IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

NRMI: Natural and Efficient Middleware

Eli Tilevich, Member, IEEEand Yannis SmaragdakiSenior Member, IEEE

Abstract—We present Natural Remote Method Invocation
(NRMI): a middleware mechanism that provides a fully-genesal
implementation of call-by-copy-restore semantics for arfirary
linked data structures, used as parameters in remote procage
calls. Call-by-copy-restore offers a more natural programming
model for distributed systems than traditional call-by-caqpy mid-
dleware, enabling remote calls to behave much like local cial We
discuss in depth the effects of calling semantics for middieare,
describe when and why NRMI is more convenient to use than
standard middleware, and present three implementations of
NRMI in distinct settings, showing the generality of the appoach.

Index Terms— Middleware, RPC, Java, call-by-copy-restore,
programming model.

I. INTRODUCTION

EMOTE Procedure Call (RPC) is one of the mosf
widespread paradigms for distributed middleware. The go,

of RPC middleware is to provide an interface for remote sewi

that is as convenient to use as local calls. RPC middlew
with call-by-copy-restoresemantics has been often advocate
in the literature, as it offers a good approximation of local
execution ¢all-by-referencg semantics, without sacrificing per-

formance. Nevertheless, current call-by-copy-restorédieivare

cannot handle arbitrary linked data structures, such ds, li

graphs, trees, hash tables, or even non-recursive stescturch

as a “customer” object with pointers to separate “address’ a

“company” objects. This is a serious restriction and oné iz

often been identified. The recent (2002) Tanenbaum and \eenSt

“Distributed Systems” textbook [2] summarizes the problana
(most) past approaches:

... Although [call-by-copy-restore] is not always identi-
cal [to call-by-reference], it frequently is good enough.
... [It is worth noting that although we can now handle
pointers to simple arrays and structures, we still cannot
handle the most general case of a pointer to an arbitrary
data structure such as a complex graph. Some systems
attempt to deal with this case by actually passing the
pointer to the server stub and generating special code
in the server procedure for using pointers. For example,
a request may be sent back to the client to provide the
referenced data.

This article addresses exactly the problem outlined in bove

S

would be dramatically less efficient than our approach, as ou
measurements show.) Our approach does not “generate Ispecia
code in the server” for using pointers: the server code caocgad
at full speed—not even the overhead of a local read or write
barrier is necessary.
Our algorithm has been implemented in the form of Natural Re-
mote Method Invocation (NRMI): a middleware facility withree
different implementations. The first is a drop-in replacatrfer
Java RMI; the second is in the context of the J2EE platformd; an
the third introduces call-by-copy-restore by employinddopde
engineering to retrofit application classes that use thedstal
RMI API. In all these implementations, the programmer can
select call-by-copy-restore semantics for object typeseimote
calls as an alternative to the standard call-by-copy sdosant
of Java RMI. (For primitive Java types the default Java call-
by-copy semantics is used.) All the implementations of NRMI
Il-by-copy-restore are fully general, with respect tikéid data
£uctures, but also with respect to arguments that sharetste.
The resulting advantage is that NRMI offers a much more aatur
ftributed programming model than standard Java RMI: istmo
ases, programming with NRMI is identical to non-distrémiit
ava programming. In fact, call-by-copy-restore is guszrath to
offer identical semantics to call-by-reference in the imgot case
of single-threaded clients and stateless servers (i.eenwhe
server cannot maintain state reachable from the argumérds o
call after the end of the call). Since statelessness is aatbdsi
property for distributed systems, NRMI often offers beloavi
practically indistinguishable from local calls.
Other middleware services (most notably the DCE RPC stan-
dard) have attempted to approximate call-by-copy-restersan-
tics, with implementation techniques similar to ours. Nédwveless,
DCE RPC stops short of full call-by-copy-restore semantis
we discuss in Section 1V-B.
In summary, this article makes the following contributions
« We give a clear exposition of different calling semantics,
as these pertain to RPC middleware. There is confusion
in the literature regarding calling semantics with resgect
pointers. This confusion is apparent in the specificatioth an
popular implementations of existing middleware (espécial
DCE RPC, due to its semantic complexity).

« We present an algorithm for implementing call-by-copy-
restore middleware simply and efficiently. This is the first
algorithm to implement full call-by-copy-restore for ariairy

passage. We describe an algorithm for implementing call-by
copy-restore middleware that fully supports arbitrarkéid struc- .
tures. The technique is very efficient (comparable to regral-
by-copymiddleware) and incurs none of the overheads suggested
by Tanenbaum and van Steen. Specifically, a pointer derefere

by the server does not generate requests to the client. (This

E. Tilevich is with the Department of Computer Science, Wiig Tech.

Y. Smaragdakis is with the Department of Computer and In&tiom
Science, University of Oregon.

This article is an extended version of [1].

linked data structures.

We make a case for the advantages of using call-by-
copy-restore semantics in actual middleware. We argue that
call-by-copy-restore results in a more natural prograngmin
model that significantly simplifies programming tasks when
data passed to a remote call are reachable through multiple
pointers. This simplicity does not sacrifice the efficiendy o
the remote procedure call mechanism.

We demonstrate an applied result in the form of three
concrete implementations of NRMI. NRMI is a mature and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

t t _tree

»
>

Q). o Q
Q% 4 % \Q@& 4 %
% G 7 T Tme-- Ol
i
-

9 7 0 9

1 3 1 8

efficient middleware mechanism that Java programmers can = > € —mmmmmmm e tree
adopt on a per case basis as a transparent enhancement @\/{ 4) ob «

of Java RMI. The results of NRMI (call-by-copy-restore Lo % iy 5
even for arbitrary linked structures) can be simulated with 2
RMI (call-by-copy), but this task is complicated, ineffiote 9 7 %
and application-specific. In simple benchmark programs,

NRMI saves up to 100 lines of code per remote call. More
importantly, this code cannot be written without complete 1 3
understanding of the applications aliasing behavior ,(i.e.
what pointer points where on the heap). NRMI eliminates

all such complexity, allowing remote calls to be used almost _ o .
as conveniently as local calls Fig. 3. Call-by-reference semantics can be maintained vethote refer-
' ences.

II. BACKGROUND AND MOTIVATION

Remote calls in RPC middleware cannot efficiently suppaet th Figure 2 shows the results on the data structure after peirfigr
same semantics as local calls for data accessed throughmnengo call al t er Tree(t) locally. (New number values shown
pointers (eferencesin Java—we will use the two terms inter-in bold and italic, new nodes and references are dashed. Null
changeably). The reason is that efficiently sharing datautiin references are not shown.)
pointers (call-by-reference) relies on the existence ohared In general, a local call can change all data reachable from
address space. The problem is significant because most comrmomemory reference. Furthermore, all changes will be \gsibl
data structures in existence (trees, graphs, linked lisish tables, to aliasing references. The reason is that Javachiisoy-value
and so forth) are heap-based and use pointers to refer téotfeels semantics for all values, including references, resuliirig call-
data. by-referencesemantics for the data pointed to by these references.

