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We present a static analysis approach that combines concrete values and symbolic expressions. This symbolic

value-flow (“symvalic”) analysis models program behavior with high precision, e.g., full path sensitivity.

To achieve deep modeling of program semantics, the analysis relies on a symbiotic relationship between a

traditional static analysis fixpoint computation and a symbolic solver: the solver does not merely receive a

complex “path condition” to solve, but is instead invoked repeatedly (often tens or hundreds of thousands of

times), in close cooperation with the flow computation of the analysis.

The result of the symvalic analysis architecture is a static modeling of program behavior that is much more

complete than symbolic execution, much more precise than conventional static analysis, and domain-agnostic:

no special-purpose definition of anti-patterns is necessary in order to compute violations of safety conditions

with high precision.

We apply the analysis to the domain of Ethereum smart contracts. This domain represents a fundamental

challenge for program analysis approaches: despite numerous publications, research work has not been

effective at uncovering vulnerabilities of high real-world value.

In systematic comparison of symvalic analysis with past tools, we find significantly increased completeness

(shown as 83-96% statement coverage and more true error reports) combined with much higher precision,

as measured by rate of true positive reports. In terms of real-world impact, since the beginning of 2021, the

analysis has resulted in the discovery and disclosure of several critical vulnerabilities, over funds in the many

millions of dollars. Six separate bug bounties totaling over $350K have been awarded for these disclosures.

CCS Concepts: •Theory of computation→Programanalysis; • Software and its engineering→General
programming languages; • Security and privacy→ Software and application security.

Additional Key Words and Phrases: Program Analysis, Smart Contracts, Security, Ethereum, Blockchain

ACM Reference Format:

Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris. 2021.

Symbolic Value-Flow Static Analysis: Deep, Precise, Complete Modeling of Ethereum Smart Contracts. Proc.
ACM Program. Lang. 5, OOPSLA, Article 163 (October 2021), 30 pages. https://doi.org/10.1145/3485540

Authors’ addresses: Yannis Smaragdakis, University of Athens, Greece, smaragd@di.uoa.gr; Neville Grech, University of

Malta, Malta, me@nevillegrech.com; Sifis Lagouvardos, University of Athens, Greece, sifis.lag@di.uoa.gr; Konstantinos

Triantafyllou, University of Athens, Greece, kotriant@di.uoa.gr; Ilias Tsatiris, University of Athens, Greece, i.tsatiris@di.

uoa.gr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART163

https://doi.org/10.1145/3485540

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.

https://doi.org/10.1145/3485540
https://doi.org/10.1145/3485540


163:2 Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris

1 INTRODUCTION

Static analysis is distinguished among program analysis techniques (e.g., testing [Czech et al.

2016; Meyer 2008], model checking [Clarke et al. 1986; Jhala and Majumdar 2009], or symbolic
execution [Baldoni et al. 2018; King 1976]) by its emphasis on completeness, i.e., its attempt to model

all (or as many as possible) program behaviors. To achieve this goal under a realistic time budget,

static analysis often has to sacrifice some precision: the analysis may consider combinations of

values that may never appear in a real execution. Maintaining high precision, while achieving

completeness and scalability, remains a formidable challenge.

In this work, we present an analysis that attempts to meet this challenge, under realistic domain

assumptions. The analysis maintains high precision (closely analogous to that of model checking or

full program execution) while achieving very high completeness, as measured in terms of coverage

of program behaviors. For conciseness purposes, we give to the analysis architecture the name

symvalic analysis, for “symbolic+value-flow static analysis”.
A symvalic analysis computes for each program variable a set of possible concrete values as well

as symbolic expressions. The analysis is path-sensitive: values propagate to a variable at a program

point only if they satisfy (modulo natural analysis over-approximation) the conditions under which

the program point would be reachable. In order to satisfy conditions, the analysis needs to solve

equalities and inequalities over both concrete and symbolic values. To do this, the analysis appeals

to a symbolic solver and simplifier tightly integrated with the analysis core. At the same time, most

of the analysis coverage of the program is done inexpensively, based on concrete values—e.g., the

analysis tries selected small integers, large integers, and constants from the program text as values

of variables at every external entry point.

The above description is perhaps reminiscent of dynamic-symbolic (a.k.a. concolic) execu-
tion [Cadar et al. 2008; Godefroid 2007; Godefroid et al. 2005; Sen and Agha 2006; Sen et al.

2005; Tillmann and de Halleux 2008; Tillmann and Schulte 2006]. Some of the insights are indeed

similar. The use of concrete values whenever possible (and, conversely, the appeal to symbolic

solving selectively) is responsible for the symvalic analysis scalability, much as it has been for

dynamic-symbolic execution. However, symvalic analysis also has significant differences from

dynamic-symbolic execution. Most notably, it is a static analysis and not full program execution.

To model a program statement, symvalic analysis does not need to create a full context of values

for every other program variable and (heap) storage location. Indeed, symvalic analysis treats

concrete values highly efficiently, manipulating them using set-at-a-time reasoning, instead of

individually. This is the value-flow aspect of symvalic analysis: sets of values are propagated using

mass operations (table joins) using a standard fixpoint (Datalog) analysis engine.

We apply the idea of symvalic analysis to Ethereum smart contracts [Wood 2014]: a domain

where high-precision, high-completeness analyses are in demand. Smart contracts are programs

that handle monetary assets whose value occasionally rises to the many millions of dollars. Tens of

security researchers pore over the code of these contracts daily. Discovering an important bug is a

source of both fame and reward.

Conventional analysis techniques are rarely effective for high-value contracts: Perez and Livshits

[2021] recently find that only 0.27% of the funds reported vulnerable by some of the most prominent

research tools have truly been subsequently exploited. Simply put, program analysis can help with

vulnerabilities in contracts that have not received much scrutiny, but rarely helps with high-value

vulnerabilities that have not been found through other means.

Partly addressing this need, symvalic analysis has already enjoyed significant success in the

analysis of smart contracts, with several high-value vulnerabilities discovered.

In brief, our work claims the following contributions:
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1 address admin; // set up at construction , not in contract code
2

3 function withdrawToken(IERC20 token , uint256 amount , address sendTo) external {
4 onlyAdmin ();
5 uint256 adjusted = amount * 103 / 100;
6 if (amount >= 10000 && amount < 100000)
7 token.transfer(sendTo , adjusted); ...
8 }
9

10 function onlyAdmin () internal view {
11 require(msg.sender == admin , "only admin");
12 }

Fig. 1. Illustration of symvalic reasoning.

● We introduce symvalic analysis: an unconventional static analysis design that combines com-

pleteness and precision.

– Symvalic analysis employs a value-flow fixpoint computation in close cooperation with symbolic
reasoning. This aspect is qualitatively different from past approaches that generate symbolic

expressions and dispatch a solver to reason about them—e.g., in our setting the solver is as-if

invoked hundreds of thousands or even millions of times in the course of an analysis.

– Symvalic analysis recovers precision by employing dependencies between inferred values: a

value is inferred conditionally upon a set of other value assignments. Several elements of this

mechanism, such as the use of the values of storage reads as dependency elements, have no

counterpart in the literature.

● The analysis is applied to the high-value domain of Ethereum smart contracts and exhibits

significant benefits.

– Extensive experiments against leading industrial tools show precision, scalability, and com-

pleteness advantages: 30% more true vulnerability reports, much greater precision, and 85%

statement coverage on high-value contracts (vs. 49% for the closest competitor).

– In actual deployment, symvalic analysis has been responsible for detecting several high-value

vulnerabilities, for monetary amounts in the many millions to tens of millions of dollars. Funds

directly rescued (i.e., via white-hat hacking) due to symvalic analysis reports reach $6M. We

have received 6 separate bug bounties for these disclosures, for a total value of $350K.

Brief Illustration. For a preliminary illustration of symvalic analysis, consider the fragment of a

smart contract shown in Figure 1. (The code is written in the Solidity language. Solidity is dominant,

accounting for more than 99% of deployed Ethereum smart contracts.)

