate

with higher install conversion rates [41], this optimization

is crucial.

(2) Code obfuscation: regardless of application size, Android de-

velopers often want to discourage reverse engineering of

their code and thus resort to code obfuscation, even for small

programs. As Wermke et al. found, obfuscation is performed

in roughly 25% of apps in general and in 50% of the most

popular apps [45]).

Both of the above program transformations cannot happen au-

tomatically for the case of native code calling Java code, since a

Java-only analysis cannot find methods called from native libraries.

Such missed methods will be marked as dead code and eliminated

by the code shrinking phase or will be missed as entry points and

renamed by the obfuscating phase; the outcome in both cases is

run-time crashes due to missing methods.

Since these optimizations cannot happen automatically, both

ProGuard and R8 use a configuration language that allows the

developer to manually mark code that should not be eliminated

or obfuscated. Maintaining these manual scripts is often a difficult

and delicate process [45].

Our technique helps by automatically generating such configura-

tion rules to be fed to the optimization tool, without the developer

having to reason about the native code bundled in the application.

https://github.com/jackpal/Android-Terminal-Emulator
https://chromium.googlesource.com/android_tools/+/53862978424412e190e9bc40c7637a71fdd7d298/ndk/sources/android/crazy_linker/README.TXT
https://chromium.googlesource.com/android_tools/+/53862978424412e190e9bc40c7637a71fdd7d298/ndk/sources/android/crazy_linker/README.TXT
https://chromium.googlesource.com/android_tools/+/53862978424412e190e9bc40c7637a71fdd7d298/ndk/sources/android/crazy_linker/README.TXT
https://developer.chrome.com/multidevice/webview/overview
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We have implemented such a client analysis in Doop:
8
this is a

reachability analysis that receives the configuration rules of an

Android app and merges their effects with the results computed by

the technique presented in this paper.

5.2 Context Sensitivity
Our approach fixes unsoundness in reachability metrics by finding

entry points from native code. So far, these native-to-Java calls are

assumed to happen in a context-insensitive way: the native code

calls Java code using a hard-coded (constant) context.

Using our technique in a context-sensitive analysis requires that

an existing context be propagated, which assumes the presence

of call-graph information for the native code. Assuming that the

native code is not hostile or stripped, Radare2 can compute this

call graph and we can use the EDGE step (Section 4.4) to connect

invocation contexts to native code, via this call graph, to the callback

invocations to Java code. Thus, context sensitivity is fully supported

for native code that is amenable to call-graph analysis.

In the case of native code that is not amenable to the above analy-

sis, we can still compute hard-coded contexts for callbacks, without

breaking the context-sensitive analysis of the rest of the code. We

believe that having hard-coded contexts for difficult programs under
context sensitivity is a reasonable best-effort approach.

5.3 Applicability
The approach described identifies entry points, where native code

can invoke Java code. Importantly, the approach does not aim to

recover a full native call-graph: calling patterns inside native code

are not tracked. Assume the following call chain:

m Java method

↓

f Native function

↓

f ′ Native function

↓

m′
Java method

The call fromm to f is a JNI call to native code (uncovered by the

EDGE step), while the call from f ′ tom′
is a call-back (uncovered

by the LOC step). For the EDGE step to find that m eventually

callsm′
, it must be known that f calls f ′. Our approach does not

aim to recover such call-graph edges. However, such call-graph

information can be extracted from Radare2, as long as native code is

not hostile (i.e., obfuscated) or stripped. It is important to note that

ignoring native call-graph edges does not affect the completeness

of our technique: the Java entry point will be identified regardless.

Our approach does not depend on Android, Linux, or ELF, but

works for every platform where an appropriate disassembler exists,

allowing automatic discovery of referenced constant strings.

Our technique can be generalized to catch other string-based JNI

functionality such as field reads or writes, to fix unsoundness in

points-to analyses. Our approach can also be generalized to other

programming languages that declare a foreign function interface

(FFI) to native code that uses string constants for interoperability

with the high-level language.

8
Option –keep-spec in Doop 4.20.46.

Finally, note that we do not attempt to detect the names of the

enclosing classes of the callback methods. In our manual inspection,

we see that method names and signatures are mainly constants in

the native code. The classes or interfaces containing these methods

are what is sometimes a parameter or a dynamic value (e.g., read

from serialization data) and thus we choose to not rely on native

code strings for type information.

Restrictions. Handling the general case of configurable linking
(i.e., calls to RegisterNatives()) may fail, especially for stripped

native code, where function pointers can go through relocations [27,

Chapter 8].