A simple example demonstrates the issues. This will be o(from a programming languages standpoint, the Java calling
main running example throughout the article. We will useaJasemantics is more accurately calledll-by-reference-valueln
as our demonstration language and Java RMI as the main pafig article, we follow the convention of the Distributed sSy
of reference in the middleware space. Nevertheless, both Jeems community and talk about “call-by-reference” senwmti
and Java RMI are highly representative of languages thatstip although references themselves are passed by value.) The ca
pointers and RPC middleware mechanisms, respectivelysi@en al t er Tree(t) proceeds by creating a copyr ee, of the
a simple linked data structure: a binary trée,storing integer reference valué. Then every modification of data reachable from
numbers. Every tree node will have three fieldat a, | eft, tree will also modify data reachable from, astree andt
andri ght. Consider also that some of the subtrees are alsperate on the same memory space. This behavior is standard i
pointed to by non-tree pointers (akdiaseg. Figurel shows an the vast majority of programming languages with pointers.
instance of such a tree. Consider now what happens whaht er Tr ee is a remote

When treet is passed to a local method that modifies som@ethod, implemented by a server on a different machine. An
of its nodes, the modifications affect the data reachablen fraobvious solution would be to maintain call-by-reference se
t,aliasl, andal i as2. For instance, consider the followingmantics by introducing “remote references” that can poot t

method: data in a different address space, as shown in Figure 3. Most

void alterTree(Tree tree) { object-oriented middleware support remote refgrenceiz;hmhre
tree.left.data = 0: remotely-accessible objects with unique identifiers; nexfees to
tree.right.data = 9; them can be passed around similarly to regular local refe®n
tree.right.right.data = 8; For instance, Java RMI allows the use of remote referenaes fo
tree.left = null; Caht ridh subclasses of theni cast Renot eCbj ect class. All instances
Tree tenp = new Tree(ﬁul };,ee' right.right, of the subclass are remotely accessible throughout theonietw
tree.right.right = null; through a Java |nt.erface.. . -
tree.right = tenp; Nevertheless, this solution is extremely inefficient. ltame that

} every pointer dereference has to generate network traffierer

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

1) Create a linear map of all objects reachable from the remot

call reference argument. Keep a reference to it.

2) Send a deep copy of the linear map to the server site (this
will also copy all the data reachable from the argument,
as it is itself reachable from the map). Execute the remote
procedure on the server.

) Send a deep copy of the linear map (or a “delta” structure—
see Section V) back to the client site. This will copy back
all the “interesting” objects, even if they have become
unreachable from the original remote call argument data.

4) Match up the two linear maps so that “new” objects (i.e-, ob

jects allocated by the remote routine) can be distinguished
from “old” objects (i.e., objects that existed before the
remote call, even if their data have changed as a result).
Old objects have two versions: original and modified.

) For each old object, overwrite in-place its original vens
data with its modified version data. Pointers to modified old
objects should be converted to pointers to the correspgndin
original old objects.

6) For each new object, convert its pointers to modified old

objects to pointers to the corresponding original old oisiec

fore, the usual semantics for reference data in RMI callgl (an
the vast majority of other middleware) mll-by-copy (“Call-
by-copy” is really the name used in the Distributed Systems
community forcall-by-value when the values are complex data
structures.) When a reference parameter is passed as aneargu
to a remote routine, all data reachable from the referenee ar
deep-copied to the server side. The server then operatelseon t
copy. Any changes made to the deep copy of the argument-
reachable data are not propagated back to the client, utiless
user explicitly arranges to do so (e.g., by passing the datk b
as part of the return value).

A well-studied alternative of call-by-copy in middlewaredall-
by-copy-restore. Call-by-copy-restore is a parametesipgsse-
mantics that is usually defined informally as “having theiafle
copied to the stack by the caller ... and then copied back afte
the call, overwriting the callers original value” [2]. A m®strict
(yet still informal) definition of call-by-copy-restore:is

Making accessible to the callee a copy of all data
reachable by the caller-supplied arguments. After the
call, all modifications to the copied data are reproduced
on the original data, overwriting the original data values
in-place. Fig. 4. NRMI Algorithm

Often, existing middleware (notably CORBA implementation
throughi nout parameters) support call-by-copy-restore but not o
for pointer data. Here we discuss what is needed for a fullleneral, aliasing is very common for heap-based data, bod, t
general implementation of call-by-copy-restore, per theva supporting it correctly for remote calls is important.
definition. Under call-by-copy-restore, the results of @xeng a
remote call to the previously described functaint er Tr ee will lIl. SUPPORTINGCOPY-RESTORE
be those of Figure 2. That is, as far as the client is concernedHaving introduced the complications of copy-restore need|
the Ca||_by-copy_re5tore semantics is indistinguishaﬁ)tﬂ'n a Wware, we now discuss an algorithm that addresses them. The
call-by-reference semantics for this example. (As we discdn algorithm appears in pseudo-code in Figure 4 and is illtetra
Section IV, in a single-threaded setting, the two semarttinge 0N our running example in Figures 5 to 8.
differences only when the server maintains state thatvastthe ~ The above algorithm reproduces the modifications introduce
remote call.) by the server routine on the client data structures. Thetiotu

Supporting the call-by-copy-restore semantics for pq).inteb&hind the algorithm is that correct CaII-by-copy-reslbedaavior
based data presents several complications. Our examptédnn requires restoringll changes to data that are reachable (after
al t er Tr ee illustrates them: the execution of the remote call) from any data that used to be

« Call-by-copy-restore has to “overwrite” the original datdeachable (before the execution of the remote call) from ahy

objects (e.g.t . ri ght . dat a in our example), not just link the arguments of the remote callhus, the interesting part of the

new objects in the structure reachable from the referengigorithm is the automatically keeping track (on the sgroémll
argument of the remote call (in our example). The reason©OPJects initially reachable by the arguments of a remotehoust
is that at the client site the objects may be reachable througS Well as their mapping back to objects in client memory. The
other referencesa(i as2 in our example) and the Changesadvantage of the algorithm is that it does not impose overloea
should be visible to them as well. the execution of the remote routine: although there is anhasl

« Some data objects (e.g., notlel ef t before the call) may in setting up the argument data, the remote code itself paxat
become unreachable from the reference argunteri ur full speed. In particular, the algorithm eliminates thedhée trap
example) because of the remote call. Nevertheless, the n@ifper the read or the write operations performed by the temo
values of such objects should be visible to the client, beeadoutine by introducing a read or write barrier. Similarly data
at the client site the object may be reachable through otri transmitted over the network during execution of theatem
referencesd| i as1 in our example). routine. Furthermore, note that supporting call-by-cogstore

« As a result of the remote call, new data objects may Ky requires transmitting all data reachable from paranset
created (. ri ght after the call in our example), and theydurlng the remote call (just like call-by-copy) and sendiinigack

may be the only way to reach some of the originall@fter the call ends. This is already quite efficient and wiilyo
reachable objectst (ri ght .| eft after the call, in our Pecome more so in the future, when network bandwidth will be

example). much less of a concern than network latency.

The above complications have to do with aliasing references
i.e., multiple paths for reaching the same data. Exampkoreato
have such aliases include multiple indexing (e.g., the datgbe A. Copy-Restore vs. Call-by-Reference
indexed in one way using a tree and in another way using adinke Call-by-copy-restore is a desirable semantics for RPC haidd
list), and caching (storing some recent results for fasienal). In ware. Because all mutations performed on the server arereelst

IV. DISCUSSION

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Client
t

—

ij@sj

9

Network

Fig. 5. State after steps 1 and 2 of the algorithm. Remoteepiaeal t er Tr ee has performed modifications to the server version of the.data

Network

Fig. 6.