A static analysis may attempt to reason about the feasibility of calling token.transfer with a

specific recipient (sendTo) and transfer amount (adjusted). There are two guards that dominate the

execution of the transfer statement, split in separate functions.

First, the external caller of the withdrawToken function (i.e., an end-user or separate contract

identified by msg.sender) should be the same as the value of storage variable admin. (Otherwise the

require statement in line 11 of onlyAdmin, called on line 4, fails and the transaction reverts.) This

alone precludes untrusted callers. Symvalic analysis captures this behavior by maintaining two

symbolic values, «unprivileged-user» and its contrasting «owner». These are possible initial values

for the special variable msg.sender. The «owner» value is also a possible initial value of storage

locations: a contract’s owner has set up the contract’s initial contents. Therefore, at the return point
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of the call onlyAdmin() (line 4, via line 12), symvalic analysis has maintained a single possibility

for msg.sender: the value «owner». Value «unprivileged-user» is eliminated from consideration

at that program point, since it cannot satisfy the condition msg.sender == admin. This showcases

the path-sensitive nature of the analysis. Notice also that the condition is in a separate function:

symvalic analysis is fully inter-procedural (and stronly context-sensitive, via the mechanism of

dependencies—see below).
For the condition “amount >= 10000 && amount < 100000” in line 6, symvalic analysis will initially

assign amount a set of possible values, consisting of “interesting” integers and symbols. This is

because amount is an external argument. For instance, amount may be considered to hold values 42,

0, and «user-unique-value». The latter, symbolic, value plays the role of a free variable in symbolic

evaluation. At the condition on amount on line 6, the two concrete values will be eliminated: the

unified symbolic solver and simplifier will determine, e.g., that 42 >= 10000 is false. The same

solver will be asked about the symbolic value: is it true that «user-unique-value» >= 10000 &&

«user-unique-value» < 100000? Since this value plays the role of a free variable, the solver will

suggest a solution to the condition: 10000. This solution will become a fourth possibility for amount.

At the token.transfer call in line 7, the only possible (concrete) value for amount is 10000.

Symvalic analysis will not perform full, detailed execution. Reasoning over the values of variables

is done on a per-set basis. For instance, variable adjusted will be inferred to contain 4 different

values after line 5: 0, 43, 10300 and ‘«user-unique-value» * 103 / 100’. Treating values by means of

independent sets may be performant, but ignores actual execution conditions. Observe that variable

adjusted is not changed after its initial assignment in line 5, nor filtered (i.e., used in conditions)

elsewhere in the computation. Does that mean that the amount transferred can be any of (the

concrete among) the above values—0, 43, 10300? The answer is no. Although symvalic analysis

does set-at-a-time processing of values, it tries to achieve precision by maintaining dependencies
over crucial variables. Variable amount is one such: it is an external input variable, hence other

variables that depend on it maintain this dependency. Therefore, the analysis actually computes

that the value 10300 for adjusted is the only one compatible with the value 10000 for amount, which

is necessary for reaching that program point. More precisely, adjusted holds 10300 dependent upon
amount holding 10000 and 10300 is the only inferred (concrete) transfer value.

Associating values with dependencies is a natural extension of context sensitivity in static analysis.
With appropriate choices of program entities to serve as root dependencies, a symvalic analysis can

maintain high precision while offering completeness and scalability.

2 BACKGROUND ANDMOTIVATION

Before introducing symvalic analysis in full, it is useful to motivate it and illustrate its positioning in

the crowded space of analysis techniques. Specifically, we ask “why are other analysis approaches

(such as dynamic-symbolic execution or regular value-flow static analysis) typically not sufficient?”

Comparison to Dynamic-Symbolic Execution. Symbolic execution [King 1976] is a solver-aided

program analysis that has enjoyed practical success in recent years, in the form of dynamic-

symbolic or (concolic, for concrete-symbolic) execution [Cadar et al. 2008; Godefroid et al. 2005;

Sen et al. 2005; Tillmann and de Halleux 2008]. The approach has similarities to symvalic analysis,

however it is important to not lose sight of the foundational differences. Symvalic analysis is not
program execution, but instead a static analysis approach. This means that the analysis is not

obliged to fully respect program semantics. Instead, the analysis can readily over-approximate any

aspect of program execution the analysis designer sees fit. For instance:

● The analysis can overapproximate control flow: it can consider some conditions to be both

satisfiable and negatable without needing to produce specific values for them. (This is likely
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treatment for conditions that are dependent on complex external parameters—e.g., in the

Ethereum smart contracts setting, on the amount or price of gas left1 or the exact monetary

balance of the current account.) Modeling such technical specifics down to concrete numbers

is a bad fit for a static analysis, which tries to capture all possible behaviors.

● The analysis can overapproximate data flow: it can decide, e.g., during analyzing a loop, that

a certain variable has a top value, and, thus, can refer to any element of an array. The analysis

does not need to faithfully emulate the full iteration of the loop up to the point of reaching a

certain array element—it just needs to estimate that it does so eventually. (The estimate can

also be false, which may be reflected as a loss of precision in the analysis results.)

● The analysis can produce abstract models of the heap (or other shared storage). For instance,

the analysis can use symbolic expressions as heap addresses, or can use abstraction (e.g.,

consider all addresses that are functions of the external contract caller to be a single abstract

address).

As a result, symvalic analysis can cover substantially more behaviors than symbolic execution (at

a theoretical precision cost, whose magnitude needs to be evaluated experimentally). This addresses

the significant completeness problems that (dynamic-)symbolic execution exhibits in practice, even

when it attempts to find a single execution to cover specific program branches. For instance, the

Manticore symbolic execution framework [Mossberg et al. 2019] (one of the foremost for Ethereum

smart contracts) “achieves on average 66% code coverage” [Trail of Bits 2020a]. This prompted

the Trail of Bits security firm’s company account to tweet “Why can’t a symbolic executor achieve
100% coverage in a teensy little smart contract?”[Trail of Bits 2020b], capturing the frustration of

consumers of analysis results.

For a taste of how simple code can baffle a symbolic execution engine, consider the following

(slightly simplified) real-code excerpt from an Ethereum smart contract:

function safeBatchTransferFrom(address from , address to, uint256 [] calldata ids ,
uint256 [] calldata values) external {

require(to != address (0x0));
require(ids.length == values.length);
require(from == msg.sender || operatorApproval[from][msg.sender ]);
for (uint256 i = 0; i < ids.length; ++i) {

uint256 id = ids[i];
uint256 value = values[i];
balances[id][from] = balances[id][from].sub(value);
balances[id][to] = value.add(balances[id][to]);

}
}

To exercise the code, the symbolic execution engine needs to invent arrays of values for ids and

values, as well as consistent contents for two storage (i.e., analogous to heap, but on the blockchain)

structures. These structures, balances and operatorApproval are maps of maps and their contents

are not free variables: they can only be set in whatever ways other code permits. Additionally, these

contents have to include the current caller of the contract (msg.sender), which is also not a free

variable for symbolic solving purposes: an attacker cannot spoof its address to match another. If

any aspect of these constraints ends up too complex to satisfy (e.g., the solver cannot invent arrays

ids and values of the same length, or cannot invent contents of ids that also appear in the first

level of balances) symbolic execution will fail to reach all statements of the above code.

1
Gas is a quantity used to assign a real-world cost to Ethereum computation, to avoid abuse of the network. It has

instruction-based accounting, therefore it is programmatically visible to the smart contract execution.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.



163:6 Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris

A static analysis, such as symvalic analysis, can manage to cover the above code a lot more

easily, by employing abstraction and over-approximation. For instance, the analysis design may

be collapsing into a single abstract value the entire first level of mappings, as long as the key is

set from externally supplied values. This means treating expressions such as balances[id][from]

effectively as the much simpler balances[«any»][from]. Some of the fidelity of a full execution

is lost, however the analysis designer accepts this abstraction by explicitly employing it when

they think it will not affect precision—in this case, under the condition that the first-level key is

externally tainted.

