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A widespread belief in the blockchain security community is that automated techniques are only good for
detecting shallow bugs, typically of small value. In this paper, we present the techniques and insights that
have led us to repeatable success in automatically discovering high-value smart contract vulnerabilities. Our
vulnerability disclosures have yielded 10 bug bounties, for a total of over $3M, over high-profile deployed
code, as well as hundreds of bugs detected in pre-deployment or under-audit code.

We argue that the elements of this surprising success are a) a very high-completeness static analysis
approach that manages to maintain acceptable precision; b) domain knowledge, provided by experts or
captured via statistical inference. We present novel techniques for automatically inferring domain knowledge
from statistical analysis of a large corpus of deployed contracts, as well as discuss insights on the ideal precision
and warning rate of a promising vulnerability detector. In contrast to academic literature in program analysis,
which routinely expects false-positive rates below 50% for publishable results, we posit that a useful analysis
for high-value real-world vulnerabilities will likely flag very few programs (under 1%) and will do so with a
high false-positive rate (e.g., 95%, meaning that only one-of-twenty human inspections will yield an exploitable
vulnerability).

1 INTRODUCTION
Smart contracts—autonomous programs deployed and operating on the blockchain—present a
particularly interesting setting for software verification and validation approaches. The reason is
stringent correctness requirements, largely arising due to the large and direct impact of possible
contract errors. Smart contracts manage monetary assets, often in the many millions or billions of
dollars. The most common domain for smart contracts deployed in the past few years has been
Decentralized Finance (DeFi), i.e., autonomous protocols that implement many of the functionalities
of conventional finance (e.g., lending, exchanging, options trading), often in innovative ways.
With this much real-world value, one might expect that cutting-edge research techniques on

program analysis and testing would have a significant practical impact on smart contracts. This has
arguably not been the case, however. Perez and Livshits [2021] conduct a thorough study of tens
of thousands of Ethereum contracts reported vulnerable by six leading academic projects. They
find that under 2% of the contracts and only 0.27% of the funds held in them have actually been
exploited. A very small part of this impact is explainable by the tools having higher-than-reported
false-positive (i.e., imprecision) rates. Instead, the main reason for this striking result is a strong
bias in the sample: contracts that hold funds are very heavily scrutinized and much more likely to
be false positives in the analysis. Even analyses with 90% precision (i.e., true-positive) rates, in the
overall contract population, have extremely high false-positive rates in the subset of contracts that
truly currently manage funds.

2023. XXXX-XXXX/2023/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Y.Smaragdakis, N.Grech, S.Lagouvardos, K.Triantafyllou, I.Tsatiris, Y.Bollanos, and T.Valentine

Therefore, it should come as no surprise that program analysis tools are not considered very
valuable for smart contract security analysis. A recent quote (one of many) by a prominent security
analyst in the Ethereum space captures the prevailing view: “for an experienced contract author, it’s
never the automated tooling that finds the bugs that kill them” [Konstantopoulos 2021]. Having a
practical impact on deployed contract security via automated techniques seems like a formidable
challenge.
In this paper, we present the techniques and insights that we have used to meet this challenge.

Although human understanding is essential for finding many of the high-value vulnerabilities
in deployed smart contracts, our work shows that automated analyses can pinpoint high-value
vulnerabilities. The statement is more than a near-trivial existence proof: it is based on repeatable
results, that have yielded hundreds of vulnerability reports, as well as ten independent bug bounties,
for a total of over $3M, over DeFi protocols managing billions in assets.
The technical core of our approach consists of two main parts. The first is symbolic value-flow

(symvalic) analysis: a high-precision/high-completeness static analysis approach, whose technical
elements are described in detail in a recent publication [Smaragdakis et al. 2021]. The second part is
a corpus analysis: a complementary (to the static analysis) statistical analysis of irregular or unusual
code patterns, relative to a large number of other deployed smart contracts.
An interesting element concerns the interplay of symvalic (i.e., static) analysis and corpus (i.e.,

statistical) analysis. The vocabulary of the statistical analysis is directly informed by properties
established by the static analysis. For instance, a common concept over which anomalous code
patterns can be detected is that of tainting: e.g., the combined analysis may ask

“can an untrusted user taint (i.e., control) the𝑛-th argument of an external DeFi protocol
call in this contract, when that argument is typically determined to be untainted in
many other contracts that call the same DeFi protocol?”

Finally, we present insights regarding the expected performance metrics of a program analysis
for detecting high-value vulnerabilities. We argue that a useful analysis for complex vulnerabilities
is unlikely to be very precise in terms of conventional metrics—and that is fine! A false-positive
rate of 98% (1 of 50 warnings being truly exploitable) may be prohibitive for a top-tier academic
publication, but it is perfectly expected when the domain of evaluation is not controlled benchmarks
but actual, deployed, and scrutinized smart contracts. A warning rate of 0.5% (flagging one-of-
every-200 contracts for a given vulnerability) may seem entirely unimpactful in terms of a research
evaluation of the analysis benefit. (“99.5% of the programs are already correct, what is the need for
an analysis to get this number to 100%?”) But reality is quite the opposite: a 0.5% warning rate is
entirely in the credible range for high-impact vulnerabilities.