State after steps 3 and 4 of the algorithm. The modiigiécts (even the ones no longer reachable thrdugbe) are copied back to the client.
The two linear representations are “matched’—i.e., usectéate a map from modified to original versions of old objects

Network

Fig. 7. State after step 5 of the algorithm. All original \ierss of old objects are updated to reflect the modified vession

Network

Fig. 8. State after step 6 of the algorithm. All new objects apdated to point to the original versions of old objectseiad of their modified versions. All
modified old objects and their linear representation can hewvdeallocated. The result is identical to Figure 2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

on the client site, call-by-copy-restore closely approaties local >
execution. In fact, we can simply observe that (for a single- &
threaded client) call-by-copy-restore semantics is idahto call- s vy 1 .

by-reference if the remote routine is stateless—i.e., &eep T i
aliases to the input data that outlive the remote call. Qifsey, 9 7 I :
if the remote routine keeps references to its input datasacro ST
executions, then the two copies of the data (on the client and ’

server) can become inconsistent after the “restore” actiafl- 1 8
by-copy-restore middleware only “synchronizes” the diemd
server data at the point of a remote call return. In this cealt,
by-copy-restore will behave differently from call-by-eeénce, Fig. 9. Under DCE RPC, changes to data that became unreacfiabi t
since the latter only shares one copy of the data betweent cli@™ not restored on the client.

and server. Interestingly, statelessness is a desirabterr(any

even indispensable) property for distributed servicestduault g pcg RPC

tolerance considerations. Thus, a call-by-copy-resteraastics

. : The DCE RPC specification [5] is the foremost example of
achievemetwork transparencfor the important case of stateless. . ; . o

o . . a middleware design that tries to enable distributed progra
routines: the routine can be executed either locally or teiyo

with identical results ming in a way that is as natural as local programming. The
’ most widespread DCE RPC implementation nowadays is that

The above discussion only considers single-threaded anogyr ©f Microsoft RPC, forming the base of middleware for the
In the case of a multi-threaded client, call-by-copy-restmid- Microsoft operating systems. Readers familiar with DCE RPC
dleware does not preserve network transparency. Consitiema May have already wondered if the specification for pointesirey
process with two threads: one passing data to a remote eoutiti DCE RPC is not identical to call-by-copy-restore. The DCE
while another is modifying the same data. The remote roatate RPC specification stops one step short of call-by-copyerest
as a potential mutator of all data reachable by its parameyet Semantics, however.
when the changes are replayed on the client site, they wilbao ~DCE RPC supports three different kinds of pointers, only one
done by following the synchronization protocol of the datag, ©f which (full pointers supports aliasing. DCE RPC full pointers,
thus, may conflict with the concurrent local changes. Fdginse, declared with thet r attribute, can be safely aliased and changed
if the data passed to the remote routine is a list with eacte noy the callee of a remote call. The changes will be visibleht t
protected by its own mutex, the remote routine will make QW-. Ca”er, even through aliases to existing structure. NM’SS,
without contention: it is the only mutator of these data oa thPCE RPC only guarantees correct updates of aliased data for
server site. Yet when the changes are replayed on the client stliases that are declared in the parameter lists of a renadité c
they will be made all at once by the middleware system and nié other words, for pointers that are not reachable from the
through code that takes the appropriate synchronizatitiorec Parameters of a remote call, there is no guarantee of correct
Therefore, the changes may conflict with those of other tlieriPdate.

; practical terms, the lack of full alias support in the DCE
.S'de thrteads.d'l;::et progrlialr;mer needts to be aw?re .that the [é: specification means that DCE RPC implementations do not
is remote and that a call-by-copy-restore semantics is.Used g4t call-by-copy-restore semantics for linked datacstres.

with calls that read/write the same data. If the order of tipda from call-by-copy-restore when data become unreachalo fr
matters, call-by-copy-restore probably can not be used:aha parameters after the execution of a remote call. Considainag
programmer needs to write code by hand to perform the updag#§ example from Section Il. The remote call that operates on
in the right order. (Of course, the consideration is for tasecof argument , changes the data so that the former objectsef t

- : . - andt.right are no longer reachable from Under call-by-
multi-threaded clients SEIVETs can aIway; be m.u|t| ““‘??'?a”d copy-restore semantics, the changes to these objectsdssiilll
accept requests from multiple client machines withoutiSeing e restored on the caller site (and thus made visiblal toas 1

network transparency.) andal i as2). This does not occur under DCE RPC, however.

) . The effects of statements
Another issue regarding call-by-copy-restore conceresutse
of parameters that share structure. For instance, congaaing ' €€ | ef tht dgt? :_ng_
the same parameter twice to a remote procedure. Should gc-right.data = 9, .
. - . . ee.right.right = null;
distinct copies be created on the remote site or should t#ensh
of structure be detected and only one copy be created? Twiguld be disregarded on the caller site. Figure 9 shows theakc
issue is not specific to call-by-copy-restore, however. dat,f results for DCE RPC.
regular call-by-copy middleware has to answer the sametignes

Creating multiple copies can be avoided using exactly tmeesa C. Usability: Copy-Restore vs Call-by-Copy

techniques as in call-by-copy middleware (e.g., Java RMig: compared to call-by-copy, call-by-copy-restore semantit:
middleware implementation can notice the sharing of stmect fers petter usability, since it simulates the local exemuteman-
and replicate the sharing in the copy. Unfortunately, theae

been confusion on this issue. Based on existing implerrientat ‘The specification readsFor both out and in, out parameters, when full

v _ A A pointers are aliases, according to the rules specified img\ig in Parameter
of call-by-copy-restore for primitive (non-pointer) tyean often Lists [these rules readf two pointer parameters in a parameter list point at

_repe_ated mistaken assertion is that C?"'bY'QOPY'remntics the same data itefnthe stubs maintain the pointed-to objects such that any
implies that shared structure results in multiple copids[f. changes made by the server are reflected to the client forliabes’

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

tics very closely, as discussed in Section IV-A. Clearly]-bg- i ?23\) -?-: Lﬁgfgi?”oﬁgetrii ze() .

copy-restore semantics can be achieved by using call-py-80d T ans| atabl e trans =
adding application-specific code to register and re-perfany new Transl at abl e(srcLang, destLang, _tokens);
updates necessary. Nevertheless, taking this approactetiesal ts.translate (trans);
disadvantages: srclLang = destLang;
o The programmer has to be aware of all aliases in order Bgdr aw ()
able to update the values changed during the remote call,
even if the changes are to data that became unreachable ffdfn 10
the original parameters.
« The programmer needs to write extra code to perform tring url = host + "/transl _service";
update. This code can be long for complex updates (e.g., Up2ns! ationServicelnterface t =

to 100 lines per remote call for the microbenchmarks we, glgfgfng Lotanngl Zel nterface)lookup (url);

discuss in Section VI-C). _ new Transl at abl e(srcLang, destlLang, _tokens);
» The programmer cannot perform the updates without full transl ate (trans);

knowledge of what changes the server code made. ThatdsclLang = dest Lang;
the changes to the data have to be part of the protodatdraw ();
between the server programmer and the client programmer.
This complicates the remote interfaces and specificationsFig. 11. Code Fragment of NRMI Version of Translation Code
As we discussed in Sectionll, a call-by-copy-restore sdivsn
is most valuable in the presence of aliased data. Aliasimgirsc
as a result of several common implementation techniques in ing to Swing thread programming conventions.) The remote
mainstream programming languages. All of these techniques server accepts a vector of words (strings) used throughout

Code Fragment of Local Version of Translation Code

produce code that is more convenient to write using caletpyy- the graphical interface of the application and translatestt

restore middleware than using call-by-copy middlewareeciz between English, German, and French. The updated list is

examples include: restored on the client site transparently, and the GUI is
« Multiple indexing Most applications in imperative program- updated to show the translated words in its menus, labels,

ming languages create some multiple indexing scheme for and so on. The NRMI distributed version code has only two
their data. For example, a business application may keep a tiny changes compared to local code: a single class needs to
list of the most recent transactions performed. Each trans- implementj ava. rm . Rest or abl e (the NRMI marker
action, however, is likely to also be retrievable through a interface, discussed in detail later) and a method has to be
reference stored in a customers record, through a reference looked up using a remote lookup mechanism before getting
from the daily tax record object, and so forth. Similarly, called. In contrast, the version of the application thatsuse
every customer may be retrievable from a data structure regular Java RMI has to use a more complex remote interface
ordered by zip code and from a second data structure ordered for getting back the changed data and the programmer has
by name. All of these references are aliases to the same data to write code in order to perform the update. Figures 10-12
(i.e., customers, business transactions). NRMI allowdhsuc show the different versions of the code context containing
references to be updated correctly as a result of a remote the key remote call of this application. The complexity of
call (e.g., an update of purchase records from a different the special-purpose RMI update code is evident in Figure 12.
location or a retrieval of a customers address from a central

database), in much the same way as they would be updated

if the call were local. . String url = host + "/transl _service";
« Common GUI patterns such as model-view-controlMost Ty ansi ati onServicel nterface t =

