
Program Generators and the Tools to Make Them

Yannis Smaragdakis, Shan Shan Huang, David Zook
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{yannis|ssh|dzook}@cc.gatech.edu

ABSTRACT
Program generation is among the most promising techniques
in the effort to increase the automation of programming
tasks. In this paper, we discuss the potential impact and
research value of program generation, we give examples of
our research in the area, and we outline a future work di-
rection that we consider most interesting. Specifically, we
first discuss why program generators have significant applied
potential. At the same time we argue that, as a research
topic, meta-programming tools (i.e., language tools for writ-
ing program generators) may be of greater value. We then
illustrate our views on generators and meta-programming
tools with our latest work on the Meta-AspectJ meta-
programming language and the GOTECH generator. Fi-
nally, we examine the problem of statically determining the
safety of a generator and present its intricacies. We limit
our focus to one particular kind of guarantee for gener-
ated code—ensuring that the generated program is free of
compile-time errors. We believe that this research direction
will see significant attention and will make a difference in the
mainstream adoption of meta-programming technology.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming—program synthesis, program transformation, program
verification; D.3.4 [Programming Languages]: Proces-
sors

General Terms
Design, Languages

Keywords
Program generators, meta-programming, safety guarantees

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM’04, August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-835-0/04/0008 ...$5.00.

1. PROGRAM GENERATORS AND META-
PROGRAMMING

We first present some general thoughts on program gener-
ators. We concentrate on frequently-asked questions about
the nature and value of generators, as well as the research
promise of the area.

1.1 What Are Program Generators?
A program generator (or just generator) is a program that

generates other programs. This broad definition is often
qualified to include constraints such as “the generated pro-
gram is expressed in a high-level programming language”.
No definition, however, offers strict boundaries distinguish-
ing generators from traditional compilers, text-generating
programs, etc. Thus, what really constitutes a generator is
often determined intuitively and does not reflect so much a
technical distinction as the emphasis in the development of
the “generator”.

A related concept is meta-programming. Meta-
programming can be described as the creation of a pro-
gram that computes other programs or reasons about other
programs. Meta-programming tools constitute the general
platform for implementing generators in a given language
setting.

To understand what generators are we should look at their
common uses. In practice, generators are typically compil-
ers for domain-specific languages (DSLs). A domain-specific
language is a special-purpose programming language for a
particular software domain. A “domain” can be defined ei-
ther by its technical structure (e.g., the domain of reactive
real-time programs, the domain of LALR language parsers)
or by real-world applications (e.g., the database domain, the
telephony domain, etc.). The purpose of restricting atten-
tion to specific domains is to exploit the domain features
and knowledge to increase automation.

If we view generators as compilers for DSLs, it is worth
asking how they differ from general-purpose language com-
pilers. Indeed, the research and practice of program genera-
tors is distinctly different from that of general-purpose com-
pilers. A general-purpose language compiler implements a
stable, separately defined specification and can take several
man-years to develop. In contrast, a generator is typically
co-designed with the DSL that it implements. Thus, the
emphasis is not on deeply analyzing a program to infer its
properties, but on designing the DSL so that the proper-
ties are clearly exposed and on having the generator exploit
them with as little effort as possible. The effort of imple-
menting a program generator is typically small—comparable

to the effort of implementing a software library for the do-
main. This is largely the result of leveraging the high-level
language (commonly called the object language) in which
the generated programs are expressed.

The above features of program generators (domain-
specificity, language/generator co-design, low-effort develop-
ment) also define the focus of research in the area. Most re-
search in program generators concentrates either on specific
domains that are amenable to a generator-based approach
or on meta-programming tools that simplify generator im-
plementation.

1.2 Why Care about Generators?
Program generators have been an active research focus

since the early days of Computer Science. The main reasons
that researchers are attracted to program generators have
to do with the inherently interesting conceptual problems
of meta-programming and with the potential for practical
benefit.

For many researchers, meta-programming is an intellec-
tually fascinating topic. After all, computer scientists are
people who find computations interesting. What then can
be more interesting than computing about computations?
The canonical sensationalist example is self-generating pro-
grams. It is easy to be intrigued by programs whose task
is to output their own program text. For example, we can
have:

((lambda (x) (list x (list ’quote x)))

’(lambda (x) (list x (list ’quote x))))

in Lisp or:

main(a){a="main(a){a=%c%s%c;printf(a,34,a,34);}";

printf(a,34,a,34);}

in C.
At the same time, many researchers hold the belief that

software engineering tasks can be substantially automated
through program generation. Everyday programming often
involves rote coding of pieces of functionality. These can
be generated mechanically, as long as the domain-specific
knowledge is suitably encoded. Most programming practi-
tioners are confident that they can achieve far greater code
reuse with the appropriate domain-specific tool. (In fact, we
have encountered many cases where people overestimate the
potential for automation based on their experience with a
small set of examples.) Nevertheless, the question is one of
engineering balance between the cost of developing a DSL
and the benefit of using it. In the software development
arena, program generators compete primarily with lower-
effort but also lower-benefit tools, such as domain-specific
libraries/APIs. There are currently many thousands spe-
cialized software libraries for various domain-specific tasks.
A realistic software application employs hundreds of pre-
defined APIs, e.g., for manipulating strings, for file process-
ing, for math functions, for abstractions such as streams
and sockets, for graphical interfaces, etc. Replacing some of
these APIs with domain-specific languages implemented as
program generators may result in significant simplification
of the programming tasks in the domain.