2 BACKGROUND
Static Analysis. Static analysis is distinguished among program analysis techniques (e.g., test-

ing [Czech et al. 2016; Meyer 2008], model checking [Clarke et al. 1986; Jhala and Majumdar 2009],
or symbolic execution [Baldoni et al. 2018; King 1976]) by its emphasis on completeness, i.e., its
attempt to model all (or, practically, as many as possible) program behaviors. To achieve this goal
under a realistic time budget, static analysis often has to sacrifice some precision: the analysis
may consider combinations of values that may never appear in a real execution. Maintaining high
precision, while achieving completeness and scalability, is a fundamental conceptual challenge.
Algorithmic design of static analyses has been trying to address this challenge for several decades,
with thousands of different research innovations.

All static analysis design is, therefore, an effort to simultaneously achieve as much practical
precision and completeness as possible. (The third dimension of analysis quality, scalability can
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mostly be ignored for the purposes of our presentation: we restrict our attention to algorithms
that scale well, i.e., can give results in realistic time frames—e.g., in the hours—under current
technology.) Generic definitions for the two terms can only be approximate, but, intuitively:
● an analysis is precise to the extent that the program behaviors it predicts are actually possible in
program execution;
● an analysis is complete to the extent that the actually possible program executions are predicted.

Perfect precision and completeness is provably impossible, by standard undecidability results
over program reasoning. Therefore a static analysis is by definition a game of approximation.
Precision and completeness are typically measured experimentally (or one of them is guaranteed
by-design, with the other measured experimentally). It should come as no surprise that an analysis
picks what to approximate with more or less fidelity. For instance, the best known family of static
analyses, data-flow analyses in conventional compilers, will commonly treat all code conditions as
both satisfiable and negatable, without more complex reasoning.

Consider the example function below:1

function whichPaths(uint x) public (returns uint y) {
y = 3;
if (x % 2 != 0) {

y++;
}
if (x % 4 != 0) {

y = y * y;
}

}

In this function, the actual possible values for return variable y are 3, 16, and 9: it is not possible
to satisfy the first conditional but not the second. A static analysis, however, may legitimately
choose to consider all paths (i.e., all combinations of branches in the program control flow) to be
realizable, sacrificing a bit of precision. Such an analysis could well predict that 4 (i.e., satisfying the
first conditional but not the second) is a possible return value. This approximation loses precision
in this example but gains the benefit of completeness when faced with other complex conditions.
(Additionally, the approximation most likely is much more scalable than approaches that attempt
full reasoning over symbolic conditions.)

Analysis of Smart Contracts. The domain of Ethereum smart contracts represents a high practical
but also intellectual challenge for program analysis. The analysis should be extremely precise, so
that the warnings for high-value contracts are likely true positives that humans may have missed,
and yet fairly complete, since catching the easy “certain” cases is likely to yield no warnings for
contracts that truly manage funds. Thankfully, there are elements of the domain that help. First
and foremost, smart contracts are isolated from each other and coded defensively. This introduces
a high degree of modularity: the contract can be analyzed mostly in isolation from others. Nearly
anything that comes from the outside world is untrusted, unless either the data or the sender are
vetted through specific mechanisms. Second, the contracts are of modest size: a deployed smart
contract is at most of 24KB in binary size. This corresponds to at most a few thousand lines of code.
Common sizes of “large” smart contracts are under 1KLoC, with another 1KLoC inherited or called
in libraries.

1We use the Solidity language for code examples. Solidity is dominant, accounting for more than 99% of deployed smart
contracts on Ethereum, the largest programmable blockchain.
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The small size and (relative) modularity of smart contracts means that we can apply analysis
techniques that are more ambitious (in terms of precision) than in a general-purpose language
setting. Past work has used ambitious program reasoning techniques [Albert et al. 2020c; Grossman
et al. 2017; Permenev et al. 2020] (indeed, even full program verification using proof assistants and
off-line logics has been employed [Hildenbrandt et al. 2018; The Certora team 2017]). Our work is
explicitly about automated techniques that apply universally, without needing human input (i.e.,
specifications) or per-smart-contract customization.
Our approach aims to be highly complete without sacrificing (much) precision. Completeness

problems are often brought up in the domain of smart contracts. For instance, the Manticore
symbolic execution framework [Mossberg et al. 2019] (one of the foremost for Ethereum smart
contracts) “achieves on average 66% code coverage” [Trail of Bits 2020a]. This prompted the Trail of
Bits security firm’s company account to tweet “Why can’t a symbolic executor achieve 100% coverage
in a teensy little smart contract?”[Trail of Bits 2020b], capturing the frustration of consumers of
analysis results.

3 SYMBOLIC-VALUE-FLOW STATIC ANALYSIS
Symbolic-Value-Flow (“symvalic”) analysis is the first weapon in our arsenal. We next present an
informal overview, highlighting its design principles.

3.1 Overview
Symbolic-Value-Flow static analysis is much like a common inter-procedural data-flow analysis: a
“value-flow” analysis, such as a points-to or a taint analysis. Being a value-flow analysis implies
that every variable is statically assigned a finite set of values and a fixpoint computation grows the
finite sets according to monotonic equations.