GUI toolkits register multiple views, all of which corresmb (Transl ati onServi cel nterface)l ookup (url);
to a single model object. That is, all views alias the sanib ansl atabl e trans =
model object. An update to the model should result in an new Transl at abl e(srcLang, destlLang, _tokens);
update to all of the views. Such an update can be the resyi¢tor tenp = t.translate (trans);
of a remote call. A variant of this pattern occurs wheh©®r (Int i =0, i <tenp.size (), ++) {

. Token newToken = (Token)tenp. el ementAt (i);
GUI elements (e.g., menus, toolbars) hold allase_s to PROgra gt rjng str = newToken. getString ():
data that can be modified. The reason for multiple aliasingjnt j = o;
is that the same data may be visible in multiple toolbars, Token t oken = null;
menus, and so forth or that the data may need to be modifiedf or (; j < _tokens.size(); j++) {

programmatically with the changes reflected in the menu or token = (Token) _tokens. el ement At (j);
toolbar. if (token.getString().equals(str)) break;

As an illustration, we distribute with NRMI a modified i}1{/]£j0r<j _tokens. si ze())

version of one of the Swing API example applications. We { gken. set St ri ng(newToken. get Transl ati on());
changed the application to be able to display its text s¢ring//f or i

in multiple languages. The change of language is performedcLang = dest Lang;

by calling a remote translation server when the user choogegfr aw () ;

a different language from a drop-down box. (That is, the

remote call is made in the event dispatching thread, conforfrig.- 12. Code Fragment of RMI Version of Translation Code

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

V. NRMI | MPLEMENTATIONS Declaring a class to implememRest or abl e is all that is

NRMI currently has three implementations, each applicabf@quired from the programmer: NRMI will pass all instancés o
to different programming environments and scenarios. Qut fiSuch classes by-copy-restore whenever they are used inteemo
implementation is in the form of a full, drop-in replacemenF‘ethOd calls. The restore phase of the algorithm is hiddem fr
for Java RMI. This demonstrates how a mainstream middlewdft¢ Programmer, being handled completely by the NRMI ruatim
mechanism for the Java language can be transparently esthand!is saves lines of tedious and error-prone code as we disous
with call-by-copy-restore capacities. However, introdigca new Section VI-B.
feature into the implementation of a standard library of a IN order to make NRMI easily applicable to existing types
mainstream programming language is a significant undexgaki (€-9-, arrays) that cannot be changed to implerRestt or abl e,
requiring multiple stakeholders in the Java technologyetach a We adopted the policy that a serializable object is passed by
consensus. Therefore, our other two implementations gealava COPY-restore, if it is referenced by an object that impletsen
programmers with call-by-copy-restore capacities witHaving Rest or abl e. Thus, if a parameter is of a “restorable” type,
to change any of the standard Java libraries. One impletiemta €verything reachable from it will be passed by-copy-restdrin
takes advantage of the extensible application servertenthie regular Java RMI it would have been passed by-copy.
offered by JBoss [6] to introduce NRMI as a pair of clientiger ~ 2) Implementation InsightsWe next discuss how our im-
interceptors. Another introduces NRMI by retrofitting thgtds ~ Plementation handles each of the major steps of the algorith
codes of application classes that use the standard RMI AP[esented in Section Iil. . .
Having to work around the inability to change the RMI runtime ~ Créating a linear map: The linear map of all objects
libraries, these latter two solutions are not always asiefficas eéachable from the reference parameter is obtained byrtgjipio
the drop-in replacement one but offer interesting insigint$ow the Java Serialization mechanism. The advantage of thimapip

new middleware features can be introduced transparently. IS that we get a linear map almost for free. The parametersepas
by-copy-restore have to be serialized anyway, and the psoce

involves an exhaustive traversal of all the objects reaehfibm

. ¢ d4roD-i | ‘ these parameters. The linear map that we need is just a data
1) Programming "_“er ace:our drop-in rep acemeqt Or_‘]avastructure storing references to all such objects in thekzation

RMI supports a strict superset of the RMI functionality b3fraversal order. We get this data structure with a tiny clkattg

providing call-by-copy-restore as an additional paramp#ssing 4 serialization code. The overhead is minuscule and oelyemt
semantics to the programmer. This implementation follohes t . call-by-copy-restore parameters

design principles of RMI in having the programmer decide the
calling semantics for object parameters on a per-type barsis method invocation proceeds exactly as in regular RMI. Af-

brief, indistinguishably from RMI, N_RMI passes instgncefs %er the method completes, we marshall back linear map rep-
subclasses gfava. rm . server. Uni cast Remot eCbj ect resentations of all those parameters whose types implement

.by-refe.rence .and. instances of types that ‘T“P',emef‘hva. rm . Rest or abl e along with the return value, if there
java.io. Serializable by-copy. Values of primitive is any

types are passed by-copy. That is, just like in regular RMI, (), qating original objects:Correctly updating original ref-
the following definition makes instances of claésbe passed giapnce parameters on the client site includes matchingaipetw
by-copy to remote methods. and old linear maps and performing a traversal of the nevatine
//1nstances will be passed by-copy by NRM map. Both step 5 and step 6 of the algorithm are performed in
class A inplenents java.io.Serializable {...} a single depth-first traversal by just performing the rightiate
gctions when an object is first visited and last visited ,(ieéter

A. A Drop-in Replacement of Java RMI

Performing remote calls:On the remote site, a remote

Our NRMI implementation introduces a marker interfac&-"
java.rm . Restorabl e which allows the programmer to @ll its descendants have been traversed).

choose the by-copy-restore semantics on a per-type basis. F Optimizations: The following two optimizations can be ap-
example: plied to an implementation of NRMI in order to trade procegsi

time for reduced bandwidth consumption. First, insteaceatiing

the linear map over the network, we can reconstruct it during

the un-serialization phase on the server site of the remaite c
Rest or abl e extendsSeri al i zabl e, reflecting the fact Second, instead of returning the new values for all objects t

that call-by-copy-restore is an extension of call-by-copypar- the caller site, we can send just a “delta” structure, ermmpdi

ticular, “restorable” classes have to adhere to the samefsetthe difference between the original data and the data dfier t

requirements as if they were to be passed by-copy—i.e., theyecution of the remote routine. In this way, the cost of jpasan

/1l nstances passed by-copy-restore by NRM
class A inmplenents java.rm .Restorable {...}

have to be serializeable by Java Serialization. object by-copy-restore and not making any changes to inost
In the case of JDK classes, which cannot be modifiedlentical to the cost of passing it by-copy. Our implemdntat
Rest or abl e can be implemented by a subclass: applies the first optimization, while the second is possibtare

/1l nstances passed by-copy-restore by NRM work.

cl ass Rest or abl eHashMap

extends java.util.HashMap B. NRMI in the J2EE Application Server Environment

I nplements java.rm.Restorable {...} A J2EE [7] application server is a complex standards-