Libraries/APIs can themselves be thought of as crude pro-
gramming languages. They have their own simplistic syntax:
only function call syntax is allowed and the syntax check-
ing is limited to checking the number of arguments. They

have their own semantic restrictions: arguments need to sat-
isfy some preconditions and calls may affect the state of the
system, thus needing to occur in specific ordering patterns.
Limited static error checking takes place by type checking
the function calls in the host language. Libraries/APIs even
have their own simple optimization: they typically offer
multiple hand-specialized versions of operations for different
kinds of arguments, such as special-purpose multiplication
operators for sparse arrays in a scientific computing library.
The user needs to pick the appropriate operations and to
ensure their safety. Users of standard libraries/APIs are of-
ten constrained more by the library semantics than by the
semantics of the host programming language. This is a com-
mon sentiment among users of large parallel processing and
scientific computing libraries (like MPI or LAPACK). It is
also often expressed by programmers in large projects where
each part of the code needs to support the conventions of
other parts. In this case, the “domain” is the project itself.
A Microsoft programmer once told us “I don’t program in
C, I program in Word’s internal API.”

The software engineering benefit of domain-specific lan-
guages relative to function libraries/APIs is exactly in ad-
dressing the above deficiencies of syntax, safety, and perfor-
mance. A domain-specific language can offer more concise
syntax, increasing the ease of development and maintenance;
it can perform static error checking to detect common vio-
lations of the library semantics; and it can offer better per-
formance through domain-specific optimizations.

A common argument (especially of the partial evaluation
community) is that the advantages of program generation
can be expressed entirely on the performance axis. After
all, if performance is not a concern, the syntax and safety
benefits of a domain-specific language can be achieved with
just an interpreter. Subsequently, if better performance is
required, it can be achieved by specializing the interpreter.
This specialization can occur either via a general-purpose
partial evaluator or via program generation. Thus, accord-
ing to this view, program generation is an alternative to
partial evaluation and it is entirely about code specializa-
tion. Although it is tempting and often useful to think en-
tirely in performance terms, we should note that this view is
not accurate for many, if not most, of the program genera-
tors in actual use. In practice, program generators are often
employed not for reasons of performance but for reasons dic-
tated by modularity. Many generation tasks are performed
to produce code so that it satisfies conventions of existing
external libraries, run-time systems, etc. For example, a
domain-specific language for telephony can be generating
code in the form needed to interface with a specific tele-
phony standard API. The GOTECH generator that we will
later present yields components that can be loaded in a Java
application server. None of these tasks is performance re-
lated: programs need to be generated in a specific form in
order to interface with external clients.

1.3 The Research Value of Meta-Programming
Although program generators are very interesting in struc-

ture and valuable in practice, individual generators are often
less than ideal targets for research. The reason has to do
with the domain-specificity of generators. Domain knowl-
edge is by far the primary element of a successful genera-
tor. Unfortunately, however, domain knowledge is not ac-
cessible to non-domain-experts. Since research is concerned

with the encoding and transmission of reusable knowledge,
the domain-specificity of generators often limits their re-
search impact to narrow communities. Without domain-
independent results it would be hard to speak of research in
generators as a whole.

In contrast, we believe that meta-programming infrastruc-
ture is a much more promising research target, especially for
the programming languages and tools research community.
Meta-programming tools are the domain-independent part
of program generation. They pose all the interesting con-
ceptual research problems of program generation and have
a large applied value. In terms of technical problems, meta-
programming has a need for better language constructs, type
systems and analyses to ensure safety, etc. Additionally,
meta-programming stresses the limits of language process-
ing and analysis technology (e.g., parsing) because the gen-
erated code fragments are small and often appear out of
their final program context [14]. In terms of applied value,
the benefit of generators is tied to the ease with which they
can be implemented. A successful meta-programming tool
is one that significantly simplifies generator implementation.
This simplification can be a result of added expressiveness
(i.e., easy program generation and transformation) or added
safety (i.e., avoiding errors in coding generators).

Perhaps surprisingly, the potential impact of meta-
programming tools is lower for mature, well-understood,
high-value domains. For such domains, the importance
of domain abstractions is so high that better meta-
programming infrastructure is unlikely to matter much. For
instance, it is hard to imagine that good meta-programming
tools would make a difference for parser generation (i.e.,
generators like Yacc, ANTLR), string and system command
processing (i.e., implementations of scripting languages like
Perl), or database processing (i.e., languages like SQL). In
general, although such systems are technically translators
for DSLs, they are not part of the focus of program gener-
ation. Meta-programming tools can have a greater impact
in less mature domains, where it is not yet clear whether
applying a domain-specific language approach is appropri-
ate. Good meta-programming infrastructure can bridge the
implementation effort gap between a library and a genera-
tor, thus making program generation cost-feasible for many
more domains.