In symvalic analysis, the values can be both concrete (e.g., numbers) and entire symbolic expres-
sions. For instance, consider the example function below:

function sensitive(address recipient) public {
require(authorized[msg.sender ]);
selfdestruct(recipient);

}

The analysis will consider a set of concrete and symbolic values for all external input variables.
For instance, for numeric variables, the analysis considers small constants (0,1, and up to 3 constants
under 256), large constants (to cause overflow), and a pseudo-random choice of constants from the
program text.
For external inputs of “contract address” type, such as the msg.sender implicit argument, the

analysis will consider values that include:
● constants in the contract text that resemble addresses (i.e., 160-bit integers)
● the symbolic values «owner» and «unprivileged-user».

Similarly, the values initially considered for the recipient argument include:
● constants in the contract text that resemble addresses
● the symbolic values «owner-unique-value» and «user-unique-value».

The difference between the symbolic values is that the former («owner» and «unprivileged-user»)
will be considered bound-variables for symbolic reasoning purposes: although we treat them
symbolically, the caller cannot set them freely. In contrast, the latter («owner-unique-value» and
«user-unique-value») are free variables and symbolic reasoning can propose concrete values for
them, in order to solve constraints. Section 3.2 will describe in more detail how these values
are dependent: the analysis will model separately the case of the current caller of the contract
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Fig. 1. Symvalic Analysis Architecture: API (slightly simplified) between symbolic reasoning and value
propagation shown.

being «owner» and that of it being «unprivileged-user», and similarly for the values they supply to
arguments.
Symbolic values propagate and are used to form more complex expressions, whereas

concrete values get constant-folded. For instance, in the example, the program expression
authorized[msg.sender] is a lookup in a mapping structure on Ethereum storage (i.e., analogous to
the heap in a conventional language). Due to the way Ethereum storage is organized, the expression
is loading from the symbolic address SHA3(«owner» ++ 0x0)—SHA3 is the Keccak-256 hash function,
++ a byte array concatenation operator, and 0x0 (i.e., zero) the constant offset that identifies the
authorized mapping among other attributes in storage. This symbolic expression is propagated by
the analysis as a value for the corresponding local variable (unnamed in the source language but
present in the intermediate representation).

The analysis proceeds via a close interaction of a value-flow fixpoint loop and a symbolic reasoner.
Figure 1 shows the overall architecture, including the symbolic reasoning component and the value-
flow component, as well as the interface between them and the two sub-components of symbolic
reasoning: a bottom-up and a top-down component. The full interface and bottom-up/top-down
distinction are elements of importance mostly for practical concerns, especially efficiency.

If viewed as an idealized reasoner over infinite expressions (i.e., without worrying about compu-
tational efficiency) the main products of the symbolic reasoner are:
● a predicate normalize(expr, normExpr) that returns for each expression its minimal equivalent

form. This applies to both arithmetic and logical expressions;
● a predicate implies(exprStrong, exprWeak) that checks whether one logical expression implies

another;
● a predicate valueForVar(var, expr) that proposes values (i.e., symbolic expressions) for free

variable var, so that logical conditions get satisfied. The solver proposes such solutions in bulk,
for any interesting logical expressions (the main case being equalities, which are usually much
harder to satisfy than inequalities) and the analysis filters the solutions it chooses to truly
try—e.g., if they satisfy an equality that was previously not satisfied.

Inevitably, all three predicates are incomplete, i.e., will not capture all (infinite) true relationships.
The analysis appeals to these predicates throughout normal value propagation. Symbolic values

are continuously normalized (i.e., simplified up to minimal form) and are also used to satisfy control-
flow constraints, i.e., predicates in conditional statements. This makes the analysis path-sensitive:
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the information pertaining to a program statement is derived to be compatible with the conditions
necessary for reaching the statement. Mechanism-wise, this is a part of the dependencies machinery,
described in Section 3.2.

The close interaction of value-flow and symbolic reasoning is a rather unconventional aspect of
symvalic analysis. This is in contrast to explicit invocation of solvers in a static analysis [Krupp
and Rossow 2018; Nikolić et al. 2018; Schneidewind et al. 2020]. It is common for a static analysis to
collect a large condition and dispatch an external solver (e.g., Z3 [De Moura and Bjørner 2008]) to
satisfy the condition. Symvalic analysis, however, invokes the symbolic solver a lot more regularly,
to continuously simplify and solve conditions. Such appeals to the symbolic solver are essential, in
the heart of the analysis.

3.2 Precision and Dependencies
Symvalic analysis is a static analysis, aiming for completeness, i.e., covering many program behav-
iors. However the analysis is neither sound nor complete: it can both model unrealizable behaviors
and miss actual behaviors. The analysis intends to strike a good balance between completeness and
precision: to cover most program behaviors, while still predicting behaviors that are realizable to a
large degree.

To achieve precision, while keeping a set-based treatment, symvalic analysis associates variable-
value tuples (as well as statements in the code) with dependencies. Every analysis inference of the
form “variable v may have value (i.e., concrete or symbolic expression) 𝑒” (as well as of the form
“this statement is reachable”) is associated with sets of mappings of variables to values that have led
the analysis to make the inference.