Despite the theoretical precision loss, as later experiments demonstrate, symvalic analysis offers

greatly increased coverage combined with high precision.

Comparison to Value-Flow Static Analysis. Static analysis can model a lot more program behaviors

than a full-detail program execution, but is still faced with formidable scalability and precision

challenges. A path-sensitive whole-program analysis, such as the symvalic analysis proposed, has

extremely heavy demands, in terms of symbolic solving to satisfy program conditions. Conventional

static analysis (tracking the flow of sets of values via a fixpoint computation) typically fares very

well in terms of scalability, and often achieves significant precision. Several such analyses have

been proposed in the past for the Ethereum space [Grech et al. 2018; Tsankov et al. 2018].

Some of these analysis are even argued to be highly-precise, despite having a shallow understand-

ing of the code—e.g., not modeling symbolic conditions for reaching a certain program statement.

The reason for this precision, however, is the careful (but ad hoc) analysis design that directly

attempts to recognize both known unsafe patterns and countermeasures for these patterns. Exam-

ples of this approach are the recent MadMax [Grech et al. 2018] and Ethainter tools [Brent et al.

2020]—we illustrate with the latter.

Ethainter claims an extremely high precision (i.e., true positive rate) of 82.5%. To achieve this

rate, the analysis seeks a code pattern that is commonly employed in a wrong way. Consider the

simple contract below:

contract Victim {
mapping(address => bool) authorized;
function init() public {

authorized[msg.sender] = true;
}
function sensitive(address recipient) public {

require(authorized[msg.sender ]);
selfdestruct(recipient);

}
}

Function sensitive self-destroys the contract, sending all its assets to a recipient address. This

operation needs to be guarded, in the Ethainter vocabulary. A guard is a condition that checks some

property of msg.sender—the caller of the transaction. Additionally, if the guard looks up a data

structure element with msg.sender as key, the data structure should not be tainted by a different

operation. Violating either of these conditions yields a warning. In our example, a warning is

emitted because there is a guard but it accesses a data structure (authorized[msg.sender]) that can

be externally tainted (through init).

Both of these conditions can be detected with high precision, yielding high rates of true positives

when contracts are coded in a specific style. However, the conditions are rather rigid and ad hoc. For
instance, Ethainter cannot recognize guarding via a require clause in a separate function, as in our

earlier example of Figure 1: the analysis will issue a false-positive warning in this case.
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In contrast, symvalic analysis knows nothing about msg.sender guards or data structures that

are tainted. Phrasing the same question in symvalic analysis is a mere 2-line query, with no domain

modeling, yet much greater generality. Effectively, we ask symvalic analysis “can the selfdestruct

statement ever be invoked by transactions whose originator is «unprivileged-user» and with an

argument that is a (user-settable) free variable?”

Thus, the advantage of the symvalic approach is that it is not tied to specific unsafe or counter-
measure code patterns. The contract can be protecting (or failing to effectively protect) sensitive

operations in any arbitrary way. Symvalic analysis will recognize both safe and unsafe uses, since

it closely models the conditions that govern a statement’s execution. As a result, symvalic analysis

can be both more precise and more complete than custom-designed analyses.

3 SYMBOLIC+VALUE-FLOW STATIC ANALYSIS

We next present an informal overview of symbolic+value-flow analysis, highlighting its design

principles. Section 4 will later show a precise model of the analysis.

3.1 Overview

Symbolic+Value-Flow static analysis (“symvalic” analysis, for short) is much like a common inter-

procedural data-flow analysis: a “value-flow” analysis, such as a points-to or a taint analysis. Being

a value-flow analysis implies that every variable is statically assigned a finite set of values and a

fixpoint computation grows the finite sets according to monotonic equations.

In symvalic analysis, the values can be both concrete (e.g., numbers) and entire symbolic expres-

sions. For instance, consider again the earlier example function sensitive:

function sensitive(address recipient) public {
require(authorized[msg.sender ]);
selfdestruct(recipient);

}

The analysis will consider a set of concrete and symbolic values for all external input variables.

For instance, for numeric variables, the analysis considers small constants (0,1, and up to 3 constants

under 256), large constants (to cause overflow), and a pseudo-random choice of constants from the

program text.

For external inputs of “contract address” type, such as the msg.sender implicit argument, the

analysis will consider values that include:

● constants in the contract text that resemble addresses (i.e., 160-bit integers)

● the symbolic values «owner» and «unprivileged-user».

Similarly, the values initially considered for the recipient argument include:

● constants in the contract text that resemble addresses

● the symbolic values «owner-unique-value» and «user-unique-value».

The difference between the symbolic values is that the former («owner» and «unprivileged-user»)

will be considered bound-variables for symbolic reasoning purposes: although we treat them

symbolically, the caller cannot set them freely. In contrast, the latter («owner-unique-value» and

«user-unique-value») are free variables and symbolic reasoning can propose concrete values for

them, in order to solve constraints. Section 3.2 will describe in more detail how these values

are dependent: the analysis will model separately the case of the current caller of the contract

being «owner» and that of it being «unprivileged-user», and similarly for the values they supply to

arguments.

Symbolic values propagate and are used to form more complex expressions, whereas

concrete values get constant-folded. For instance, in the example, the program expression
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Fig. 2. Symvalic Analysis Architecture: API (slightly simplified) between symbolic reasoning and value
propagation shown.

authorized[msg.sender] is a lookup in a mapping structure on Ethereum storage (i.e., analogous to

the heap in a conventional language). Due to the way Ethereum storage is organized, the expression

is loading from the symbolic address SHA3(«owner» ++ 0x0)—SHA3 is the Keccak-256 hash function,

++ a byte array concatenation operator, and 0x0 (i.e., zero) the constant offset that identifies the

authorized mapping among other attributes in storage. This symbolic expression is propagated by

the analysis as a value for the corresponding local variable (unnamed in the source language but

present in the intermediate representation).

The analysis proceeds via a close interaction of a value-flow fixpoint loop and a symbolic reasoner.

Figure 2 shows the overall architecture, including the symbolic reasoning component and the value-

flow component, as well as the interface between them and the two sub-components of symbolic

reasoning: a bottom-up and a top-down component. The full interface and bottom-up/top-down

distinction are elements of importance mostly for practical concerns, especially efficiency. Therefore

we postpone the full discussion of such specifics to Section 5, preferring to concentrate on the

high-level elements for now.

If viewed as an idealized reasoner over infinite expressions (i.e., without worrying about compu-

tational efficiency) the main products of the symbolic reasoner are:

● a predicate normalize(expr, normExpr) that returns for each expression its minimal equivalent

form. This applies to both arithmetic and logical expressions;

● a predicate implies(exprStrong, exprWeak) that checks whether one logical expression implies

another;

● a predicate valueForVar(var, expr) that proposes values (i.e., symbolic expressions) for free

variable var, so that logical conditions get satisfied. The solver proposes such solutions in bulk,

for any interesting logical expressions (the main case being equalities, which are usually much

harder to satisfy than inequalities) and the analysis filters the solutions it chooses to truly

try—e.g., if they satisfy an equality that was previously not satisfied.

Inevitably, all three predicates are incomplete, i.e., will not capture all (infinite) true relationships.

The analysis appeals to these predicates throughout normal value propagation. Symbolic values

are continuously normalized (i.e., simplified up to minimal form) and are also used to satisfy control-

flow constraints, i.e., predicates in conditional statements. This makes the analysis path-sensitive:

the information pertaining to a program statement is derived to be compatible with the conditions
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necessary for reaching the statement. Mechanism-wise, this is a part of the dependencies machinery,

described in Section 3.2.