2. META-ASPECTJ AND GOTECH
In this section we discuss our recent work on the Meta-

AspectJ meta-programming tool and the GOTECH pro-
gram generator. Both of these artifacts illustrate well our
earlier and later points in this paper, regarding the con-
ceptual and applied value of meta-programming, as well as
the kinds of generators that meta-programming tools should
support.

2.1 Meta-AspectJ
Meta-AspectJ (MAJ) [16] is a language tool for generating

Java and AspectJ programs using code templates, i.e., quote
and unquote operators. Two elements of MAJ are quite in-
teresting. First, we believe that using the AspectJ language
as a back-end simplifies the task of writing a generator. Sec-
ond, MAJ is a technically mature meta-programming tool—
in many respects the most advanced meta-programming tool
for Java. For instance, MAJ reduces the need to deal with
low level syntactic types for quoted entities (e.g., “expres-

sion”, “statement”, “identifier”, etc.) through type infer-
ence and a context-sensitive parsing algorithm.

2.1.1 What Do Aspects Have to Do with Generation?
The AspectJ [6] language is an extension of Java and

the flagship tool of aspect-oriented programming (AOP): a
methodology that advocates decomposing software by as-
pects of functionality that may affect many functional units.
AspectJ supports defining such aspects separately from the
main application code and subsequently merging them with
that code. For the purposes of our discussion, we can
view AspectJ as a sophisticated code manipulation tool.
With AspectJ, the user can add superclasses and inter-
faces to existing classes and can interpose arbitrary code to
method executions, field references, exception throwing, and
more. Complex enabling predicates can be used to deter-
mine whether code should be interposed at a certain point.
Such predicates can include, for instance, information on the
identity of the caller and callee, whether a call to a method
is made while a call to a certain other method is on the
stack, etc.

Our use of AspectJ in MAJ is not tied to the AOP
methodology at all. Instead, the main observation behind
Meta-AspectJ is that generators can use AspectJ as a back-
end language. That is, a generator can output an AspectJ
file, which will be passed to the AspectJ compiler together
with an existing Java program. Based on the generated As-
pectJ file, the AspectJ compiler will then transform the Java
program. AspectJ offers a convenient vocabulary for ex-
pressing program inspection and transformation. This func-
tionality is crucial for program generators. A generator of-
ten needs to inspect an existing program and generate code
for each field, method, field assignment, etc. encountered.
At the same time, a generator often needs to transform its
input program—e.g., to make it call the newly generated
code. Such transformations are conveniently expressed in
the AspectJ vocabulary. For example, consider a simple
transformation of a Java program. We may want to take as
input a class C and add an interface definition clause to it.
At the source code level, this means transforming the code
of C from:

class C ... {...}

to:

class C implements I ... {...}

The standard way to effect this code transformation would
be to parse the input, find the definition of class C and add
the implements clause as a branch in the abstract syntax
tree representing the C definition. At the same time, we
need to be careful to find the right class C (and not, for
instance, some local class with the same name), preserve
its existing superclasses and interfaces, etc. An alternative
way to do this transformation would be to emit the AspectJ
code:

aspect S { declare parents: C implements I; }

The latter way is simpler and relieves us of dealing with
many low-level details.

The above example is admittedly simple. For more
complicated code transformations (e.g., indirecting all sites
where a field value may be changed, transforming all in-
stantiations of a class to instantiations of a different class,

etc.) the benefit of expressing them with AspectJ strictly
increases. AspectJ offers a convenient level of abstraction in
transforming programs. Although AspectJ cannot manip-
ulate low-level code (e.g., one cannot find all the if state-
ments or all for loops in a program and change them) it can
transform almost every externally visible element of a Java
class (e.g., methods, fields, type information, etc.). As an
added practical advantage, AspectJ features a mature com-
piler implementation that directly outputs Java bytecode.

2.1.2 MAJ Technically
MAJ extends Java with two code-template operators

for creating AspectJ code fragments: ‘[...] (“quote”)
and #[EXPR] or just #IDENTIFIER (“unquote”). (The el-
lipses, EXPR and IDENTIFIER are meta-variables match-
ing any syntax, expressions and identifiers, respectively.)
The quote operator creates abstract syntax tree represen-
tations of AspectJ code fragments. Parts of these repre-
sentations can be variable and are designated by the un-
quote operator (instances of unquote can only occur in-
side a quoted code fragment). For example, the value
of the MAJ expression ‘[call(* *(..))] is a data struc-
ture that represents the abstract syntax tree for the frag-
ment of AspectJ code call(* *(..)). (This AspectJ ex-
pression matches all method calls for any method with
any argument list and any return type.) Similarly, the
MAJ expression ‘[!within(#className)] is a quoted pat-
tern with an unquoted part. Its value depends on
the value of the variable className. If, for instance,
className holds the identifier “SomeClass”, the value of
‘[!within(#className)] is the abstract syntax tree for the
expression !within(SomeClass).