In those cases when subclassing is not possible, a delegaticonforming middleware platform for development and deploy
based approach can be used, where a class that implememtsit of component-based Java enterprise applicationsseThe
Rest or abl e serves as a proxy, forwarding calls to a JDK classpplications consist of business components called Eigerp

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

JavaBeans (EJBs). Application servers provide an exetaiv our J-Orchestra automatic partitioning system [10], ha®res
vironment and standard means of accessing EJBs by both logkits primary design objectives the ability to execute piarted
and remote clients. programs using a standard RMI middleware implementatign. B

We have implemented NRMI in the application server envirordefault, J-Orchestra uses the RMI call-by-reference séosan
ment of the JBoss open-source J2EE server, taking advaofagéremote reference) to emulate a shared address space fparthe
its extensible architecture [6]. JBoss is an extensiblepegnded, titioned programs. However, as we have argued earliersadce
and dynamically-reconfigurable server. It employs therb@ptor a remote object through a remote reference incurs heavyonetw
pattern [8] (a common extensibility-enhancing mechanism bverhead. Therefore, a program partitioned with J-Orchesin
complex software systems) to enable transparent additiwh alerive substantial performance benefits by using the gatdpy-
automatic triggering of services. Informally, a JBoss liogptor restore semantics in some of its remote calls. It is exaotlytfese
is a piece of functionality that gets inserted into the dlenkind of scenarios that we developed our approach for intidu
server communication path. Both the clients requests tsgheer NRMI by retrofitting the bytecodes of application classest tise
and the servers replies can be intercepted. JBoss intersepthe standard RMI API.
intercept a remote call with the purpose of examining and, in Prior research has employed bytecode engineering for modi-
some cases, modifying its parameters or return value ané @om fying the default Java RMI semantics with the goal of coilgect
two varieties: client and server, specifying their actugpldyment maintaining thread identity over the network [11], [12]. dur
and execution locations. JBoss provides flexible mechaniem implementation, we follow a similar approach that transpéy
creating and deploying interceptors and uses them to imgéémenables the call-by-copy-restore semantics for remotis tadt
a large part of its core functionality such as security aadgac- use regular Java RMI. A small runtime system, consistingootiec
tions. that implements the NRMI algorithm, is bundled with the ora

Our support for NRMI in JBoss consists of a programprogram, and the target classes are rewritten to invoke RN
ming interface, enabling the programmer to choose call-bfunctionality appropriately during remote calls.
copy-restore semantics on a per method basis, and an imSpecifically, we offer a GUI-enabled tool called NRMizerttha
plementation, consisting of a pair of client/server inggtors. takes as input two application classes that use the Java AN A
Because this implementation works on top of regular RMI, & remote class (i.e., implementing a remote interface) amd i
cannot introduce a new marker interface for copy-restore pRMI stub. An RMI stub is a client site class that serves as a
rameters. We introduced instead a new XDoclet [9] annatati@roxy for its corresponding remote class. Under Suns JDigsst
“met hod- par anet ers copy-restore”, specifying thatall are generated in binary form by running the rmic tool against
reference parameters of a remote method are to be passstlote class. The reason why the user has to specify the names
by copy-restore. The following code example shows how thsf both a remote class and its RMI stub is the possibility of

programmer can use this annotation. polymorphism in the presence of incomplete program knogéed
/% Since a stub might be used to invoke methods on a subclass of
* @jb:interface-nethod viewtype="renote" the remote class from which it was generated, the apprepriat
* @ boss: net hod- par anet ers copy-restore="true" transformations must be made to all possible invocationthef
x| remote method through any of the stubs. NRMIzer shows aflist o
public void foo (Referencel refl, int i, all methods implemented by a selected class, displayedhege

Ref erence2 ref?2) with their JVM signatures. For each method, the tool alsowsho

a list of its reference parameters. The programmer therctsele

these parameters individually, conveying to the tool that/tare
Note that, in this implementation, it is not possible to le¢ t to be passed by-copy-restore.

//.rél.‘l and ref2 will be passed by-copy-restore

programmer specify call-by-copy-restore semantics fdividual The backend engine of NRMizer retrofits the bytecode of a
parameters: the copy-restore is a per-method annotatioh @&mote class and its RMI stub to enable any reference pagamet
applies to all reference parameters of a remote method. of a remote method to be passed by-copy-restore. To accstmpli

To implement NRMI'in JBoss, we had to create special intéfhe by-copy-restore semantics on top of regular RMI, théadds
ceptor classes for the client and the server portions of tu.c code to both the remote class and its stub for each remoteotheth
The interceptors are invoked only for those methods specifihat has any by-copy-restore parameters. Consider thewfiold

as having call-by-copy-restore semantics. Both intearspare remote method oo taking as parameter amt and aRef and
implemented in about 100 lines of Java code. (This numbgsturning af | oat .

excludes the actual NRMI algorithm implementation, whish i
another 700 lines of code.) This is a data point arguing thil
call-by-copy-restore can be implemented very simply evem i

Pblic float foo(int i, Ref r)
t hrows Renot eException{...}

commercial quality middleware platform. If we want to pass theRef parameter by copy-restore, the
transformations performed on the stub code are as follows:
C. Introducing NRMI through Bytecode Engineering //change foo as follows (slightly sinplified)
In some development environments, the programmer could fiRgb! i ¢ float foo (int i, Ref r)

beneficial the ability to use the call-by-copy-restore setica hrows Remot eException

on top of a standard unmodified middleware |mplementatuam th Obj ect[] |inear Map= NRM . conput eLi near Map(r)
supports only the standard call-by-copy semantics. Furibee, NRM Return ret = foo_ nrmi (i, r):

that environment might not provide any built-in facilities flexi- /linvoke foo_ nrni renotely
ble functionality enhancement such as interceptors. Famgike, /1 NRM Return encapsul ates both |inear maps

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

// and the return value of foo quickly inspect and change objects. We use the optimized NRM

Qoj ect [] newLi near Map = ret. getLinear Map(); version (also supporting the optimization discussed irtiSed/-
NRM . per f or rRest or e(| i near Map, newLi near Map) ; A) in our experiments.

/lextract the original return val ue

return

((Float)ret.getReturnValue()).floatValue(); B. Description of Experiments

In order to see how our implementation of call-by-copy-oest
On the server side, the methbdo__nrni computes a linear measures up against the standard implementation of RMI, we
map for theRef parameter, invokes the original methiodo, and created multiple micro-benchmarks. Our benchmarks tesINR
paCkS both the returhl oat value off oo and the linear map into with arrays, binary trees h0|d|ng small ObjeCtS, and b|rms
a holder object of typélRM Ret ur n. The classNRM Ret urn holding arrays of multiple objects in each node. All data treir
encapsulates the original return value of a remote methmagal |inking structure are randomly generated and passed to ateem
with the linear representations of copy-restore pararset@i method. The remote method performs random changes to i inp

special-purpose NRMI methods that NRMizer adds to the remaiata. We have considered different scenarios of paramséefon
and stub classes u$dRM Ret ur n as their return type. each data structure:

« For arrays, we consider the case of updating their contents,
. ~without changing the reference to the array itself (labeled
Before presenting the results of NRMI performance experi- “Array Benchmark 1 (Keep Reference)” in our plots) and

VI. PERFORMANCE AND CASE STUDIES

ments, we describe the performance optimizations that wkeap the case of updating the entire array on the server (labeled
to the RMI-replacement implementation of NRMI. “Array Benchmark 2 (Reset Reference)”).
« For binary trees of simple objects, as well as for binary