The close interaction of value-flow and symbolic reasoning is a rather unconventional aspect of

symvalic analysis. This is in contrast to explicit invocation of solvers in a static analysis [Krupp

and Rossow 2018; Nikolić et al. 2018; Schneidewind et al. 2020]. It is common for a static analysis to

collect a large condition and dispatch an external solver (e.g., Z3 [De Moura and Bjørner 2008]) to

satisfy the condition. Symvalic analysis, however, invokes the symbolic solver a lot more regularly,

to continuously simplify and solve conditions. Such appeals to the symbolic solver are essential, in

the heart of the analysis, as the model of Section 4 will illustrate.

3.2 Precision and Dependencies

Symvalic analysis is a static analysis, aiming for completeness, i.e., covering many program behav-

iors. However the analysis is neither sound nor complete: it can both model unrealizable behaviors

and miss actual behaviors. The analysis intends to strike a good balance between completeness and
precision: to cover a lot more behaviors than symbolic execution, while still predicting behaviors

that are realizable to a large degree.

To achieve precision, while keeping a set-based treatment, symvalic analysis associates variable-

value tuples (as well as statements in the code) with dependencies. Every analysis inference of the

form “variable v may have value (i.e., concrete or symbolic expression) 𝑒” (as well as of the form

“this statement is reachable”) is associated with sets of mappings of variables to values that have led
the analysis to make the inference.

We distinguish two kinds of dependencies: local (reset per-function) and transaction (i.e., current-

execution) dependencies. We write v → 𝑒 ∐︀𝑑𝐿 ;𝑑𝑇 ̃︀ to designate that variable v may hold value 𝑒

under local dependencies𝑑𝐿 and transaction dependencies𝑑𝑇 . (When there is no need to distinguish

local and transaction dependencies, we write v → 𝑒 ∐︀𝐷̃︀.) To illustrate dependencies, consider a

simple contract fragment:

contract Safe {
address owner; // set at construction
mapping (address => uint) public balanceOf;
function deposit(address to,uint amount) public {

require(msg.sender == owner);
uint curBalance = balanceOf[to];
uint nextBalance = curBalance + amount *90/100;
balanceOf[to] = nextBalance;

}
}

Let us focus on the value of variable nextBalance during an invocation deposit(0x42, 200).2

For nextBalance to even have a value, its assignment statement needs to be reachable. Therefore

the “require(msg.sender == owner)” statement needs to be satisfied. This forces the mapping

(︀sender → «owner»⌋︀ to appear in the transaction dependencies. (The symbolic variable sender

stands for the Solidity msg.sender expression and «owner» is a symbolic value generated to represent

the contract that originally called the current contract’s constructor and, thus, set storage fields to

initial values.)

Additionally, values of local variables will be parts of the dependencies. Assume that at some

point the analysis has inferred that storage mapping balanceOf[0x42] has two possible values: 1

and 80, and then considers the call deposit(0x42, 200).

2
Contract addresses are 160-bit integers and generated randomly. We show a very unlikely short address (0x42) for the
sake of conciseness.
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The inferences for variable nextBalance will then be:

nextBalance→ 181 ∐︀ {[to → 0x42], [amount → 200], [curBalance → 1] } ; {[sender → «owner»] } ̃︀}
and

nextBalance→ 260 ∐︀ {[to → 0x42], [amount → 200], [curBalance → 80] }; {[sender → «owner»] } ̃︀}.
The first of the two inferences can be read as “nextBalance is expected to hold the value 181 in

executions where to holds value 0x42, amount holds value 200, the most recent storage load into

variable curBalance returned value 1, and the transaction initiator (i.e., external caller) is «owner»”.

The first three mappings make up the local dependencies for the inference, whereas the last is the

transaction dependency.

Dependencies are combined, with an operator denoted ⊕. Combination of dependencies happens

for every control-flow or data-flow join point: when two branches merge, or when two values

are used as operands in the same operation. (Section 4 will make this fully precise—our current

description is just for exposition.) Combining two sets of dependencies is a check for compatibility,

to prevent mixing information from guaranteed-separate executions. Combining dependencies

succeeds if there are no conflicting mappings for the same variable. For instance, the two inferences

above cannot be combined: they conflict on the mapping for variable curBalance. If dependencies

do not conflict (thus, combining them succeeds), combination is a mere pairwise union of the

mappings sets.

3.3 Soundness and Completeness

Using the Safe contract example, we can illustrate why symvalic analysis chooses to be neither

sound nor complete, i.e., why it accepts some incompleteness in order to be more precise, and

why it accepts less-than-full precision (e.g., false positives) in order to be more complete or more

scalable.
3

Incompleteness. The last statement of function deposit stores nextBalance back into the persistent

storage mapping balanceOf[0x42]. Therefore, new inferences are possible for variable nextBalance,

which again cause new values to flow into balanceOf[0x42], ad infinitum. Static analysis typically

resolves this potentially infinite computation by overapproximation (e.g., a finite-height lattice that

joins values into abstract values, at the expense of some loss of precision). In contrast, symbolic

execution resolves non-termination (arising in the case of looping) by arbitrarily truncating execu-

tion traces (e.g., unrolling loops only a small number of times, or executing a fixed number of total

instructions).

Symvalic analysis is agnostic regarding the handling of cyclic flow: both overapproximation and

finite truncation are acceptable, per case. For instance, the current symvalic setting (described in

Section 5) uses overapproximation for values from some sources (e.g., environment variables, such

as gas remaining, current block number, miner of block). In most cases, however, the analysis favors

concrete numeric values (such as those in balanceOf[0x42]), which yield other concrete values, up

to a finite number of arithmetic operations. This treatment is one that explicitly favors precision

over completeness: the analysis is not guaranteed to model all values arising in real executions.

3
Terminology note: “soundness” and “completeness” are duals. For an analysis that issues warnings, the absence of false

positives can be termed “soundness”, if the analysis is viewed as a bug finder, or “completeness”, if the analysis is viewed as

a correctness verifier. Conversely, the absence of false negatives (i.e., “no warning” implies “no problem exists”) can be

termed “completeness”, if the analysis is viewed as a bug finder, and “soundness”, if the analysis is viewed as a correctness

verifier. Since our analysis is neither sound nor complete, throughout the paper we prefer to use the terms “complete” and

“precise”, because they are closer to intuitive meaning: “complete” means covering more behaviors (e.g., greater statement

coverage, better statistics in revealing known bugs), whereas “precise” refers to modeled behaviors being realizable. This

terminology is also easier to treat in quantifiable, non-binary terms. For instance, readers might be surprised to read an

analysis being described as “more sound”, but not when it is being described as “more precise” or “more complete”.
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The advantage, however, is that the values that the analysis considers are likely to be realizable, i.e.,

precision is enhanced.

Precision. Dependencies can lend arbitrary precision to an analysis. Even fully concrete execution

can, for instance, be simulated by maintaining in dependencies all dynamic variables of an execution.

Conceptually, dependencies can be viewed as a generalization of context-sensitivity [Sharir and

Pnueli 1981] in static analysis, or an instance of relational analysis (e.g., [Nielson et al. 1999,

Sec.4.4.1], [Møller and Schwartzbach 2018, Sec.7]). Such mechanisms group together dynamic

executions for uniform static treatment. Precision arises because executions mapped to different

groups are never confused. The challenge, however, is to maintain sufficient precision without

suffering from extreme lack of scalability (termed the state explosion problem). The state explosion

problem is the bane of fully-precise program analysis approaches, such as concrete testing or

concrete-state model checking. The number of possible value combinations rises exponentially,

per set combinatorics. In the setting of symvalic analysis, if the dependencies mechanism were to

keep full concrete state (i.e., what precisely are the contents of storage or variables in a simulated

execution), the analysis would suffer tremendously in scalability. In practice, even dependencies on

a handful of variables can render the analysis unscalable.

Symvalic analysis maintains a balance between precision and performance by computing depen-

dencies only on a small subset of program variables. As a consequence, the analysis can produce

warnings or values that are imprecise, i.e., do not correspond to actual executions.

These precision limits of dependencies in the analysis are as follows (with current defaults listed

in parentheses, for concreteness):

● A bounded number of arguments of the current function, such as to and amount in the example.