MAJ also introduces the new keyword infer that can be
used in place of a type name when a new variable is being
declared and initialized to a quoted expression. For example,
we can write:

infer pct1 = ‘[call(* *(..))];

This declares a variable pct1 that can be used just like any
other program variable. For instance, we can unquote it:

infer adv1 = ‘[void around() : #pct1 { }];

This creates the abstract syntax tree for a piece of AspectJ
code defining what should happen (nothing in this case)
every time any method gets called.

In the above example, the inferred type of variable adv1

will be AdviceDec (for “advice declaration”), which is one of
the types for AspectJ abstract syntax tree nodes that MAJ
defines. The full set of permitted type qualifiers contains
over 20 types, including Identifier, Modifiers, JavaExpr,
Stmt, MethodDec, ConstructorDec, etc. In addition to vari-
able definitions, such types can also be used explicitly in
the quote/unquote operators. For instance, the fully quali-
fied version of the adv1 example would be:

AdviceDec adv1 =

‘(AdviceDec)[void around(): #(Pcd)pct1 {}];

The inference of qualifiers and types of variables holding
abstract syntax trees relieves the user from dealing with the
specifics of abstract syntax tree types, while maintaining
the static checking of the well-formedness of trees. This fea-
ture distinguishes MAJ from other meta-programming tools.
Having multiple quote/unquote operators is the norm in

meta-programming tools for languages with rich surface syn-
tax (e.g., meta-programming tools for Java [1], C [15], and
C++ [3]). For instance, let us examine the JTS tool for Java
meta-programming—the closest comparable to MAJ. JTS
introduces several different kinds of quote/unquote opera-
tors: exp{...}exp, $exp(...), stm{...}stm, $stm(...),
mth{...}mth, $mth(...), cls{...}cls, $cls(...), etc.
Additionally, just like in MAJ, JTS has distinct types
for each abstract syntax tree form: AST_Exp, AST_Stmt,
AST_FieldDecl, AST_Class, etc. Unlike MAJ, however, the
JTS user needs to always specify explicitly the correct op-
erator and tree type for all generated code fragments. For
instance, consider the JTS fragment:

AST_Exp x = exp{ 7 + i }exp;

AST_Stm s = stm{ if (i > 0) return $exp(x); }stm;

This written in MAJ is simply:

infer x = ‘[7 + i];

infer s = ‘[if (i > 0) return #x;];

The inference of type qualifiers, as in MAJ, re-
quires sophistication in the implementation of the meta-
programming tool. The meta-programming tool needs to be
a full-fledged compiler with its own type system (instead of
a naive pre-processor, translating to an object language and
relying on that language’s type system for checking). Ad-
ditionally, parsing becomes context-sensitive—i.e., the type
of a variable determines how a certain piece of syntax is
parsed, which puts the parsing task beyond the capabilities
of a (context-free) grammar-based parser generator.

To see the above points, consider the MAJ code fragment:

infer l = ‘[#foo class A {}];

The inferred type of l depends on the type of foo. For
instance, if foo is of type Modifiers (e.g., it has the value
‘[public]) then the above code would be equivalent to:

ClassDec l = ‘[#(Modifiers)foo class A {}];

If, however, foo is of type Import (e.g., it has the value
‘[import java.io.*;]) then the above code would be
equivalent to:

CompilationUnit l = ‘[#(Import)foo class A {}];

Thus, to be able to infer the type of the quoted expres-
sion we need to know the types of the unquoted expres-
sions. Furthermore, the types of expressions even influence
the parsing and translation of quoted code. The two pos-
sible abstract syntax trees are not isomorphic. If the type
of foo is Modifiers, this will result in an entirely different
parse and translation of the quoted code than if the type of
foo is Import (or ClassDec, or InterfaceDec, etc). In the
former case, foo just describes a modifier—i.e., a branch of
the abstract syntax tree for the definition of class A. In the
latter case, the abstract syntax tree value of foo is at the
same level as the tree for the class definition.

The MAJ type system itself is simple: it has a fixed set of
types with a few subtyping relations and a couple of ad hoc
conversion rules (e.g., from Java strings to MAJ identifiers).
Type inference is quite straightforward: when deriving the
type of an expression, the types of its component subexpres-
sions are known and there is a most specific type for each
expression. No recursion is possible in the inference logic,

since the infer keyword can only be used in variable dec-
larations and the use of a variable in its own initialization
expression is not allowed in Java.

An added advantage of having a full compiler for the meta-
programming tool is that it can emit better error messages.
MAJ differentiates between MAJ type errors (i.e., syntac-
tically invalid generated code) and regular parse errors in
the MAJ language. It then emits accurate error messages
relative to the original MAJ source.

2.2 Applications: The GOTECH Generator
We will next briefly describe our GOTECH generator.

GOTECH has two interesting elements. First, it is im-
plemented by producing AspectJ code, thus being a rep-
resentative of the generators that MAJ can support. Sec-
ond, it shows the kinds of program manipulations that
we need to handle in meta-programming tools. The
next section, discussing future directions in statically safe
meta-programming, will refer to examples of tasks from
GOTECH.