A. NRMI Low-Level Optimizations trees of medium-size arrays, we used three scenarioséthbel

In principle, the only significant overhead of call-by-cepy --Case 1 (No aliases, data and structure changes)”aseC
restore middleware over call-by-copy middleware is thet ads 2 (Structure doesn't change, but data does)’, and "...Case
transferring the data back to the client after the remoteineu 3 (Structure changes, aliases present)”, respectively-of
execution. In practice, middleware implementations suféeral creasing complexity. In the first scenario, there is no aigs
overheads related to processing the data, so that progessin ©n the client site of data passed as parameters to the remote
time often becomes as significant as network transfer timea J ~ Call- In the second scenario, the remote call makes changes

RMI has been particularly criticized for inefficiencies, asis to data aliased on the client, but the linking structure ef th
implemented as a high level layer on top of several general data (i.e., the shape of the tree) does not change. In the
purpose (and thus slow) facilities—RMI often has to suffee t third scenario, both the data and the tree structure change
overheads of security checks, Java serialization, intizecess randomly and client aliases need to see these changes.
through mechanisms offered by the Java Virtual Machine,sand The invariant maintained is that all changes are visible to
forth. NRMI has to suffer the same and even higher overheadise caller. In other words, the resulting execution semantics is
since it has to perform an extra traversal and copying ov@cob as if both the caller and the callee were executing within the
structures. same address space. With NRMI or distributed call-by-ssfee

Our implementation of NRMI as a full replacement of Javéthrough remote pointers, as in Figure 3) this is done autema
RMI has two versions: a “portable”, high-level one and anally. For call-by-copy, we need to simulate this behaviphlnd.
“optimized” one. Theportable version makes use of high-levelWe made a best-effort attempt to emulate what a programmer
features such as Java reflection for traversing and copybjeco would actually do. We assumed that the programmer has full
structures. Although NRMI is currently tied to Suns JDK, thé&nowledge of the aliases on the client site, but no knowleafge
portable version works with JDK 1.3, 1.4, and 1.5 on all supgmb what (random) changes were performed on the server site. (To
platforms and should be easy to port to other implementatiofe more exact, in scenario 2 for the binary tree benchmaks, t
The portability means loss of performance: Java reflectioa i code assumes that thecation of changes is known. In scenario
slow way to examine and update unknown objects. Neverthele8, this is impossible, however, as the structure of the tisafi
our implementation minimizes the overhead by caching réflec has changed.) Although we believe that our call-by-copy RMI
information aggressively. Additionally, the portable sien uses code reflects what a real programmer would do, it may be viewed
JNI native code for reading and updating object fields withoas pessimistic: it includes overhead for establishing gerdata
suffering the penalty of a security check for every field. §de structures that the server code uses to register its peefbrm
two optimizations give a ¢,200% speedup to the portablearsi changes and the client code uses to restore them. In praittece
but still do not achieve the optimized versions performance programmer may be able to do better by exploiting knowledge

Theoptimizedversion of NRMI only works with Suns JDK 1.4 about the server-induced changes. In all our benchmarks)see
and 1.5 to take advantage of special low-level featuresreggpdy show the cost of RMI without any restoring logic, to estatblés
the JVM in order to achieve better performance. The perfagea lower bound of the best results achievable.
of regular Java RMI improved significantly between versiaré For all benchmarks, the NRMI version of the distributed
and 1.4 of the JDK. The main reason was the flattening of tltede is quite similar to the local version, with the exceptadf
layers of abstraction in the implementation. Specificadlgject remote method lookup and declaring a class t&bst or abl e.
serialization was optimized through non-portable dirextess to The same changes have to be made in the regular Java RMI
objects in memory through an “Unsafe” class exported by #iva. J call-by-copy version. Several additional lines of code ehaw
VM. The optimized version of NRMI also uses this facility tobe added/modified in the RMI call-by-copy case, however. For

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

instance, in the case of binary trees, all three benchmaresios i The Effects of Optimizing NRMI
required about 45 extra lines of code in order to define return =e=Array Benchmark | - NRMI
. . 1.3 H=@=Array Benchmark | - NRMI| Optimized
types. For scenarios 2 and 3 an extra 16 lines of pode were e vy Benchanark |- NG
needed to perform the updating traversal. For scenario @jtab 1.2 Y=e=Array Benchmark I1: NRMI Optimized
35 more lines of code were needed for registering the changed .
data. '

-

C. Experimental Results
We measured the performance of call-by-copy (RMI), cal-by

y .
/ A
A
, . 7/
copy-restore (NRMI), and call-by-reference implementeihg

remote pointers (RMI). (Of course, NRMI can also be used 0.7 //

just like regular RMI with identical performance. In thiscten - M
when we talk of “NRMI” we mean “under call-by-copy-restore '

semantics”.) Our binary trees hold small objects (13 words i 0.5—%
serialized form). Arrays have 100 slots and store integéfs.
performed our measurements with Sun’s JDK (build 190 W s @B uEe | BEE e
b03). Our environment consists of two Pentium D 3.GHz (dual Array Parameter Size

core) machines, each with 2GB of RAM on a 100Mbps network.

We tried to ensure (by “warming” the JVM) that all measure#fig. 14. Effect of recomputing linear map instead of seziafj it.
programs had been dynamically compiled before the measure-

ments. To establish the baseline communication startup wes
measured the time taken for a remote call to a routine with
arguments f(oo()), as well as a routine being passecal |

Time Millisec
o
©

ﬁ?’é_’% slower) to regular (call-by-copy) RMI while offering a
more natural programming model, which eliminates concptu
complexity and saves many lines of code per remote call. The

object referencef(©o(nul |)). Both calls took about 0.2ms on v alt tive that achi th de simplicitvasnuch
average (0.205ms and 0.207ms, respectively), which is dl Sn]%nya ernative that achieves the same code simp |cmye_ ue
ess efficient call-by-reference through RMI remote paisite

percentage of the execution cost of most of our benchmarks. Additionall e measured the impact of the optimization
The results of our experiments are shown in Figure 13. ~ Y, W u Imp ptimizati

The graphs show log-log plots of average execution timer(ov escribed in Section V-A: re-creating the linear map duriieg

10,000 iterations) of each benchmark. Across all benchsnarl%eria"zation of the rgmote call arguments, instead ofipgsiﬂ;- .
NRMI performed quite similarly to the hand-written RMI call over the network. This takes advantage of fast CPUs to miaeimi

by-copy version, while dramatically outperforming the Rb4ll- network traffic. We. shpw the effect of the optimization on our
. array benchmark in Figure 14. As can be seen, the optimized
by-reference version. d £ NRMI is about 5% faster than th timized :
The results hold over data structures with quite differe £rsion o IS about 57 faster than the unoplimized \ets|

behaviors and balances of communication and computatisn. hus, this optimization does_ not yield tremendous benefit, b
can be seen, serializing arrays and transferring them dwer elps remove some of the inherent over.head of NRMI over a
network is quite efficient—a relatively large percentagetiud plain RMI solution, especially for smaller inputs.

time is spent in communication overheads (compare the ibasel
foo(null) cost, above). In contrast, we see a much higher
serialization cost for linked data structures. For all enarks, A. Performance and Scalability Improvement Work

NRMI performance is quite close to the call-by-copy RMI vens Several efforts aim at providing a more efficient implemé&ota
with hand-coded restore code. For simpler benchmark sicsnarof the facilities offered by standard RMI [13]. Krishnaswam
the hand-coded solution performs up to 35% better, althoughal. [14] achieve RMI performance improvements by repigci
typically the difference is in the 10-15% range. For more ptem TCP with UDP and by utilizing object caching. Upon receiving
scenarios (i.e., “keep reference” for arrays, or scenariof 3 a remote call, a remote object is transferred to and cachebeon
both binary trees and binary-tree-with-arrays) NRMI perfe caller site. In order for the runtime to implement a consise
practically identically to the hand-coded RMI solution-etplot protocol, the programmer must identify whether a remotehozbt
lines are almost completely overlapping. The one-way (store) is read-only (e.g., will only read the object state) or nog, b
RMI baseline is consistently at roughly half the executimnet including the throwing of “read” or “write” exceptions. Thas,
indicating that the main overheads are due to the restorepso instead of transferring the data to a read-only remote nokttne
Finally, RMI with remote pointers (call-by-reference) iensis- server object is moved to the data instead, which resultgfteb
tently orders of magnitude slower than any other solutiorfatt, performance in some cases.