We distinguish two kinds of dependencies: local (reset per-function) and transaction (i.e., current-
execution) dependencies. We write v → 𝑒 ∐︀𝑑𝐿 ;𝑑𝑇 ̃︀ to designate that variable v may hold value 𝑒
under local dependencies𝑑𝐿 and transaction dependencies𝑑𝑇 . (When there is no need to distinguish
local and transaction dependencies, we write v → 𝑒 ∐︀𝐷̃︀.) To illustrate dependencies, consider a
simple contract fragment:

contract Safe {
address owner; // set at construction
mapping (address => uint) public balanceOf;
function deposit(address to,uint amount) public {

require(msg.sender == owner);
uint curBalance = balanceOf[to];
uint nextBalance = curBalance + amount *90/100;
balanceOf[to] = nextBalance;

}
}

Let us focus on the value of variable nextBalance during an invocation deposit(0x42, 200).2
For nextBalance to even have a value, its assignment statement needs to be reachable. Therefore
the “require(msg.sender == owner)” statement needs to be satisfied. This forces the mapping
(︀sender → «owner»⌋︀ to appear in the transaction dependencies. (The symbolic variable sender

stands for the Solidity msg.sender expression and «owner» is a symbolic value generated to represent
the contract that originally called the current contract’s constructor and, thus, set storage fields to
initial values.)

2Contract addresses are 160-bit integers and generated randomly. We show a very unlikely short address (0x42) for the
sake of conciseness.
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Additionally, values of local variables will be parts of the dependencies. Assume that at some
point the analysis has inferred that storage mapping balanceOf[0x42] has two possible values: 1
and 80, and then considers the call deposit(0x42, 200).

The inferences for variable nextBalance will then be:
nextBalance→ 181 ∐︀ {[to → 0x42], [amount → 200], [curBalance → 1] } ; {[sender→ «owner»] } ̃︀}
and

nextBalance→ 260 ∐︀ {[to → 0x42], [amount → 200], [curBalance → 80] }; {[sender→ «owner»] } ̃︀}.
The first of the two inferences can be read as “nextBalance is expected to hold the value 181 in

executions where to holds value 0x42, amount holds value 200, the most recent storage load into
variable curBalance returned value 1, and the transaction initiator (i.e., external caller) is «owner»”.
The first three mappings make up the local dependencies for the inference, whereas the last is the
transaction dependency.

Dependencies are combined, with an operator denoted ⊕. Combination of dependencies happens
for every control-flow or data-flow join point: when two branches merge, or when two values
are used as operands in the same operation. Combining two sets of dependencies is a check for
compatibility, to prevent mixing information from guaranteed-separate executions. Combining
dependencies succeeds if there are no conflicting mappings for the same variable. For instance, the
two inferences above cannot be combined: they conflict on the mapping for variable curBalance.
If dependencies do not conflict (thus, combining them succeeds), combination is a mere pairwise
union of the mappings sets.

3.3 Precision and Completeness
Using the Safe contract example, we can illustrate why symvalic analysis chooses to be neither
sound nor complete, i.e., why it accepts some incompleteness in order to be more precise, and
why it accepts less-than-full precision (e.g., false positives) in order to be more complete or more
scalable.

Incompleteness. The last statement of function deposit stores nextBalance back into the persistent
storage mapping balanceOf[0x42]. Therefore, new inferences are possible for variable nextBalance,
which again cause new values to flow into balanceOf[0x42], ad infinitum. Static analysis typically
resolves this potentially infinite computation by overapproximation (e.g., a finite-height lattice that
joins values into abstract values, at the expense of some loss of precision). In contrast, symbolic
execution resolves non-termination (arising in the case of looping) by arbitrarily truncating execu-
tion traces (e.g., unrolling loops only a small number of times, or executing a fixed number of total
instructions).
Symvalic analysis is agnostic regarding the handling of cyclic flow: both overapproximation

and finite truncation are acceptable, per case. For instance, the current symvalic setting uses
overapproximation for values from some sources (e.g., environment variables, such as gas remaining,
current block number, miner of block). In most cases, however, the analysis favors concrete numeric
values (such as those in balanceOf[0x42]), which yield other concrete values, up to a finite number
of arithmetic operations. This treatment is one that explicitly favors precision over completeness:
the analysis is not guaranteed to model all values arising in real executions. The advantage, however,
is that the values that the analysis considers are likely to be realizable, i.e., precision is enhanced.

Precision. Dependencies can lend arbitrary precision to an analysis. Even fully concrete execution
can, for instance, be simulated by maintaining in dependencies all dynamic variables of an execution.
Conceptually, dependencies can be viewed as a generalization of context-sensitivity [Sharir and
Pnueli 1981] in static analysis, or an instance of relational analysis (e.g., [Nielson et al. 1999,
Sec.4.4.1], [Møller and Schwartzbach 2018, Sec.7]). Such mechanisms group together dynamic
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executions for uniform static treatment. Precision arises because executions mapped to different
groups are never confused. The challenge, however, is to maintain sufficient precision without
suffering from extreme lack of scalability (termed the state explosion problem). The state explosion
problem is the bane of fully-precise program analysis approaches, such as concrete testing or
concrete-state model checking. The number of possible value combinations rises exponentially,
per set combinatorics. In the setting of symvalic analysis, if the dependencies mechanism were to
keep full concrete state (i.e., what precisely are the contents of storage or variables in a simulated
execution), the analysis would suffer tremendously in scalability. In practice, even dependencies on
a handful of variables can render the analysis unscalable.