2.2.1 What Is GOTECH?
GOTECH [13] (for “General Object-To-EJB Conversion

Helper”) is a program generator for Java server-side com-
ponents. GOTECH takes as input a Java program anno-
tated with JavaDoc comments to describe what parts of
the functionality should be remotely executable. It then
transforms parts of the program so that they execute over a
network instead of running on a local machine. The middle-
ware platform used for distributed computing is J2EE (the
protocol for Enterprise Java Beans—EJB). GOTECH takes
care of generating code adhering to the EJB conventions
(EJB session beans) and makes methods, construction calls,
etc. execute on a remote machine. Internally, the modifica-
tion of the application is performed by generating AspectJ
code that transforms existing classes. GOTECH was origi-
nally implemented using XDoclet [11]—a simple, text-based
meta-programming tool. Subsequently GOTECH has been
expressed more safely and conveniently with MAJ.

It is interesting to look at the specific program inspec-
tion and generation tasks that GOTECH performs. These
include the following (for each Java class that has the ap-
propriate GOTECH input annotation):

• GOTECH generates two isomorphic interfaces—i.e.,
Java interfaces whose methods correspond one-to-one
to the public methods of the class. These are the lo-
cal and remote interfaces required for the session bean
according to the EJB specification.

• An EJB class (session bean) is generated by cloning
the functionality of the original Java class. The ses-
sion bean declares that it implements the generated
local and remote interfaces and modifies the original
method signatures to throw the exceptions required by
the distribution middleware.

• An AspectJ aspect is generated to intercept all instan-
tiations and calls to methods of the original Java class.
All such object creations and client calls are now per-
formed on the EJB class.

• An aspect is generated to make parameter types serial-
izable (i.e., passed by-copy when used as arguments to

remote calls) if necessary, according to user-supplied
annotations.

2.2.2 Using AspectJ in GOTECH
GOTECH illustrates the value of using AspectJ as a

generator back-end. The transformations performed by
GOTECH (e.g., changing all client calls, making parame-
ter types serializable) would be much harder to do with-
out AspectJ. On the other hand, AspectJ alone would not
be able to handle the GOTECH tasks. The GOTECH ac-
tivities were previously [10] shown impossible to automate
with just AspectJ. For example, AspectJ cannot be used to
create an interface isomorphic to the public methods of a
given class. Additionally, the aspects used are not static—
they need to be custom-generated for the particular input
application. The customization is not just with respect to
the names of classes that need to be transformed. Instead,
complex decisions may need to be made. For instance, the
GOTECH logic making method parameter types be serial-
izable is roughly “the type should be serializable, if neither
it nor its supertypes are already declared to be serializable
and it is not a primitive type.” None of these tests can be
expressed in AspectJ but they are easy to compute using
arbitrary Java code and reflection. Then the right custom
aspect gets generated when applicable.

3. GUARANTEED-LEGAL GENERATORS
In this section we present some thoughts on valuable re-

search directions for meta-programming tools. We discuss
the motivation for statically safe program generation, the
state of the art, and what needs to be addressed next to
support powerful generators.

3.1 What Is Guaranteed-Legal Generation
and Why Do We Need It?

As we saw earlier, the value of a MAJ quoted code frag-
ment is an abstract syntax tree for the code fragment. Rep-
resenting the generated program as abstract syntax trees is a
standard technique in structured meta-programming tools—
to be contrasted with unstructured, or “text-based” tools.
It statically ensures that any generated code is syntactically
correct by requiring that the tree be well-formed. This prop-
erty is often described as “the type safety of the generator
implies the syntactic correctness of the generated program.”
Nevertheless, we would like to go further than mere syntax
checking. The generated program may still contain semantic
errors.

Offering guarantees on the generated code is one of the
toughest and most interesting issues in meta-programming.
We are interested in statically safe program generation: stat-
ically checking the generator should enforce the safety of
the generated program. Since the space of program safety
properties is huge and most of these properties are undecid-
able, we limit our attention to language legality checking.
That is, we want to ensure that the generated program does
not suffer from errors typically detected by a conventional
compiler, such as type mismatch errors, references to un-
declared variables, duplicate variable definitions, etc. We
use the term guaranteed-legal to describe a generator that
always generates programs that will compile correctly. We
would like to have meta-programming infrastructure that
statically ensures that a generator is guaranteed-legal for
all legal inputs. Of course, having any kind of sound static

safety check means putting restrictions on the expressible
programs. Hence, some safe generators will be conserva-
tively rejected. The challenge is to design a static checking
mechanism that is expressive enough for common program
generators (e.g., the GOTECH program manipulations).

It is often debated whether static legality checking is a
valuable feature. After all, the generated program will be
checked statically before it runs, so why try to catch these
errors before the program is even generated? The answer is
that static checking is not intended to detect errors in the
generated program or even errors in the generator input, but
errors in the generator itself. Although these errors will be
detected at compile-time of the generated program, this is
at least as late as the run-time of the generator. Thus, static
legality checking for generators is analogous to static typing
for regular programs. It is a desirable property because it in-
creases confidence in the correctness of the generator under
all inputs (and not just the inputs with which the generator
writer has tested the generator).