Additionally, we do not handle JNI code that calls methods using

dynamically-generated strings or interoperability with Java reflec-

tive method values (such as FromReflectedMethod [31, Chapter 4]).

Handling Uncooperative Native Code. We recap by accumulat-

ing, for reference purposes, all parts of our technique that may be

affected by native code that is stripped, hostile, obfuscated, or oth-

erwise not suitable for string x-refs analysis or call-graph analysis:

• configurable linking (Section 4.4.2)

• localization of call-back invocations (Section 4.3)

• context sensitivity (Section 5.2)

In handling these elements, our technique may lose precision

but will not miss a call-back target that it would otherwise find.

Notably, the string x-refs analysis (which attempts to compute

which native functions use which strings) has a conservative fall-

back. If a string is found to not be referenced by any function, we

give it a default wildcard function, so that it will still be considered,

albeit imprecisely.

6 EVALUATION
We evaluate our analysis on an independently-selected set of large

Java programs, both desktop andAndroid. The programs include the

subset of the XCorpus suite that contains native code (Section 6.1)

and large Android applications (Section 6.2).

We integrated our analysis in Doop [5], version 4.20.46.
9
All

experiments are run on a 64-bit machine with an Intel Xeon CPU E5-

2667 v2 3.30GHz with 256 GB of RAM. We use the Soufflé compiler

(v.1.5.1), which compiles Datalog specifications into binaries via

C++ and run the resulting binaries in parallel mode using four

jobs. Doop uses the Java 8 platform as implemented in Oracle JDK

v1.8.0_121. All metrics are for Doop’s default context-insensitive

analysis.

In our experiments, we measure reachable methods from native

code (that would be missed by a naive analysis) in the applica-

tion, i.e., calls from native libraries bundled with the program, and

not native code in the JDK or Android platform. The platform li-

braries certainly also contain native code, but since they are the

same for all applications their behavior can be modeled explicitly.

For instance, Doop already contains explicit models for a variety

of JDK native methods, for the Android app lifecycle, as well as

for frameworks involving native code, such as reflection [36] and

invokedynamic [16].

9
Our technique is freely available as (a) a front end (https://github.com/plast-lab/native-

scanner) that extracts appropriate information from Java programs and (b) Datalog

rules in the Doop framework (https://bitbucket.org/yanniss/doop).

https://github.com/plast-lab/native-scanner
https://github.com/plast-lab/native-scanner
https://bitbucket.org/yanniss/doop
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1 /*
2 * Converts a WIN32_FIND_DATA to IFileInfo
3 */
4 jboolean convertFindDataToFileInfo(JNIEnv *env , WIN32_FIND_DATA info , jobject fileInfo) {
5 ...
6 // select interesting information
7 // exists
8 mid = (*env)->GetMethodID(env , cls , "setExists", "(Z)V");
9 if (mid == 0) return JNI_FALSE;
10 (*env)->CallVoidMethod(env , fileInfo , mid , JNI_TRUE);
11

12 // file name
13 mid = (*env)->GetMethodID(env , cls , "setName", "(Ljava/lang/String ;)V");
14 if (mid == 0) return JNI_FALSE;
15 (*env)->CallVoidMethod(env , fileInfo , mid , windowsTojstring(env , info.cFileName));
16

17 // last modified
18 mid = (*env)->GetMethodID(env , cls , "setLastModified", "(J)V");
19 if (mid == 0) return JNI_FALSE;
20 (*env)->CallVoidMethod(env , fileInfo , mid , fileTimeToMillis(info.ftLastWriteTime));

Figure 13: Native code in AspectJ (from library eclipse.platform.resources).

1 /*
2 * Class: org_apache_lucene_store_NativePosixUtil
3 * Method: open_direct
4 * Signature: (Ljava/lang/String;Z)Ljava/io/FileDescriptor;
5 */
6 extern "C"
7 JNIEXPORT jobject JNICALL Java_org_apache_lucene_store_NativePosixUtil_open_1direct(JNIEnv *env , jclass _ignore , jstring

filename , jboolean readOnly)
8 { ...
9 class_fdesc = env ->FindClass("java/io/FileDescriptor"); ...
10 // construct a new FileDescriptor
11 const_fdesc = env ->GetMethodID(class_fdesc , "<init >", "()V"); ...
12 ret = env ->NewObject(class_fdesc , const_fdesc);
13

14 // poke the "fd" field with the file descriptor
15 field_fd = env ->GetFieldID(class_fdesc , "fd", "I"); ...
16 env ->SetIntField(ret , field_fd , fd);
17

18 // and return it
19 return ret;
20 }

Figure 14: Native allocation in Lucene.