Symvalic analysis maintains a balance between precision and performance by computing depen-
dencies only on a small subset of program variables. As a consequence, the analysis can produce
warnings or values that are imprecise, i.e., do not correspond to actual executions.

These precision limits of dependencies in the analysis are as follows (with current defaults listed
in parentheses, for concreteness):

● A bounded number of arguments of the current function, such as to and amount in the example.
(Currently: up to 3 arguments are kept as local dependencies.)

● A bounded number of local variables that load values from shared memory (storage), such as
curBalance in the example. (Currently: the first variable loading from storage per function is
kept in local dependencies.)

● A bounded number of external arguments (i.e., arguments supplied at the original entry point of
the transaction, by an external caller). (Currently: the first 2 arguments of the transaction entry
point are kept in transaction dependencies. This case is not shown in the example. However, if
we were to change the code to make function deposit—which is a transaction entry point—call
a different, internal function, the values of deposit’s arguments, to and amount, would be kept
in the transaction dependencies when analyzing the internal function.)

● The transaction’s current caller (msg.sender in Solidity). (Currently: kept in transaction depen-
dencies.)

4 CORPUS ANALYSIS
The symvalic analysis technology has been a great boon to our efforts to have repeatable high
impact on smart contract security. However, the analysis by itself is just a way to get answers.
An essential element of the approach is to know to ask the right questions. For instance, a very
simple question may take the form “is the first argument of a swap call tainted, i.e., controllable by
an untrusted caller?” That is, at the very least the analysis will need to know which arguments
of external calls are sensitive and can lead to vulnerabilities. Other interesting questions concern
missing information (e.g., missing a network identifier or a nonce when cryptographically signing
messages), vulnerable code patterns (e.g., effects after a possibly-reentrant external call), and much
more.

Formulating the right questions, i.e., writing symvalic analysis clients, requires significant domain
expertise. Security experts, with deep knowledge of protocols and programming patterns in the DeFi
space need to be involved. This effort needs to be ongoing, with new libraries and protocols (raising
new requirements for integrating with them) being continuously introduced in the ecosystem.
Abstracting away for one step, the need for domain/security expertise is really a modularity

enhancement. We need domain expertise so that the analysis can break up its effort in convenient
single-contract chunks while having a summary of what other contracts expect in terms of their
interactions with the current contract-under-analysis.
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The second technique that we employ intends to address exactly this need. Corpus analysis is
a summarization of the behavior of contracts and a subsequent statistical analysis. This enables
extracting domain expertise without the help of human experts. For instance, it is not necessary
for an expert to indicate that the first argument of a swap call is sensitive: if analysis of hundreds of
past contracts shows that this argument is almost always untainted (i.e., only checked callers can
supply it), the corpus analysis will establish this property as a question for the symvalic analysis of
a contract, to report violations.

More specifically, corpus analysis is a summarization of contract behavior in two ways:
● For a contract itself, several key behavioral properties are summarized, so that the contract’s
callers can be checked in conjunction with these properties.
● For all the callers of a contract (more accurately, a specific API function), their “usual” behavior
is summarized so that other callers can be checked for deviation from the common patterns.
Corpus analysis works in synergy with the static analysis of a contract: it both consumes the

results of static analysis and produces results for the static analysis to consume.
Specifically, for each contract statically analyzed (via symvalic analysis), a wealth of behavioral

summaries get produced. Some of the most important ones are listed below:
● Which functions can reach a delegatecall instruction (which is a common way to yield full
control and, thus, a common vector for vulnerabilities).
● Which functions have which of their arguments control quantities with monetary significance
(e.g., flowing to a money transfer source/destination/amount).
● Which functions perform state initialization.
● Which functions return values that can bemanipulated by an external caller (i.e., values depending
on storage state that any caller can affect—e.g., by depositing funds).
● Which functions allow reentrancy, i.e., yield control to a party supplied as a parameter. This does
not indicate that the function itself suffers from a vulnerability: the function may not have state
changes after the yielding of control, or the function may be checking that it gets called only by a
trusted caller. However, callers of such a function may be vulnerable to reentrancy attacks.
● Which functions perform checked money transfer operations, i.e., examine the permissions of
their caller. This implies that any caller of such a function, when propagating argument values to
the function, should itself examine the permissions of its caller.
● Which functions perform guarded/unguarded (i.e., with checks as to the function’s caller) external
calls and to which other functions of external contracts.
● Which functions make external calls of monetary significance and whether (and which of) the
arguments of such calls are tainted/untainted.
The above summaries get statistically analyzed and re-imported for further inference. Note the

recursive nature of many of the above definitions. To produce results for tainted/untainted external
calls of monetary significance, the analysis needs to first receive information as to which external
calls have monetary significance. To produce functions that allow reentrancy, we need to know
whether the external functions they call allow reentrancy.