To see the problem in an example, consider a program gen-
erator that emits programs depending on two input-related
conditions:

if (pred1())

emit(‘[int i;]);

...

if (pred2())

emit(‘[i++;]);

If, for some input, pred2 does not imply pred1, then the
generator can emit the reference to variable i without hav-
ing generated the definition of i. This is an error in the
generator and it should be the responsibility of a good meta-
programming language tool to prevent such errors by stati-
cally examining the generator. (Of course, it is rather easy
to catch this error at generation time of the i++ fragment,
but this just shifts the blame: the generator does not pro-
duce an invalid program, but fails to produce anything.) In
fact, the error may only occur after the generator writer has
tested and widely deployed the generator. The error will
then be detected by some random user. The analogy to
compilers for general-purpose languages is interesting. Con-
sider a C compiler that for some perfectly legal C inputs
produces executable files in an illegal binary format—e.g.,
illegal ELF or .EXE files or machine code for the wrong ar-
chitecture. These files do not represent programs and will
not fail at run-time: the operating system will reject them
at load time. Nevertheless, this is small consolation to the
C compiler author: his/her artifact was deployed while con-
taining basic errors and has failed during its run-time. If
there existed a language tool whose purpose was to help
C compiler writers, it would be desirable to statically check
that the compiler always produces legal executables for legal
inputs. In general meta-programming the problem is both
more pronounced (due to the multitude of potential genera-
tors relative to the small number of C compilers) and harder
(due to the richness of target high-level languages relative
to the shallow rules for binary executable formats).

3.2 State of the Art and Why We Need More
Static safety checking is a hard property to ensure, even

when we limit our attention to language legality checks.
Nevertheless, an interesting special case of program gen-
eration already offers strong legality guarantees for gener-

ated programs. Specifically, multi-stage languages, such as
MetaML [12] and MetaOCaml [2], guarantee that the gener-
ated program is type-correct by statically checking the gen-
erator. In this sense, multi-stage languages represent the
state of the art in static safety checking of generators. Nev-
ertheless, as we will see, staging applies severe restrictions on
the structure of the generator and prohibits the expression
of arbitrary generators, like GOTECH.

Staging language constructs are fairly common in the
partial evaluation community. They comprise primitives
for quoting, unquoting, and performing run-time evalua-
tion (with an eval/run construct) of code representations.
The focus of multi-stage languages, however, is performance.
Multi-stage languages serve as assembly languages for par-
tial evaluation. The staging primitives are sufficient for ex-
pressing any partial evaluation task, either hand-staged or
derived by an automatic partial evaluator through binding
time analysis. Staging differs from general program genera-
tion, however. The hallmark property of multi-stage lan-
guages is the erasure property : erasing the staging con-
structs should yield a meaningful program. Clearly this
property does not hold for arbitrary program generation,
even when the meta-language and the object language are
the same. In MAJ, for instance, we can write:

infer x = ‘[class A {}];

Removing the quote construct does not result in a legal Java
program, however. For an example of a staged program, con-
sider a simple exponentiation function (we use MAJ-style
quotes and unquotes but the function is shown in ML-like
pseudo-code, to avoid low-level complexities of explicit typ-
ing):

exp(n,a) =

if (a == 0) 1

else n * exp(n, a-1)

If we would like to stage this function with respect to a
statically known exponent, the result would be:

exp(n,a) =

if (a == 0) ‘[1]

else ‘[#[n] * #[exp(n, a-1)]]

It is easy to see that erasing the staging constructs from
the second exp function will yield exactly the first one.
(As a side note, in this example the two exp functions are
not exactly equivalent. The latter exp is a generator even
when all involved values are known: exp(3,4) will yield
‘[3*3*3*3*1]. The run/eval primitive can then evaluate
this expression.)

In order to offer type correctness guarantees on the gen-
erated code, multi-stage languages place rigid syntactic re-
strictions on the generator. The first restriction is that the
binding of an identifier should be clear from the generator
code. Specifically, the only way to quote a code fragment
containing free variables is in the scope of another quote
that contains definitions for these variables. That is, we can
write:

‘[int i;

#[fun(‘[i++;])]

]

In this fragment, i occurs free in the inner quote, but is
bound to a definition in the outer quote. We cannot, how-
ever, write two independent quote expressions containing a
separate definition and reference, such as:

... ‘[int i;]

... ‘[i++;]

This is a serious restriction for arbitrary program genera-
tion. Supporting separate variable definition and reference
would dissociate the structure of the generator source code
from the structure of the generated program, allowing more
freedom in writing the generator. The main problem is not
one of scoping—one can imagine a namespace construct that
ties together independent variable definitions and references.
Instead, the greater issue is control flow. Just as we saw in
Section 3.1, separating the definitions and references can re-
sult in generated programs referencing undeclared variables.
Furthermore, the same quoted definition may be used to
create multiple actual variable definitions in the generated
program. For instance, consider the fragment:

while (pred1()) {

emit(‘[int i;]);

...

}

...‘[i++;]

There may be several distinct definitions generated by the
quoted fragment ‘[int i;]. It may seem at first that the
problem is the name conflicts among the i definitions. Nev-
ertheless, a good meta-programming system should rename
the actual variable names, from i to some unique identi-
fier for every iteration, to avoid accidental name conflicts
with both user-supplied code and generated declarations.
(This is part of the well-studied hygiene problem for meta-
programming [7, 4, 8].) The more important issue, however,
is that it is not clear which binding of i is intended in the
generated expression i++.