6.1 XCorpus
XCorpus is a suite of executable Java programs containing features

that are difficult to analyze by current tools [11]. We focus on the

four benchmarks that the “feature analysis” tool of XCorpus reports

as having native code [11, Table 3]: aspectj-1.6.9, log4j-1.2.16, lucene-
4.3.0, and tomcat-7.0.2. We manually inspected the sources of each

benchmark:
10

• aspectj uses native code for filesystem functionality on Windows

(example code: Figure 13).

• log4j contains native code that does not call back to Java code.

• lucene: on POSIX-style systems, native code constructs and re-

turns a file descriptor object (example code: Figure 14).

• tomcat uses a native library for performance [15] (example code:

Figure 15).

10
Available in https://bitbucket.org/gfour/xcorpus-native-extension.

We found that our technique captures all call-back targets from

the native code. Figure 16 shows the results of analyzing these four

XCorpus benchmarks. For every program, we calculate the total

number of application methods (App methods) and the increase in

their reachability by our technique (+App-reachable). This increase
is due to our scanning introducing a number of candidate Java

methods as call-backs (+Entry points), which are added to the rest of
the analysis as additional entry points for further analysis. We also

measure the impact of our technique on analysis time (+Analysis
time) and on fact generation time (+Factgen time). That last metric,

fact generation time, includes the initial processing of the native

library code (steps PRE, FILT, and LOC, described in Section 4).

Running times are for a single run, hence noisy. (A 5% variation

between runs is common, in our experience.) Establishing statisti-

cally significant precision in running times is, however, far from

the point: we intend to observe potential order-of-magnitude differ-

ences, not small variations. As seen, the extra processing is usually

https://bitbucket.org/gfour/xcorpus-native-extension
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1 #define TCN_IMPLEMENT_CALL(RT, CL, FN) JNIEXPORT RT JNICALL Java_org_apache_tomcat_jni_ ##CL##_##FN
2

3 TCN_IMPLEMENT_CALL(jlong , Pool , cleanupRegister)(TCN_STDARGS , jlong pool , jobject obj)
4 { ...
5 cls = (*e)->GetObjectClass(e, obj);
6 cb->obj = (*e)->NewGlobalRef(e, obj);
7 cb->mid[0] = (*e)->GetMethodID(e, cls , "callback", "()I");
8

9 apr_pool_cleanup_register(p, (const void *)cb, generic_pool_cleanup , apr_pool_cleanup_null); ...
10 }
11

12 TCN_IMPLEMENT_CALL(jlong , SSL , newBIO)(TCN_STDARGS , jlong pool , jobject callback)
13 { ...
14 j = (BIO_JAVA *) BIO_get_data(bio); ...
15 cls = (*e)->GetObjectClass(e, callback);
16 j->cb.mid[0] = (*e)->GetMethodID(e, cls , "write", "([B)I");
17 j->cb.mid[1] = (*e)->GetMethodID(e, cls , "read", "([B)I");
18 j->cb.mid[2] = (*e)->GetMethodID(e, cls , "puts", "(Ljava/lang/String ;)I");
19 j->cb.mid[3] = (*e)->GetMethodID(e, cls , "gets", "(I)Ljava/lang/String;");
20 j->cb.obj = (*e)->NewGlobalRef(e, callback); ...
21 }

Figure 15: Native code in Tomcat.

Benchmark App methods (native) +App-reachable +Analysis time +Factgen time +Entry points
aspectj-1.6.9 41749 (8) 13034→13454: 3.22% 229→249: 8.7% 74→78: 5.4% 47

log4j-1.2.16 3423 (3) 961→961: 0.00% 60→58: -3.3% 47→49: 4.3% 0

lucene-4.3.0 33393 (9) 12414→12729: 2.54% 108→291: 169.4% 55→56: 1.8% 295

tomcat-7.0.2 19661 (273) 1203→2088: 73.57% 59→218: 269.4% 61→95: 55.7% 308

Figure 16: XCorpus benchmarks.