The most useful statistical summarization results of corpus analysis are some of the simplest:
e.g., whether a specific argument of an API is usually tainted/untainted; whether a given function
is usually called only by trusted/checked callers or by anyone.
Feeding back into the static analysis, the results of corpus analysis help formulate the right

analysis questions:
● Knowing that an external call allows reentrancy allows detecting transitive reentrancy attacks. It
is worth emphasizing again that the external function itself may not be vulnerable, even though
it yields control to a third party: the function may be checking its caller, or its code may have no

, Vol. 1, No. 1, Article . Publication date: May 2023.



10 Y.Smaragdakis, N.Grech, S.Lagouvardos, K.Triantafyllou, I.Tsatiris, Y.Bollanos, and T.Valentine

permanent effects after yielding control. However, any caller of this function may be violating
these properties, becoming transitively vulnerable.
● Knowing that a specific API parameter is typically (based on statistics of common usage patterns)
not allowed to be controlled by untrusted callers can yield a high-precision warning if the current
contract allows the same parameter to be tainted.
● Knowing that an external call is statistically only reached after authorization checks over the
caller can yield a high-precision warning if the current contract has no such checks.
Corpus analysis has, thus, helped us scale up vulnerability detection by extracting domain

expertise, instead of always relying on human experts. Key to the approach is the availability of
hundreds of thousands of smart contracts already deployed on public blockchains. Secondarily the
approach is enabled by the composable nature of DeFi protocols, which means that many different
codebases use the same external protocols, so that common usage patterns can be ascertained.

5 DISCUSSION AND INSIGHTS
Automated program analysis tools have an extremely rich history in Computer Science, with
entire research communities centered around program analysis. Security is often brought up as
a major motivation for program analysis research. And yet, in one of the most critical security
domains in existence, smart contract security, the impact of automated analysis tooling is repeatedly
estimated to be close to zero. There are numerous possible explanations for this phenomenon, such
as: the speed of development in smart contract engineering, which has not (up to now) allowed the
time for research solutions to catch up; the immense, disproportionate (relative to other software
engineering domains) investment on smart contract correctness that has attracted top human
expertise to smart contract auditing, leaving little room for automated solutions; the fundamental
limitations of fully automated solutions to software correctness, relative to, e.g., automation-assisted
program verification, under the guidance/specification of human experts. (Although, on the latter
point, a lot more can perhaps be said about the fundamental limitations of automation-assisted
program verification.)

We would like to add to the discussion our observations on the contrast of academic research in
program analysis (an area in which we have significant presence for over 15 years) and industrial
impact. The discord between the two can be well-captured by the distance in answers to two
questions.3

(1) What warning rate do you expect an impactful program analysis to have? I.e., out of 100
programs, how many do you expect to be flagged for vulnerabilities for an analysis to be
useful?

(2) What precision, in terms of false positive rate, do you expect an impactful program analysis
to have? I.e., out of 100 warnings, how many do you expect to indicate real vulnerabilities?

Researchers in program analysis typically give answers in the range of 10-30% for the first
question and below 30% for the second. Their expectation is that an impactful analysis will flag
many contracts and will do so with very high precision.

Our own experience over random (de-duplicated) deployed smart contracts in active use is that
realistic answers for the first question are in the 1% or below range and answers for the second
question are in the over-90% range. That is, the most useful analyses flag very few contracts—around
1% or fewer—and it is fine if these warnings are often false positives. Anything outside these
ranges is suspiciously off: it is probably a low-value analysis that is flagging too many contracts for
“vulnerabilities” that human experts consider innocuous.
3The first author has repeatedly asked these questions in seminar talks at top Universities and research institutions, always
with the same disparity between audience expectation and reality.
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The order-of-magnitude discrepancy between expectation and reality is not that surprising, if
one considers the setting. Program analysis experts are used to having their work evaluated over
injected vulnerabilities, systematic benchmark suites with bug examples, or at least less-scrutinized,
error-prone code. In the reality of deployed smart contracts, end-to-end vulnerabilities are extremely
rare. A 95% false-positive rate might not be enough for a top-tier publication, but in practice it
is almost too good to be true! It means that a vulnerability inspector will find a true, actionable
vulnerability for every 20 inspections.

Therefore, it is clear that we have two problems: one of wrong metrics and one of perverse
incentives (the latter being largely a consequence of the former).
At first glance, it seems reasonable to consider an analysis with a 0.5% warning rate to be

less-than-impactful. After all, “if 99.5% of programs are correct, what is the big deal about getting
that number to 100%? The relative improvement is tiny.” However, this exact rationale leads to
discounting the most practically impactful techniques. Conversely, techniques that focus on shallow
“vulnerabilities” score much higher than impactful techniques on both metrics.

We believe that program analysis metrics should adjust to the rarity of the phenomenon they
seek to capture. More is not better, nor is less. Instead, closeness to reality or absolute end-to-end
impact is the only truly better measure for estimating the value of a technique.