Current systems that offer static legality guarantees also
restrict the names used in the generated program. In multi-
stage languages, it is not legal to unquote an identifier in
a binding position. Instead, all names used in definitions
and references are constants. For instance, it is not possible
to generate the definition of a variable whose name will be
determined at generator run-time, such as:

emit(‘[int #name;]);

This is a severe limitation. Recall the program manipula-
tions performed in GOTECH. One of the most straightfor-
ward ones is to generate isomorphic interfaces for each input
class. Such interfaces need to have methods with names that
depend on the generator input. In general, program gener-
ators commonly emit both definitions and references with
names that are not statically known. For instance, a gen-
erated program may be calling existing methods of classes,
whose names are discovered at generation time.

Allowing non-constant names in quoted expressions is an
issue of data flow in the generator. For example, consider a
generator that introduces two new names in the same lexical
context:

emit(‘[

int #name1;

int #name2;

]);

For static language legality checking, we need to know that
name1 and name2 do not hold the same value (or we will
end up with a duplicate variable definition in the generated
program).

3.3 Open Problems and Promising Directions
Based on the above observations, meta-programming

tools need to advance if they are to support realistic
guaranteed-legal generators. There is one general design
direction that we are pursuing and we consider particularly
promising. Given that the problem is one of data and control
flow analysis in the generator, we expect that an easy-to-
analyze meta-programming language will be beneficial. For
instance, consider a sub-Turing-computable language with
controlled iteration and selection. This language can inte-
grate a reflective mechanism (analyzing an input program to
extract its elements) with program generation. That is, the
language can define iterators over existing programs. The
iterators can range over, say, all fields of a class, all argu-
ments of a method, all classes in a package, etc. All program
generation should be predicated on an iterator: copies of the
quoted code will be generated for each iteration. For exam-
ple, we could have a code generation expression such as:

#for[f in Field(c), ‘[#[Type(f)] #[Name(f)] ;]]

(The #for primitive is part of our invented syntax, as are
the usual ‘[...] and #[...]. Field, Type, and Name are
iterator functions.) In this example, definitions for several
variables are being generated. The generated variable names
are not statically known but they depend on existing names.
Thus, static checking can be done, based on the assumption
that the input program is legal. For instance, the above
code fragment can never generate a duplicate definition: the
generated names are in a one-to-one mapping with fields of
input class c, which are guaranteed to be uniquely named.
Similarly, when generating references, we can use the itera-
tors to match them to generated definitions. For instance,
we can refer to the variables generated by the above frag-
ment in code such as:

#for[f in Field(c), ‘[insert(#[Name(f)])]]

We know that the emitted code refers to valid variable names
because the iterator f ranges over the same values (all fields
of class c) when generating both definitions and references.

More specifically, we want to define collections of elements
of existing programs in a relational view. That is, we will
treat the input program as a set of relations (or a single big
relation), matching packages and classes, classes and fields,
methods and arguments, etc. Each of our iterators will then
be defined using a relational calculus query. That is, we can
define iterators by selecting elements in a relation through
a logical language that supports universal and existential
quantifiers. For instance, we can define an iterator over all
classes with at least one “synchronized” method. Similarly,
we can define an iterator over all classes supporting all meth-
ods from a certain interface (i.e., for every interface method,
there is a method in the class with identical name and type
signature).

Subsequently we can use the iterators to determine
the control and data flow of program generation. Our
controlled-iteration language will be able to interface with
a general-purpose language but the analysis will be limited
to the controlled-iteration language. For a more complete
example, consider a routine generating an isomorphic inter-
face for a given input class. In our syntax, this would be
written as:

Input [cl :: Class;]

pm(c::Class) = m::Method(c) :

"public" in Modifier(m);

total() =

‘[

interface #name[cl, "Isomorphic"] {

#for[m in pm(cl),

‘[#[RetType(m)] #[Name(m)]

(#for[a in Args(m),‘[#[Type(a)] arg_name]])

]

]

}

] ;

The Input clause in the above program declares cl as an
input class relation. Then, pm is defined as an iterator over
all public methods of the class. Finally, the generator func-
tion total generates an interface (named after the input
class, with the appended suffix ”Isomorphic”) that contains
all public methods of cl with identical signatures. All argu-
ments are named arg_name in the above code: their actual
names do not matter and the generated names will be unique
to avoid conflicts.

The above description is sketchy—we omitted many of the
specifics of the syntax and semantics of the proposed lan-
guage, other language constructs for conditional generation,
etc. Nevertheless, the example is hopefully sufficient to out-
line the interesting conceptual problems. In order to match
references to definitions (e.g., for type checking, or checking
for undeclared variable references) we need to know which
definitions are generated under the conditions for generating
the reference. Recall our problem from Section 3.1:

if (pred1())

emit(‘[int i;]);

...

if (pred2())

emit(‘[i++;]);

We need to know whether pred2() implies pred1(). With
our controlled language, all generation is predicated on an
iterator. Thus our problem is one of containment of the re-
lations ranged over by two iterators. This is not a decidable
problem in the full relational calculus but there are many
well-known restrictions that result in decidable containment
problems. The restriction could be imposed on the syntax
or on the reasoning power.