(Currently: up to 3 arguments are kept as local dependencies.)

● A bounded number of local variables that load values from shared memory (storage), such as

curBalance in the example. (Currently: the first variable loading from storage per function is

kept in local dependencies.)

● A bounded number of external arguments (i.e., arguments supplied at the original entry point of

the transaction, by an external caller). (Currently: the first 2 arguments of the transaction entry

point are kept in transaction dependencies. This case is not shown in the example. However, if

we were to change the code to make function deposit—which is a transaction entry point—call

a different, internal function, the values of deposit’s arguments, to and amount, would be kept

in the transaction dependencies when analyzing the internal function.)

● The transaction’s current caller (msg.sender in Solidity). (Currently: kept in transaction depen-

dencies.)

4 ANALYSIS MODEL

Armed with the design insights of the previous section, we can next see symvalic analysis in full

detail. The setting is simplified but fully representative of the interesting cases.

4.1 Input and Environment

Figure 3 shows a minimal input language that we will use for illustration. The domains of the

analysis (and meta-variables used subsequently) comprise:

− v, u, t ∈ 𝑉 , a set of variables,

− fun ∈ 𝐹 , a set of functions,
− 𝑖, 𝑗 ∈ 𝐼 , a set of instruction labels,

− 𝑛 ∈ N, the set of natural numbers.
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Instruction Operand Types Description

𝑖 ∶ v = t⊙ u 𝐼×𝑉 ×𝑉 ×𝑉 Binary operations

𝑖 ∶ v = 𝜙(𝑢𝑖) 𝐼×𝑉 ×𝑉 𝑛
Phi instructions

𝑖 ∶ v = JuK 𝐼×𝑉 ×𝑉 Loads

𝑖 ∶ JvK = u 𝐼×𝑉 ×𝑉 Stores

𝑖 ∶ jumpif v 𝑗 𝐼×𝑉 ×𝐼 Conditional jumps

𝑖 ∶ fun(𝑢 𝑗) 𝐼×𝐹×𝑉 𝑛
Calls

Fig. 3. Intermediate Representation instruction Set.

Notation Description

Def(fun(a):i) Function fun is defined with formal argument vector a and first instruction 𝑖 .

𝑖
nextÐÐ→ 𝑗 instruction 𝑖 has 𝑗 as a possible next.

Ok(𝐷1 ⊕𝐷2 . . .) Dependencies combination is valid (no conflicting dependencies for same variable).

v→ 𝑒 ∐︀𝐷̃︀ Variable v may hold symbolic expression 𝑒 under dependencies 𝐷 .

J𝑎K⇒ 𝑒 Storage location 𝑎 (a symbolic expression) may have contents 𝑒 .

⋃︀𝑖 ⋃︀ ∐︀𝐷̃︀ or ⋃︀𝑖 ⋃︀ ∐︀𝑑𝐿 ;𝑑𝑇 ̃︀ Instruction 𝑖 is reachable with dependencies 𝐷 .

(Expanded: local deps. 𝑑
𝐿
, transaction deps. 𝑑

𝑇
.)

Oracle(v) = 𝑒 The symbolic solver (or default logic) suggests value 𝑒 for

external arg./environment variable v.

normalize(𝑒) = 𝑒0 Expression 𝑒 normalizes (simplifies) to 𝑒𝑜 .

Fig. 4. Definitions of notation used in the rules. The first two relations encode input program information and
a helper function. The next three are the relations computed by the analysis. The last two are the interface
with the symbolic solver.

The simplified language omits (without loss of generality) features that can be translated away

and their symvalic treatment is well-represented in that of others: there are no return values or

explicit return statements, unary operators, private functions (all functions are public entry points),

or environment-consulting operations.

Figure 4 introduces the relations that the analysis accepts as input, as well as those it computes.

The analysis input consists of a set of instructions, linked into a control-flow graph, via relation

𝑖
nextÐÐ→ 𝑗 (over 𝐼×𝐼 ). Another straightforward input is Def, which shows the type signature and

initial instruction of a function. Ok is notation to signify that a combination of dependencies

is valid. (By convention, we omit Ok in the antecedent of rules where the result of combining

dependencies is used in the consequent: an invalid combination produces no result, hence a result

implicitly establishes validity in the antecedent.)

The main concepts established by the analysis are:

− v→ 𝑒 ∐︀𝐷̃︀, discussed in Section 3.2

− J𝑎K⇒ 𝑒: storage location 𝑎 is inferred to hold value 𝑒—this is a global concept that transcends

transactions and function invocations, hence no dependencies
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− ⋃︀𝑖 ⋃︀ ∐︀𝐷̃︀: instruction 𝑖 is reachable under dependencies 𝐷 , where 𝐷 can be expanded into 𝑑𝐿 ;𝑑𝑇 ,

when local and transaction dependencies need to be treated separately. The dependency combi-

nation operator is applied pointwise: (𝑑1𝐿 ;𝑑1𝑇 )⊕ (𝑑2𝐿 ;𝑑2𝑇 ) = 𝑑1𝐿 ⊕ 𝑑2
𝐿
;𝑑1

𝑇 ⊕ 𝑑𝑖
𝑇
.

Finally, the interaction between the main analysis and the symbolic solver, as well as the initial

setup of the analysis, are encapsulated in relations Oracle(v) and normalize(𝑒). Normalize
captures the symbolic simplifier/reducer of expressions. It is used every time a new expression is

formed (i.e., at a binary operator) to reduce it to its minimal form, hopefully a concrete value. Its

interface is kept very simple in the model by hiding some of the real work behind Oracle—which

we can do by making Oracle always “guess” the right values.

More specifically, Oracle hides behind it two major elements. The first is straightforward:

it supplies the initial (concrete and symbolic) values that the analysis will try, both as possible

arguments to functions and as initial contents of storage. For instance, we mentioned earlier that

the analysis will try to exercise the code with pre-defined constants, as well as constants found

in the program text, as well as symbolic values, such as «owner» or «user». In the formalism, this

aspect is captured by having Oracle return the appropriate value for a function argument (to

represent an external call). The second major role of Oracle is to invent values for arguments

that the solver uses to satisfy conditions. That is, Oracle(v) omnisciently guesses values that

should be given to external arguments so that a further expression 𝑒 has normalize(𝑒) = true or
normalize(𝑒) = false. These values are used to satisfy conditional jump conditions, and, thus,

explore more branches.

4.2 Analysis

The above modeling of Oracle yields an elegant specification of the analysis, since the interactions

with the symbolic solver now go through a simple interface. Figure 5 shows the analysis model

for the input language, as rules that will monotonically iterate until fixpoint. We next describe the

elements and insights in detail.

● Rule Next propagates dependencies (both local and transaction, treated as a single 𝐷) from

one instruction to the next, as long as there is no conditional control-flow transfer. (∗ denotes a

“don’t care” value.)

● Rules JumpIf-T and JumpIf-F handle dependencies transfer over conditional control-flow. There

are two interesting aspects: First, for the next statement to be analyzed, the analysis must have

inferred the value true (resp. false) for the condition variable. This ensures the path-sensitive

nature of the analysis. Second, the rules showcase a pattern that also appears in most other rules:

the (data-flow) dependencies of the variable (v) used in the statement have to be compatible

with the (control-flow) dependencies of the statement itself. (Recall the convention that the

check is implicit in the rule antecedent if the result of the combine operation appears in the rule

consequent.)

● Rule BinaryOp shows the handling of expressions. Again, the dependencies of the variables

need to be combined with those of the statement. This is the only rule that constructs new

expressions, as 𝑒𝑡 ⊙ 𝑒𝑢 . It appeals to the symbolic solver, as discussed in the previous section.

Normalize minimizes the new expression (all the way down to a concrete value, if possible).