RMI with remote pointers failed to complete for large inpofs Several systems improve the performance of RMI by using
the linked structures examples, because it exhausted the. he@ more efficient serialization mechanism. KaRMI [15] uses a
The reason for the memory leak is that RMI only has refereneserialization implementation based on explicit routin@s/riting
counting for distributed garbage collection and, henceynod and reading instance variables along with more efficienfebuf
reclaim data in cyclical reference patterns over the ndéwor management.

Overall, our experiments show that NRMI is the only alter- Maassen et al.'s work [16], [17] takes an alternative apghoa
native efficient enough for real use that does not burden thg using native code compilation to support compile and e t
programmer with writing specialized “restore” code forvar generation of marshalling code. It is interesting to obsehat
modified data. NRMI performs close (from 5% faster to abouhost of the optimizations aimed at improving the perforneaot

VIl. RELATED WORK

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Fig. 13.

Array Benchmark 1 (Keep Reference)

Array Benchmark 2 (Reset Reference)

1000 1000
100 100
—ir=RMI One Way =de=RIM| One Way
e N RV [===NRMI
1 ===RMI With Restore |===RMI| With Restore
2 =®=Recmote Reference =@=Recmote Reference
5 10—y -
©
£
£
1 1
& 2o 2,
o—
01 0.1
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048
Array Parameter Size Array Parameter Size
Binary Tree: Case 1 (No aliases, data and structure changes) Binary Tree: Case 2 (Structure doesn't change, but data does)
100

100

©
o
=
=1
@
£
=

L]

Binary Tree of Arrays: Case 2 (Structure doesn't change, data does

100

Time Millisec
-
o

==e=R\| One Way
=t=NRMI

=ill=R\| With Restore
=®=Remote Reference

[==ie= 21| One Way
=== NRMI

==l R With Restore
|=8=Remote Reference

16 32 64 128 256 512 1024 2048
Tree Parameter Size

Binary Tree: Case 3 (Structure changes, aliases present)

=g 21V One Way
===NRMI|

=== RIMI With Restore
=8=Remote Reference

= T T T T u T

18 32 64 128 256 512 1024
Tree Parameter Size

2048

)

Binary Tree of Arrays: Case 1 (No aliases, data and structure changes)
100

Time Millisec

32 64 128 256 512 1024 2048

Tree Parameter Size

=

== RN One Way
e NRII

=8=RMI With Restore
=8=Remote Reference

16

2048

32 64 128 256 512 1024
Tree Parameter Size

Binary Tree of Arrays: Case 3 (Structure changes, aliases present

100

)

== R0 One Way
b= NRMI

== RIM| With Restore
=®=Remote Reference

=iem RMI One Way
== NRMI
== RMI With Restore

=8=Remote Reference

16 32 64 128 256 512 1024
Tree Parameter Size

2048

32 84 128 256 512 1024
Tree Parameter Size

2048

Performance Comparison: RMI call-by-copy, NRMIl-ty-copy-restore, RMI call-by-reference (remote peisi).

11

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

the standard RMI and call-by-copy can be successfully aggb The JavaParty system [27], [28] works much like an automatic

NRMI and call-by-copy-restore. Furthermore, such optatians partitioning tool, but gives a little more programmatic troh

would be even more beneficial to NRMI due to its heavier use td the user. JavaParty is designed to ease distributedeclust

serialization and networking. programming in Java. It extends the Java language with the
keyword r enot e to mark those classes that can be called
remotely. The JavaParty compiler then generates the etjRMI

B. Usability Improvement Work code to enable remote access. Compared to NRMI, JavaParty is

Thiruvathukal et al. [18] propose an alternative approazh fuch closer to a DSM system, as it incurs similar overheads an
implementing a remote procedure call mechanism call fom Ja@MPploys similar mechanisms for exploiting locality.
based on reflection. The approach employs the reflective- capaPoorastha [29] represents another piece of work on making
bilities of the Java language to invoke methods remotelys Trdistributed programming more natural. Doorastha allovestiser
simplifies the programming model since a class does not avel@ annotate a centralized program to turn it into a distedut
be declaredRent e for its instances to receive remote calls. application. Although Doorastha allows fine-grained cohvith-
While CORBA does not currently support object serializatio out needing to write complex serialization routines, theicé of

the OMG has been reviewing the possibilities of making sudfmote calling semantics is limited to call-by-copy and-bgh
support available in some future version of IIOP [19]. If et reference implemented through RMI remote pointers or abjec

serialization becomes standardized, both call-by-copy eail- MoPbility. Call-by-copy-restore can be introduced orthogity in
by-copy-restore can be implemented enabling [in] and it o framework I|I§e Doorastha. I_n_ pragtlce, we expect that-logl|
parameter passing semantics for objects. copy-restore will often be sufficient instead of the costli@gSM-
The systems research literature identifies Distributedr@ha“ke,Callll'by'referr]emfde semgnnci. hes that hide the f
Memory (DSM) systems as a primary research direction ainhed g Finally, we s ou mention that approaches F.a.t Ide the fac
making distributed computing easier. Traditional DSM agmhes that a lllula(twork IS [?resent Ihaj’e of_;en b"een cr:|t|C|ze(_j (eep, s
create the illusion of a shared address space, when the dog we -Khown Wa d‘? _e_t al. "manifesto” on t_ e_subject [30])
are really distributed across different machines. ExanijfM The main point .Of criticism has !oeen that distributed system
systems include Munin [20], Orca [21], and, in the Java Worl({iundamentally differ from centralized systems because hef t
cJVM [22], DISK [23], and Java/DSM [24]. DSM systems carfOSSibi"ty of partial failure, which needs to be handleffedtently
be viewed as sophisticated implementations of call-bgrezfce or each apphcat_lon. Th? “n(_etvx{ork _transparency” of_fereyi b
semantics, to be contrasted with the naive “remote pointe RMI does not violate this principle in any way. Ident|<_:atly
approach shown in Figure 3. Nevertheless, the focus of pgigular RML, NRN_” remote methods throw_ remote exceptioas th
systems is very different than that of middleware. DSMs aedu the plrogrammer IS fresponsmlekfor cgtchlng. I;)I’hus: rﬁ)rograrsr'?
when distributed computing is a means to achieve p.?;lral’rielis"jlre always aware of the network's existence, but with NRMt

Thus, they have concentrated on providing correct and effici often dp not need to program differently, e>.<cept o congﬂetr
semantics for multi-threaded execution. To achieve perémrce, on the |rr_1portant parts of distributed computing such as lregd
DSM systems create complex memory consistency models %Ual failure.

require the programmer to implicitly specify the sharingpr VIIl. CONCLUSION

erties of data. In practice, the applicability of DSMs harbe
restricted to high-performance parallel applicationsjniyain a
research setting. In contrast, NRMI attempts to supporiraht
semantics to straightforward middleware, which is alwagdearx
the control of the programmer. That is, NRMI does not atteropt
offer distribution transparency, but instead achieves eematural
programming model that is still explicit. NRMI (and all othe
middleware) do not try to support “distribution for parditen”