We outlined above just one design direction in the space of
guaranteed-legal meta-programming. In the end, the right
solution will be an engineering tradeoff between expressive-
ness and safety. Many interesting open issues remain to
be explored, even in the immediate vicinity of the ideas we
outlined above:

• Can we do a powerful enough data- and control-flow
analysis for a general purpose, Turing-complete lan-
guage that will support static legality checking while
allowing to express most common generation tasks?

• For controlled-iteration languages, like the one
sketched above, what is an expressive logic that allows
decidable containment checking?

• What is a good balance between the run-time complex-
ity of containment checking and the expressiveness of
the logic?

4. CONCLUSIONS
In this paper, we gave a focused overview of program

generation and meta-programming tools. Our purpose was
not to offer a comprehensive survey—good surveys on pro-
gram generation already exist [5, 9]. Notably, Jones and
Glenstrup [5] offer an extensive survey of program genera-
tion as it pertains to partial evaluation. Here we presented
our views on the practical value of program generators and
the research value of meta-programming. Our arguments
on how meta-programming infrastructure affects generators
were illustrated with two of our recent research artifacts: the
Meta-AspectJ tool and the GOTECH generator. Finally, we
discussed promising future directions for meta-programming
research. We hope that meta-programming will soon mature
to become a valued tool in the arsenal of the sophisticated
programmer, making program generation a viable option for
a multitude of software domains.

5. ACKNOWLEDGMENTS
This research was supported by the NSF through grants

CCR-0238289 and CCR-0220248, and by the Georgia Elec-
tronic Design Center.

We want to thank Pete Manolios and the members of
the IFIP WG 2.11 for valuable discussions and inspiration.
Peter Sestoft’s and Walid Taha’s comments on our draft
improved the quality of the paper.

6. REFERENCES
[1] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools

for implementing domain-specific languages. In
Proceedings Fifth International Conference on
Software Reuse, pages 143–153, Victoria, BC, Canada,
1998. IEEE.

[2] C. Calcagno, W. Taha, L. Huang, and X. Leroy.
Implementing multi-stage languages using ASTs,
gensym, and reflection. In Generative Programming
and Component Engineering (GPCE) Conference,
LNCS 2830, pages 57–76. Springer, 2003.

[3] S. Chiba. A metaobject protocol for C++. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’95),
SIGPLAN Notices 30(10), pages 285–299, Austin,
Texas, USA, Oct. 1995.

[4] W. Clinger. Macros that work. In Proceedings of the
18th ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, pages 155–162.
ACM Press, 1991.

[5] N. D. Jones and A. J. Glenstrup. Program generation,
termination, and binding-time analysis. In Generative
Programming and Component Engineering (GPCE)
Conference, LNCS 2487, pages 1–31. Springer, 2002.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. Getting started with
AspectJ. Communications of the ACM, 44(10):59–65,
2001.

[7] E. Kohlbecker, D. P. Friedman, M. Felleisen, and
B. Duba. Hygienic macro expansion. In Proceedings of
the 1986 ACM conference on LISP and functional
programming, pages 151–161. ACM Press, 1986.

[8] Y. Smaragdakis and D. Batory. Scoping constructs for
program generators. In Generative and

Component-Based Software Engineering Symposium
(GCSE), 1999. Earlier version in Technical Report
UTCS-TR-96-37.

[9] Y. Smaragdakis and D. Batory. Application
generators. Encyclopedia of Electrical and Electronics
Engineering, 2000. J.G. Webster (ed.), John Wiley
and Sons.

[10] S. Soares, E. Laureano, and P. Borba. Implementing
distribution and persistence aspects with AspectJ. In
ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’02),
pages 174–190. ACM Press, 2002.

[11] A. Stevens et al. XDoclet Web site,
http://xdoclet.sourceforge.net/.

[12] W. Taha and T. Sheard. Multi-stage programming
with explicit annotations. In Partial Evaluation and
Semantics-Based Program Manipulation, Amsterdam,
The Netherlands, June 1997, pages 203–217. New
York: ACM, 1997.

[13] E. Tilevich, S. Urbanski, Y. Smaragdakis, and
M. Fleury. Aspectizing server-side distribution. In
Proceedings of the Automated Software Engineering
(ASE) Conference. IEEE Press, October 2003.

[14] E. Visser. Meta-programming with concrete object
syntax. In Generative Programming and Component
Engineering (GPCE) Conference, LNCS 2487, pages
299–315. Springer, 2002.

[15] D. Weise and R. F. Crew. Programmable syntax
macros. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 156–165,
1993.

[16] D. Zook, S. S. Huang, and Y. Smaragdakis.
Generating AspectJ programs with Meta-AspectJ. In
Proceedings of the 2004 Generative Progamming and
Component Engineering (GPCE) Conference.
Springer-Verlag, to appear.