Importantly, it may also refuse to yield anything if expression size or complexity limits are

reached (as required to guarantee termination, per Section 3.3). In the full implementation, the

expression construction “𝑒𝑡 ⊙𝑒𝑢” is limited to a finite but rich universe of expressions. We bound

this universe by running several iterations of a pre-analysis (essentially the full symvalic analysis

but without dependencies), each time generating expression trees of up to size 4, simplifying
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(Next)

⋃︀𝑖 ⋃︀ ∐︀𝐷̃︀ 𝑖
nextÐÐ→ 𝑗 ¬(𝑖 ∶ jumpif * ∗)
⋃︀ 𝑗 ⋃︀ ∐︀𝐷̃︀

(JumpIf-T)

⋃︀𝑖 ∶ jumpif v 𝑗 ⋃︀ ∐︀𝐷𝑖̃︀ v→ true ∐︀𝐷𝑣̃︀
⋃︀ 𝑗 ⋃︀ ∐︀𝐷𝑖 ⊕𝐷𝑣̃︀

(JumpIf-F)

⋃︀𝑖 ∶ jumpif v 𝑗 ⋃︀ ∐︀𝐷𝑖̃︀ v→ false ∐︀𝐷𝑣̃︀ 𝑖
nextÐÐ→ 𝑘 𝑘 ≠ 𝑗

⋃︀𝑘 ⋃︀ ∐︀𝐷𝑖 ⊕𝐷𝑣̃︀

(BinaryOp)

⋃︀𝑖 ∶ v = t⊙ u⋃︀ ∐︀𝐷𝑖̃︀ t→ 𝑒𝑡 ∐︀𝐷𝑡 ̃︀ u→ 𝑒𝑢 ∐︀𝐷𝑢̃︀
v→ normalize(𝑒𝑡 ⊙ 𝑒𝑢) ∐︀𝐷𝑖 ⊕𝐷𝑡 ⊕𝐷𝑢̃︀

(Phi)

⋃︀𝑖 ∶ v = 𝜙(. . . u . . .)⋃︀ ∐︀𝐷𝑖̃︀ u→ 𝑒 ∐︀𝐷𝑢̃︀
v→ 𝑒 ∐︀𝐷𝑖 ⊕𝐷𝑢̃︀

(Load)

⋃︀𝑖 ∶ v = JuK⋃︀ ∐︀𝑑𝑖𝐿 ;𝑑𝑖𝑇 ̃︀ u→ 𝑒𝑢 ∐︀𝑑𝑢𝐿 ;𝑑𝑢𝑇 ̃︀ J𝑒𝑢K⇒ 𝑒

v→ 𝑒 ∐︀𝑑𝑖𝐿 ⊕ 𝑑𝑢
𝐿 ⊕ (︀v→ 𝑒⌋︀;𝑑𝑖𝑇 ⊕ 𝑑𝑢

𝑇 ̃︀

(Store)

⋃︀𝑖 ∶ JvK = u⋃︀ ∐︀𝐷𝑖̃︀ v→ 𝑒𝑣 ∐︀𝐷𝑣̃︀ u→ 𝑒𝑢 ∐︀𝐷𝑢̃︀ Ok(𝐷𝑖 ⊕𝐷𝑣 ⊕𝐷𝑢)
J𝑒𝑣K⇒ 𝑒𝑢

(Call)

⋃︀𝑖 ∶ fun(u)⋃︀ ∐︀𝑑𝑖𝐿 ;𝑑𝑖𝑇 ̃︀ ∀ 𝑗 : u𝑗 → 𝑒 𝑗 ∐︀𝑑 𝑗
𝐿
;𝑑 𝑗

𝑇 ̃︀,Ok(𝑑𝑖𝐿 ⊕ 𝑑 𝑗
𝐿) Def(fun(a) ∶ 𝑙)

⋃︀𝑙 ⋃︀ ∐︀⊕
𝑘

(︀a𝑘 → 𝑒𝑘⌋︀;⊕
𝑘

𝑑𝑘
𝑇 ⊕ 𝑑𝑖

𝑇 ̃︀ ∀𝑘 ∶ a𝑘 → 𝑒𝑘 ∐︀(︀a𝑘 → 𝑒𝑘⌋︀;∅̃︀

(External-Args)

Def(fun(a) ∶ ∗) Oracle(a𝑘) = 𝑒𝑘
a𝑘 → 𝑒𝑘 ∐︀(︀a𝑘 → 𝑒𝑘⌋︀;∅̃︀

(Sender)

Oracle(sender) = 𝑒
sender→ 𝑒 ∐︀∅; (︀sender→ 𝑒⌋︀̃︀

Fig. 5. Analysis rules. Suggestion: at first read, ignore dependencies (i.e., the parts in ∐︀. . .̃︀ and constraints
on 𝑑 and 𝐷 variables) to see just straightforward value-flow and the interaction with symbolic reasoning
(Normalize, Oracle).

them symbolically, and using the results as building blocks for expression trees of the next

iteration.

● Rule Phi propagates unchanged expression values that originate in different control-flow paths.

The rule has the conventional form for a may-analysis.

● Rule Load introduces new local dependencies, based on the variable that receives the value

based on storage. The consequent of the rule shows both the expected inference, v → 𝑒 , and

also that the same is inserted in the local dependencies. This may seem extraneous (though still

correct) at this point: why should the analysis derive that v may be 𝑒 under the condition that v

is 𝑒? However, this treatment ensures that any subsequent expressions that use the variable v

will carry the v→ 𝑒 local dependency.
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● Rule Store complements Load, leading to the establishment of the contents of a storage location.

● Rule Call is conceptually simpler than its daunting form may suggest: it checks that all actual

arguments at a function call have values and dependencies compatible with each other and with

reaching the statement. (The latter check is implicit, based on the big combine operations in the

consequent.) There are two conclusions in the consequent of the rule. The first states that the

dependencies for reaching the first instruction of the called function have to be the combination

of dependencies for all arguments. The second merely gives values to each individual formal

argument of the function, under near-trivial dependencies: the value of the argument itself. Just

as in the Load rule, earlier, this is done so that any further use of the argument will be dependent

on its value. The subtlety is that no such use can occur without also combining the instruction
dependencies. (That is, the variables in the second conclusion in the consequent of the rule will

also eventually receive all dependencies of the first conclusion.) As a result, the dependencies

inside a called function really keep the full values of all its arguments.

● Rules External-Args and Sender appeal to the Oracle relation, as described in Section 4.1.

The value the oracle supplies for sender is entered in the transactional dependencies.

The formalism, as captured in these rules, is in close correspondence with the full implementation

of the analysis—even the subtleties mentioned in the rule explanations (e.g., in when dependencies

get introduced) carry over from the actual implementation. Additionally, the formalism clearly illus-

trates the continuous appeal of the analysis to symbolic solving in the course of value propagation

through a fixpoint computation.

5 SPECIFICS AND IMPLEMENTATION

We next discuss the specifics of the current symvalic analysis setup. Although, not germane to the

precision of the analysis, the setup offers insights regarding its experimental behavior.

5.1 Technical Discussion

We implemented symbolic value-flow analysis for Ethereum smart contracts, over the IR exported

by the Gigahorse decompiler [Grech et al. 2019] and the memory modeling library [Lagouvardos

et al. 2020] built on top of it.
4
Smart contracts offer an excellent platform for sophisticated static

analysis due to their intensive security requirements, relatively small size, and modern emphasis

(with several prominent tools in the space).

Symvalic analysis combines a fixpoint computation (per the monotonic rules of Section 4.2)

and symbolic solving. Our current symvalic implementation uses a Datalog specification of the

analysis and a symbolic reasoner that is also largely implemented in Datalog, for close integration

with the static analysis fixpoint logic. The solver and analysis make minimal appeal to external,

specialized C++ functors—for fast arithmetic, as well as data structures for efficient implementation

of dependencies (Section 3.2) and the “combine” (⊕) operator.
Before describing the approach, it is worth considering alternatives. Our original intent, and

prototype, used an external solver (the Z3 [De Moura and Bjørner 2008] SMT solver) for symbolic

reasoning. We found the approach less than desirable, given the number of appeals to the solver that

symvalic analysis needs to perform. This is hardly surprising, considering that realistic symvalic

analysis runs will appeal to the symbolic reasoner several tens-of-thousands of times (and up

to millions). For comparison, traditional symbolic execution systems collect path conditions (i.e.,
the conjunction of all conditions that need to be satisfied to reach a statement) and dispatch a

solver to satisfy them. As a result, such systems typically appeal to the solver a lot more rarely.