6 PRACTICAL IMPACT
Our analysis has been applied to all new contracts deployed on the Ethereum blockchain since the
beginning of 2021. The analysis has flagged numerous exploitable vulnerabilities—e.g., [Dedaub
2021a,b,c,d; Primitive Finance 2021]. We have made several vulnerability disclosures, some of which
resulted in major rescue efforts [Dedaub 2021a; Michales, Jonah 2021]. The total funds under threat
from these vulnerabilities well exceed a billion dollars. We have received ten independent bug
bounties totalling over $3M.
From a program analysis standpoint, many detected vulnerabilities have the same general

structure: they correspond to warnings of the form “an untrusted caller 𝐶 can reach argument X of
a sensitive operation and supply parameter 𝑌 that is tainted” or “an untrusted caller can reach a
sensitive operation (at all)”. That is, the vulnerability warnings typically query the main relations
produced by the analysis: X→ 𝑌 ∐︀∗; (︀sender→ 𝐶⌋︀̃︀, as well as ⋃︀𝑖 ⋃︀ ∐︀∗; (︀sender→ 𝐶⌋︀̃︀. The untrusted
caller 𝐶 corresponds to symbolic value «unprivileged-user», as seen in earlier examples, stored in
the transactional dependencies of the symvalic analysis. The tainted parameter value 𝑌 is typically
the symbolic value «user-unique-value», mentioned earlier, which designates that the value is
completely unconstrained. The exact nature of the sensitive operation with argument 𝑋 varies by
vulnerability. For instance:

● transferFrom [Dedaub 2021a]: the contract is authorized to manipulate the funds of some
accounts, and its code allows a direct transfer of funds from a tainted source to a tainted sink.
● swap [Dedaub 2021c]: an exchange of funds from one token to another, (taking place after a
loan and a liquidation of “shares”). The taintedness of the token being swapped and of the
amount swapped are essential to the attack.
● flashswap [Primitive Finance 2021]: code executed upon an external service’s granting of a
loan does not check that the loan parameters were as requested: the attacker can invoke the
callback with tainted loan parameters (e.g., tainted token).
● manipulated swap [Dedaub 2021d]: the contract periodically converts its profits, and anyone
can invoke this functionality. The attack is based on the reachability of this code by untrusted
callers, and not on taintedness. The attacker calls the functionality exchanging the funds
after having manipulated the online prices of the exchange service doing the conversion.

, Vol. 1, No. 1, Article . Publication date: May 2023.



12 Y.Smaragdakis, N.Grech, S.Lagouvardos, K.Triantafyllou, I.Tsatiris, Y.Bollanos, and T.Valentine

As can be discerned from the above descriptions, the attack point is buried deep in the code,
under several complex conditions. One can, therefore, see why the precision and completeness of
symvalic analysis is important for the detection of the vulnerability. As we write in a vulnerability
report [Dedaub 2021a]: “What made our symbolic-value flow analysis useful was not that it captured
this instance but that it avoided warning about others that were not vulnerable. The analysis gave
us just 27 warnings about such vulnerabilities out of the 40 thousand most-recently deployed
contracts!”

7 RELATEDWORK
Program Analysis for Ethereum Smart Contracts. The small size and high value of Ethereum smart

contracts has made them a suitable target for applying a variety of program analysis techniques,
resulting in a plethora of academic [Brent et al. 2020; Grech et al. 2018; Kolluri et al. 2019; Lagou-
vardos et al. 2020; Luu et al. 2016; Nguyen et al. 2020; Nikolić et al. 2018; Torres et al. 2019; Tsankov
et al. 2018] and industrial [Feist et al. 2019; Grieco et al. 2020; Honig 2020; Mossberg et al. 2019;
The Certora team 2017] tools emerging. While most smart contract tools focus on vulnerability
detection, past work has also focused on empirically identifying optimization opportunities [Chen
et al. 2020], gas cost estimation [Albert et al. 2020a] using recurrence-relation theories or even
superoptimization [Albert et al. 2020b] using SMT.
Tools [Hajdu and Jovanović 2020; Kolluri et al. 2019; Krupp and Rossow 2018; Luu et al. 2016;

Mossberg et al. 2019; Nikolić et al. 2018] applying symbolic execution techniques have been very
popular due to the precision of their reported warnings. (And also, a cynic might remark, their ease
of implementation on a platform where the source language changes constantly and the low-level
IR is extremely hard to analyze.)

Additionally, approaches [Albert et al. 2018; Brent et al. 2020, 2018; Feist et al. 2019; Grech et al.
2018; Lagouvardos et al. 2020; Tsankov et al. 2018] based on static analysis have seen success due
to their high completeness and scalability. Even though conventional static analysis tools [Brent
et al. 2020] have achieved high precision by tuning the analysis to common programming patterns
found in Ethereum smart contracts, symvalic analysis offers a more precise analysis while being
agnostic to these specific program patterns.

Fuzzing-based tools [He et al. 2019; Jiang et al. 2018; Nguyen et al. 2020; Wüstholz and Christakis
2020a,b] have also been successful in precisely reporting smart contract vulnerabilities. Notably,
the recently presented Harvey fuzzer [Wüstholz and Christakis 2020b] combines static analysis
with fuzzing by using static analysis to guide a greybox fuzzer.