Distributed computing has moved from an era of “distribatio
for parallelism” to an era of “data-driven distribution’he data
sources of an application are naturally remote to each athty
the computation. In this setting, call-by-copy-restoreaisery
useful middleware semantics, as it closely approximatesillo
execution. In this article we described the implementatowl
benefits of call-by-copy-restore middleware for arbitréinked
but instead facilitate distributed computing in the caseemgh dqta structures. W.e discussed the eﬁ?CtS of calling semaﬂw_
an applications data and input are naturally far away from tW'dd'e"Yare’ explamed how.our algorithm works, and .desxdlb
computation that needs them. three different implementations of call-by-copy-restonéddle-

A special kind of tools that attempt to bridge the gap betwedlare. We also presented detailed performance measurewfents

DSMs and middleware arautomatic partitioning tools Such ourdrop_—m RMI replaceme_nt|mplementat|on, proving th&l
. . . o can be implemented efficiently enough for real world use. We
tools split centralized programs into distinct parts thet cun on

. : - e believe that NRMI is a valuable tool for Java distributed -pro
different network sites. Thus, automatic partitioningteyss try -) :
to offer DSM-like behavior but with emphasis on automation a grammers and that the same ideas can be applied to middieware

. . . o design and implementation for other languages.

not performance: Automatically partitioned applicatians on
existing infrastructure (e.g., DCOM or regular unmodifi&tv) ACKNOWLEDGMENTS
but relieve the programmer from the burden of dealing with th
idiosyncrasies gf v%rious middleware mechanisms Atgthaesa This work was supported by the National Science Foundation
time, this reduces the field of application to programs WheHenOler Grant No. CCR-0238289.
locality patterns are very clear cut—otherwise perforneanan REFERENCES
suffer greatly. In the Java world, the J-Orchestra [10], itisht 1] E. Tilevich and Y. Smaragdakis, “NRMI: Natural and eféiot middle-
[25]_ gnq Pangaea [26] systems can be classified as aummam: ware.” in International Conference on Distributed Computer Systems
partitioning tools. (ICDCS) 2003, pp. 252-261.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

(2]
(3]
(4]
(5]

(6]
(7]
(8]

El

[10]

(11]

(12]

(23]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

A. S. Tanenbaum and M. van Stedistributed Systems: Principles and [29] M. Dahm, “Doorastha—a step towards distribution tgarency,” in

Paradigms Prentice-Hall, 2002. Proc. Java Informations Tage (JIT)/Net.ObjectDays 208000.

A. S. TanenbaumDistributed Operating SystemsPrentice-Hall, 1995. [30] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A nota distributed
Unknown, “Distributed computing systems course noétes, computing,” Technical Report, Sun Microsystems LaboratyrSMLI
http://www.cs.wpi.edutcs4513/b01/week3-comm/week3-comm.html, TR-94-29, Nov. 1994.

accessed Apr. 2007.

Open Group, “DCE 11 RPC specification,”

http://www.opengroup.org/onlinepubs/009629399/, 1997accessed

Apr. 2007.

F. Reverbel and M. Fleury, “The JBoss extensible serierProc. ACM

Middleware Conference2003.

Sun Microsystems, “Java 2 enterprise edition,” htjpvd.sun.com/j2ee/,
accessed Apr. 2007.

D. Schmidt, M. Stal, H. Rohnert, and F. BuschmaRattern-Oriented
Software Architecture: Patterns for Concurrent and Netkeal Objects

Eli Tilevich is an Assistant Professor in the Com-
puter Science Department at Virginia Tech. He
earned his B.A. degree from Pace University, M.S.
from New York University, and Ph.D. from Georgia
Tech. He is a member of the IEEE, and his research
interests are in the systems and languages end of

Wiley, 2000. software engineering, spanning software technology,
A. Stevenset al, “Xdoclet,” http://xdoclet.sourceforge.net/, accessed object-oriented programming, and distributed sys-
Apr. 2007. tems.

E. Tilevich and Y. Smaragdakis, “J-Orchestra: Autoimdiava applica-

tion partitioning,” inProceedings of the European Conference on Object- “
Oriented Programming (ECOOP) Springer-Verlag, LNCS 2374, 2002,
pp. 178-204.

——, “Portable and efficient distributed threads for davin ACM
Middleware Conference Springer-Verlag, Oct. 2004, pp. 478-492.
D. Weyns, E. Truyen, and P. Verbaeten, “Distributece#irs in Java,” in
Proc. International Symposium on Distributed and Paral@mputing
(ISDPC) 2002.

Sun Microsystems, “Remote method invocation spedifice
http://java.sun.com/products/jdk/rmi/, 1997, acces&pd 2007.

V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, GileR
B. Topol, and M. Ahamad, “Efficient implementations of Jaemnote
method invocation (RMI),” inProc. of Usenix Conference on Object-
Oriented Technologies and Systems (COOTSB®)8.

M. Philippsen, B. Haumacher, and C. Nester, “More effitiserializa-
tion and RMI for Java,Concurrency: Practice and Experienoeol. 12,
no. 7, pp. 495-518, May 2000.

J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal,Aandlaat, “An
efficient implementation of Java’s remote method invocgtim Proc. of
ACM Symposium on Principles and Practice of Parallel Prograing
May 1999.

J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, iElidann,
C. Jacobs, and R. Hofman, “Efficient Java RMI for parallelgvem-
ming,” ACM Transactions on Programming Languages and Systems
(TOPLAS) vol. 23, no. 6, pp. 747-775, Nov. 2001.

G. K. Thiruvathukal, L. S. Thomas, and A. T. Korczyns¥Reflective
remote method invocation,Concurrency: Practice and Experience
vol. 10, no. 11-13, pp. 911-926, Sep.-Nov. 1998.

Object Management Group, “Objects by value specificgti
http://www.omg.org/cgi-bin/doc?orbos/98-01-18.pdf, anJ 1998,
accessed Apr. 2007.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel, “Impletagon and
performance of Munin,” inProc. 13th ACM Symposium on Operating
Systems Principlect. 1991, pp. 152-164.

H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langemd T. Ruhl,
and M. F. Kaashoek, “Performance evaluation of the Orcaeshabject
system,”ACM Trans. on Computer Systenwl. 16, no. 1, pp. 1-40,
Feb. 1998.

Y. Aridor, M. Factor, and A. Teperman, “cJVM: a singlessgm image
of a JVM on a cluster,” inProc. International Conference on Parallel
Programming (ICPP)1999.

M. Surdeanu and D. |. Moldovan, “Design and performarafea
distributed Java virtual machinelEEE Transactions on Parallel and
Distributed Systemsvol. 13, no. 6, pp. 611-627, Jun. 2002.

W. Yu and A. Cox, “Java/DSM: A platform for heterogensocomput-
ing,” Concurrency: Practice and Experienceol. 9, no. 11, pp. 1213
1224, 1997.

M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano, “A byide translator
for distributed execution of legacy Java software,”"Rroc. European
Conference on Object-Oriented Programming (ECOQRIN. 2001.

A. Spiegel, “Automatic distribution of object-orieed programs,” Ph.D.
dissertation, FU Berlin, FB Mathematik und Informatik, D@©02.

B. Haumacher, J. Reuter, and M. Philippsen, “JavaPdtdistributed
companion to java,” http://wwwipd.ira.uka.de/JavaParaccessed Apr.
2007.

M. Philippsen and M. Zenger, “JavaParty—transparentate objects in
Java,”Concurrency: Practice and Experienceol. 9, no. 11, pp. 1125-
1242, 1997.

Yannis Smaragdakisis an Associate Professor of
Computer Science at the University of Oregon. He
earned his B.Sc. degree from the University of Crete
and his Ph.D. from the University of Texas at Austin.
He is a senior member of the IEEE and his interests
are in the programming languages and systems side
of software engineering.