4
Both tools were obtained from the public repository of the Gigahorse toolchain, available at https://github.com/nevillegrech/

gigahorse-toolchain
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For instance, Maian [Nikolić et al. 2018] sets a 10sec timeout for each invocation of Z3. Symvalic

analysis performs thousands of inferences in this span of time.

Another tempting alternative is offered by the recent Formulog system [Bembenek et al. 2020].

Formulog combines Datalog and symbolic reasoning using Z3. However, the case studies that

Formulog shines in support the earlier assessment: Formulog symbolic execution [Bembenek et al.

2020, Sec 5.4] is competitive with modern leading systems, such as CBMC [Clarke et al. 2004] and

KLEE [Cadar et al. 2008]. Symbolic execution may cause a large number of appeals to the symbolic

solver, however these are still an order-of-magnitude fewer than symvalic analysis: symbolic

execution only has one path to maintain at any given time, whereas symvalic analysis maintains

as many as possible, using sets of values and dependencies. Furthermore, value-flow analysis in

Formulog [Bembenek et al. 2020, Sec 5.3] is around 7x slower than state-of-the-art fixpoint systems,

making this an unattractive substrate for symvalic analysis. Still, an evolved implementation that

will seamlessly combine Datalog rules and symbolic reasoning with high performance will be an

ideal platform for symvalic analysis in the future.

5.2 Solver

As shown earlier in Figure 2, the symbolic reasoner has two parts: a bottom-up and a top-down

reasoning component. The dual structure is a good fit for the implementation of the solver as a

Datalog module.

Bottom-up reasoning is the main symbolic workhorse: it produces and memoizes the results of

theorems applied to all symbolic expressions provided to the reasoner, as well as any others produced

in the course of proving theorems. This is a super-exponential process, therefore the expressions

supplied to the bottom-up reasoning component are typically of a small bounded size. (We currently

do 4 rounds of simplification, each over expression trees of size at most 5.) Essentially, bottom-up

reasoning proves all consequences of theorems (as long as they reduce the size of expressions)

for expressions up to a certain size. As seen in Figure 2, the analysis initializes all reasoning by

supplying the symbolic solver with expressions via predicates isExpr, isConst, isFreeVar, and

isBoundVar. It receives the products of bottom-up reasoning in the form of relations normalize

(highly analogous to Normalize in Section 4), equals, implies, and valueForVar. The last of these

offers suggestions to the (value-flow) analysis regarding extra values for free variables. The analysis

logic is free to accept these suggestions and propagate them wherever free variables arise (e.g.,

values of arguments to public functions). The analysis can also reject such suggestions—e.g., if it

has already covered all branches in a function with multiple values. (This two-step interaction of

the value-flow analysis and the solver was simplified/abstracted into the Oracle of Section 4.)

The top-down component is responsible for on-demand reasoning over expressions that are too

big for bottom-up reasoning. Whereas bottom-up reasoning produces all theorems (i.e., reasoning

consequences) for bounded expressions, top-down reasoning produces a bounded number of

consequences (i.e., the result of a bounded number of reasoning steps) over unbounded expressions.

The interface follows a request-response model, with the value-flow analysis sending the solver

equality and inequality satisfiability requests (eqRequest/ineqRequest) and getting back responses

(eqResponse/ineqResponse).

The reasoner implements a full collection of algebraic properties for arithmetic and boolean

logic. Given the richness of operators in the Ethereum VM language (which includes 256-bit

signed, unsigned, and modular arithmetic, several variants of shifts, etc.) we cannot make a full

argument regarding the completeness of the algebraic rules. However, in practice, we have yet to

find an expression that cannot be solved/simplified because of algebraic reasoning incompleteness.

(In contrast, the aforementioned size limitations of bottom-up reasoning and inference-depth

limitations of top-down reasoning are causes for incompleteness.)
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6 SETTING AND REAL-WORLD APPLICATION

We next discuss the real-world setup and impact of symvalic analysis, also indirectly motivating

and validating its design choices.

6.1 Ethereum Smart Contracts

The setting of Ethereum smart contracts is particularly interesting for software verification and

validation approaches. The primary reason is the potential impact: smart contractsmanagemonetary

assets, often in the many millions of dollars. The most common domain for smart contracts deployed

in the past two years has been Decentralized Finance (DeFi), i.e., autonomous protocols that

implement many of the functionalities of conventional finance (e.g., lending, exchanging, options

trading), often in innovative ways.

With this much real-world value, one might expect that cutting-edge research techniques on

program analysis and testing will have a significant practical impact on Ethereum smart contracts.

This has not been the case, however. Perez and Livshits [2021] conduct a thorough study of tens of

thousands of contracts reported vulnerable by six recent leading academic projects. They find that

under 2% of the contracts and only 0.27% of the funds held in them have actually been exploited. A

very small part of this impact is explainable by the tools having higher-than-reported false-positive

(i.e., imprecision) rates. Instead, the main reason for this striking result is a strong bias in the sample:

contracts that hold funds are very heavily scrutinized and much more likely to be false positives

in the analysis. Even analyses with 90% precision (i.e., true-positive) rates in the overall contract

population have extremely high false-positive rates in the subset of contracts that truly currently

manage funds.

Therefore, it should come as no surprise that program analysis tools are not considered very

valuable for Ethereum security analysis. A recent quote by a prominent security analyst in the

Ethereum space captures the prevailing view: “for an experienced contract author, it’s never the
automated tooling that finds the bugs that kill them” [Konstantopoulos 2021].

Thus, the domain of Ethereum smart contracts represents a high practical but also intellectual

challenge for program analysis. The analysis should be extremely precise, so that the warnings

for high-value contracts are true positives that humans may have missed, and yet fairly complete,

since catching the easy “certain” cases is likely to yield no warnings for contracts that truly manage

funds. Thankfully, there are elements of the domain that help. First and foremost, smart contracts

are isolated from each other and coded defensively. This introduces a high degree of modularity:

the contract can be analyzed mostly in isolation from others. Nearly anything that comes from

the outside world is untrusted, unless either the data or the sender are vetted through specific

mechanisms. Second, the contracts are of modest size: a deployed smart contract is at most of

24KB in binary size. This corresponds to at most a few thousand lines of code. The largest of the

SmartBugs benchmarks that we will consider in our evaluation is under 2.5KLoC in Solidity source.

Common sizes of “large” smart contracts are under 1KLoC, with another 1KLoC inherited or called

in libraries.

The small size and (relative) modularity of smart contracts means that we can apply analysis

techniques that are more ambitious (in terms of precision) than in a general-purpose language

setting. Past work has used ambitious program reasoning techniques [Albert et al. 2020c; Grossman

et al. 2017; Permenev et al. 2020] (indeed, even full program verification using proof assistants and

off-line logics has been employed [Hildenbrandt et al. 2018]).

The design choice of high-precision is reflected in the mechanism of dependencies and the general

path sensitivity of the symvalic analysis. In a general-purpose language setting (e.g., analyzing Java,

C#, C++, etc.) path-sensitive analyses are rare and virtually never combined with whole-program
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reasoning (i.e., a modeling of the global heap, such as our J𝑎K ⇒ 𝑒 “storage location contents”

relation). The reason is scalability: whole-program analysis of globally shared structures can scale to

applications of typical real-world sizes for general-purpose languages (in the hundreds of thousands

of LoC) only when the analysis sacrifices path sensitivity, and often even flow sensitivity, context

sensitivity, or field sensitivity.