Benchmark App meths Base recall Recall +App-reachable +Analysis time +Factgen time +Entry
(native) points

Chrome 37898 (1531) 7/83 = 8.43% 83/83 = 100.00% 17003→24060: 41.50% 469→505: 7.7% 46→255: 454.4% 4484

Instagram 43420 (348) 1/7 = 14.29% 7/7 = 100.00% 23921→32425: 35.55% 473→625: 32.1% 51→63: 23.5% 4669

Figure 17: Android apps.

cheap, unless the program has a lot of binary code; in that case, it is

close to the initial processing step for Java bytecode (and these two

steps can happen in parallel, as they reason about different parts of

the application).

We also see that our technique does not introduce noise in the

benchmark where no native call-backs are to be found (log4j).

6.2 Android Applications
We evaluate (Figure 17) our technique on the Android apps from

the benchmark suite of the HeapDL tool [21], which produces snap-

shots of the dynamic activity of Java applications. HeapDL is inte-

grated with Doop and its published benchmarks
11

contain popular

and complex Android apps (Chrome, Instagram, Google Translate,

pinterest, S PhotoEditor, androidterm). We analyzed the dynamic

activity logs of these apps and two of them (chrome and Instagram)

exhibit call backs from native code to Java code. (It is likely that

the rest of the apps also perform such call backs, but they are not

exercised in the HeapDL dynamic executions.)

11
https://bitbucket.org/yanniss/doop-benchmarks

Our technique exhibits a 100% recall rate over the observed

dynamic call-backs from native to Java code. This includes covering

the full set of 83 dynamically-observed entry points in Chrome. As

a result of adding these entry points, a much larger part of the

application code becomes analysis-reachable. Accordingly, we also

see a big increase in the fact generation time for Chrome: this is

due to our Radare2 back-end requiring significant time to parse

and analyze the bundled native library.

7 RELATEDWORK
Our work connects declarative static analysis with information

coming from a reverse engineering front end (Radare2), running

on native code. Another declarative analysis tool working on na-

tive code is ddisasm, developed by GrammaTech, Inc. [13]. This

framework also uses Datalog and achieves a high-level of accuracy,

being capable to correctly reassemble its disassembled output. Our

choice of Radare2 over ddisasm as a front end was pragmatic: ddis-

asm only supports the x86-64 platform,
12

while we require mature

12
https://github.com/GrammaTech/ddisasm/issues/2

https://bitbucket.org/yanniss/doop-benchmarks
https://github.com/GrammaTech/ddisasm/issues/2
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analysis on x86 32-bit code and the Android ARM targets (arm64

and armeabi [18]).

Redex is an open source Android bytecode optimizer devel-

oped by Facebook [25]. To improve performance and efficiency

of Android apps, Redex applies optimizations such as dead code

elimination, inlining, and minification, and removing unnecessary

metadata. Redex also scans native libraries to find class names,
13

although it does not go as far as our technique to discover method

call-backs and native allocations.

Although well-designed to balance security checks while allow-

ing for low-level performance, the JNI is still a source of vulnerabil-

ities [22, 28, 37, 40] due to native code being opaque and thus less

amenable to static analysis. This has led in practice to a muiltitude

of JNI sandboxes (some even in hardware) to contain the effects of

native code running alongside Java code [6, 39].

Recently, Wei et al. showed how to do cross-language dataflow-

based security analysis on Android applications that contain native

code [43]. Similar to our approach, they model parts of the JNI API

and use a reverse engineering front end (angr [35]). Their native
code modeling is based on symbolic execution, as opposed to static

recognition of JNI strings. This is a good fit for the intended goal of

the approach: getting a precisemodel of native behavior, for security

analysis purposes [44]. In contrast, our technique emphasizes more

complete analysis, integrating generally with all existing Doop

analyses, yet without a precise model of information flow through

native code.

Furr and Foster also analyzed JNI strings in binaries for a different

reason: type inference over the JNI boundary [17]. They alsoworked

on the level of C sources, not compiled binaries. However, they

“found that simple tracking of strings is sufficient”, which is also a

core idea of our approach.

Our analysis can be combined with other JNI-based analyses

such as the security analysis of Li and Tan [28].

8 CONCLUSION
We showed that simple declarative analysis logic can be coupled

with filtering logic to work on fixing false negatives in static reacha-

bility analysis. Our technique also uses an existing reverse engineer-

ing front end that does string x-refs analysis for added precision

and reconstruction of programmable linking configurations.

Our technique is lightweight but can be a starting point for the

incorporation of heavier static analyses on native code [3, 4, 34, 35].

Such tools (plus additional string analysis [7]) can offer more insight

into specific uses of the JNI specification, such as handling JNI uses

with on-the-fly construction of strings.
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