General Program Analysis and Verification. Relational analysis techniques have been successfully
applied in recent years, to tackle the problem of JavaScript static analysis, where precision is
critical to getting a useful analysis. Value partitioning [Nielsen and Møller 2020], is an efficient trace
partitioning [Rival and Mauborgne 2007] variant, where the analysis does not attempt to refine
abstract states, but instead, abstract values. This apporach manages to circumvent the expensive
abstract state partitioning [Ko et al. 2017] or additional backwards analysis [Stein et al. 2019] that
previous apporaches required, while maintaining precision.
Symbolic execution has seen numerous variations that offer a different balance of scalability,

completeness, and precision. Compositional symbolic execution [Anand et al. 2008; Godefroid 2007]
has attempted to address scalability issues by use of summaries. Steering techniques [Li et al. 2013;
Park et al. 2012] attempt to achieve higher coverage or depth, e.g., by prioritizing paths that are yet
unexplored. Symvalic analysis has similar goals, but its coverage is only a small part of the story:
as a static analysis, it explores many values at once and coverage is only incidental. At the same
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time, it may suffer from higher imprecision than symbolic execution techniques, since precision is
limited by its current dependencies scheme.
Accordingly, symvalic analysis can be viewed as an attempt to address the state explosion

problem. The model checking literature contains several approaches with similar goals, ranging
from compositional assume-guarantee reasoning [Abadi and Lamport 1993] to symmetry reduc-
tion [Emerson and Sistla 1996; Norris Ip and Dill 1993], to partial order reduction [Flanagan and
Godefroid 2005]. Symvalic analysis uses a very different scheme, due to both symbolic reasoning
and its controlled sacrifice of precision. Conceptually, the combination of abstract interpretation
and model checking (e.g., [Clarke et al. 1994]) has a similar flavor, but the actual mechanisms differ
substantially.

Whitebox [Chipounov et al. 2011; Godefroid et al. 2008, 2012] and (later) greybox [Böhme et al.
2016; Various 2017; Wüstholz and Christakis 2020a,b] fuzzing are approaches that use insights
similar to those of symvalic analysis, in an effort to achieve coverage of a program under test,
especially when the program makes use of very low level library code that is externally modelled.
These approaches work by “fuzzing” an input, following the control flow of a program for concrete
values, yet also potentially using constraint solvers to modify the input to follow alternative control
flow. In the space of smart contracts, where the program is fully modeled, and bugs manifest
themselves in several transactions, symvalic analysis can scale better and cover more program
behaviors, since it is fundamentally a static analysis, overapproximating dynamic conditions and
collapsing many paths.
Symvalic analysis is rather unconventional among analysis techniques, mainly in the ways

described earlier: it uses symbolic expressions inside a full static analysis (not dynamic-symbolic
execution), without delegating the solution of large expressions to an external constraint solver.
There have been other combinations of symbolic expressions and static analyses, especially for
custom analysis clients—e.g., Dudina and Belevantsev [2017] employ a symbolic static analysis for
buffer overflow detection. In contrast, symvalic analysis is client-agnostic: symbolic expressions
are used as regular values for any variable in the program text, without targeting specific kinds of
expressions or specific program features. Furthermore, the mechanism of dependencies (Section 3.2)
is key in the symvalic design, for purposes of precision.
There are certainly many more points in the static analysis design space and some can be

compared for reference. SPLlift [Bodden et al. 2013] shows a modular analysis for software product
lines. This is almost at the opposite end of the spectrum from symvalic analysis: a very scalable
analysis, but much less precise. The SPLlift analysis is explicitly based on the IFDS framework,
which means that it summarizes at the procedure boundary, thus losing precision to gain scalability.
It is interesting to consider whether symvalic analysis could apply to large-scale software product
lines. This direction would certainly require significant work for a fruitful approach. For instance,
symvalic analysis would likely apply to each Java file separately with the dependencies between
different files modeled rather loosely (e.g., perhaps a single predicate to capture the configuration
of the product line). Padhye and Khedker [2013] describe an analysis that achieves significant
precision (flow- and context sensitivity) in a fairly general analysis setting. This may be a promising
candidate for future combinations with symvalic analysis ideas, especially the use of dependencies
as a data-flow-value context.

8 CONCLUSIONS
We have argued that automated program analysis techniques can have a significant impact on the
security of smart contracts. This does not mean that program analysis can counter most smart
contract threats, nor that positive results come easy. To have actual impact on security, we have
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needed to invent new program analysis techniques and combine them with significant domain
expertise and state/environment information.
Apart from the technical elements (symvalic analysis and corpus analysis) of our approach,

perhaps the most useful aspect is the understanding of the changing nature of analysis precision
and report rates in a high-impact setting. Conventional research in program analysis seems tuned
to catching “cheap” bugs: numerous and low-impact. Such an approach also makes for good metrics:
a high warning rate and high precision (i.e., true-positive rate) are possible for cheap bugs, but
entirely unrealistic over rare high-value vulnerabilities. Yet coming up with ways to quantify the
success of “needle in a haystack” searches will be an important element of achieving real impact on
blockchain (and not only) security.
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