6.2 Practical Impact

Symvalic analysis has been applied to all new contracts deployed on the Ethereum blockchain

since the beginning of 2021. In the course of these months, the analysis has flagged numerous

exploitable vulnerabilities [Dedaub 2021a,b,c,d; Primitive Finance 2021]. We have made several

vulnerability disclosures, some of which resulted in major rescue efforts [Dedaub 2021a; Michales,

Jonah 2021]. (The vulnerable services include 2 of the top-15 financial services on Ethereum, per

current defipulse.com rankings.)

The total amount of vulnerable funds safeguarded is in the many millions, and potentially tens

of millions, of dollars. The exact figure would have been readily computable for a black-hat hack,

but is not computable for vulnerability disclosures because a) it greatly varies by time—e.g., in one

case an extra $900K became vulnerable two months after initial disclosure and rescue, because

a customer exchanged some funds; b) in many cases there was no rescue operation because the

vulnerability could be mitigated without a direct attack to vulnerable funds. In three cases, an attack

(i.e., a white-hat hack, in collaboration with the vulnerable service) was necessary in order to rescue

the vulnerable funds. The total funds actually rescued during these white-hat hacks amount to $6M.

We have received 6 separate bug bounties from these vulnerability disclosures, for a total of $350K.

Our vulnerability disclosures have been featured six times in “Week of Ethereum News”—the most

popular weekly digest of the Ethereum space—in the 3 months since the beginning of the year.

(The newsletter typically contains 1-5 items under the “security” heading every week.)

From a program analysis standpoint, all detected vulnerabilities have the same general structure:

they correspond to warnings of the form “an untrusted caller 𝐶 can reach argument X of a sensitive

operation and supply parameter 𝑌 that is tainted” or “an untrusted caller can reach a sensitive

operation (at all)”. That is, the vulnerability warnings typically query the main relations produced

by the analysis: X → 𝑌 ∐︀∗; (︀sender → 𝐶⌋︀̃︀, as well as ⋃︀𝑖 ⋃︀ ∐︀∗; (︀sender → 𝐶⌋︀̃︀. The untrusted caller

𝐶 corresponds to symbolic value «unprivileged-user», as seen in earlier examples, stored in the

transactional dependencies of the symvalic analysis. The tainted parameter value 𝑌 is typically

the symbolic value «user-unique-value», mentioned earlier, which designates that the value is

completely unconstrained. The exact nature of the sensitive operation with argument 𝑋 varies by

vulnerability. For instance:

● transferFrom [Dedaub 2021a]: the contract is authorized to manipulate the funds of some

accounts, and its code allows a direct transfer of funds from a tainted source to a tainted sink.

● loan [Dedaub 2021a]: similar to the above, the contract is authorized to manipulate funds, but

the manipulation is limited to take place with specific kinds of funds, after a loan is received.

Both the reachability of the code by an untrusted caller and the taintedness of the funds sink

are essential.

● swap [Dedaub 2021c]: an exchange of funds from one token to another, (taking place after a

loan and a liquidation of “shares”). The taintedness of the token being swapped and of the

amount swapped are essential to the attack.

● flashswap [Primitive Finance 2021]: code executed upon an external service’s granting of a

loan does not check that the loan parameters were as requested: the attacker can invoke the

callback with tainted loan parameters (e.g., tainted token).
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● manipulated swap [Dedaub 2021d]: the contract periodically converts its profits, and anyone

can invoke this functionality. The attack is based on the reachability of this code by untrusted

callers, and not on taintedness. The attacker calls the functionality exchanging the funds

after having manipulated the online prices of the exchange service doing the conversion.

As can be discerned from the above descriptions, the attack point is buried deep in the code, under

several complex conditions. One can, therefore, see why the precision (i.e., the path sensitivity) and

completeness of symvalic analysis is important for the detection of the vulnerability. As we write in

a vulnerability report [Dedaub 2021a]: “What made our symbolic-value flow analysis useful was not

that it captured this instance but that it avoided warning about others that were not vulnerable. The
analysis gave us just 27 warnings about such vulnerabilities out of the 40 thousand most-recently

deployed contracts!”

7 CONTROLLED EVALUATION

Although symvalic analysis is continuously tested in the real world, this does not constitute a

systematic evaluation, capable of demonstrating coverage, precision, and recall metrics, also in

comparison to other tools. The symvalic analysis design is expected to offer both precision, and

greater completeness compared to past static or hybrid analyses (or, alternatively, much greater

completeness than a pure symbolic execution approach).

We next evaluate symvalic analysis experimentally in a controlled environment, against some of

the best-known tools in the space of Ethereum smart contracts. To obtain ground truth for this

systematic study, we consider the benchmarks of the recent SmartBugs work by Durieux et al.

[2020]. SmartBugs offers a curated set of contracts, labeled with known vulnerabilities, and presents

an empirical assessment of several security tools for Ethereum. The Mythril tool [Honig 2020], by

Consensys, is the clear winner in the SmartBugs study, in terms of ability to detect vulnerabilities

(with low rates of flagging un-tagged programs for vulnerabilities), and performs very well in terms

of scalability. Furthermore, Mythril is a good comparable for symvalic analysis, since it is also a

hybrid tool: it performs both symbolic execution and static analysis, and freely chooses between

the approaches depending on the vulnerabilities it tries to detect.

Since symvalic analysis is close in spirit to symbolic execution, we also compare against the

Manticore tool [Mossberg et al. 2019], by Trail-of-Bits. Manticore is a symbolic execution tool and

one of the best-known industrial tools (together with Mythril) in the Ethereum space.

There are tens of security analysis tools in the Ethereum space. The SmartBugs study has

already considered some of the most visible ones (including HoneyBadger [Torres et al. 2019],

Maian [Nikolić et al. 2018], Osiris [Torres et al. 2018], Oyente [Luu et al. 2016], Securify [Tsankov

et al. 2018], Slither [Feist et al. 2019], and Smartcheck [Tikhomirov et al. 2018]. Mythril outperforms

all by a significant margin [Durieux et al. 2020], therefore, barring major recent upgrades, our

conclusions (comparing with Mythril) should apply.

We “normalize” the SmartBugs benchmarks in the following ways:

● We eliminate or supplement benchmarks that exhibit a vulnerability but do not use the

manipulated result, or otherwise prevent the vulnerability from really exhibiting itself. For

instance, there were multiple benchmarks in which the vulnerable code was dead, removed

during compilation by the Solidity compiler. These benchmarks are invalid for an automated

evaluation of tools, so we added minimal code to ensure the vulnerability is real.

● We split and clone benchmarks so that each benchmark program exhibits vulnerabilities of

exactly one type, removing non-labeled vulnerabilities present in the original SmartBugs

benchmark. In this way, any extra (i.e., non-labeled) vulnerabilities are guaranteed, to be false

positives. After this normalization, we remove contracts that exhibit the same vulnerability

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.



163:20 Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris

in identical code patterns, so that each benchmark captures a different aspect of vulnerability

detection. These are good properties that were not maintained in the original form of the

programs.

Furthermore, since the SmartBugs benchmarks are unrealistically biased towards true vulnerable

contracts (which are rare in practice), we complement our experiments with a second dataset,

intending to demonstrate precision (i.e., low false-positive rates). This dataset consists of contracts

that are extremely unlikely to have serious vulnerabilities. Specifically, these are all the contracts (a
total of 166 unique bytecodes) that handle the 10,000 highest-value (by ETH balance) Ethereum

blockchain accounts, as of early 2021.
5
The least valuable of these contracts manages some $350K,

while the most valuable ones manage hundreds of millions.

The benchmark collection from our study is available as a public repository.
6
We believe it

constitutes an excellent evaluation suite for future studies, although the dramatic speed of evolution

of real-world smart contracts will require continuous update for relevance.

The results of the controlled evaluation can be obtained using the publicly-available peer-

reviewed version of the artifact [Smaragdakis et al. 2021] accompanying the paper.

7.1 Setup

We use the Souffle Datalog engine (v.2.0.2) on a machine with two Intel(R) Xeon(R) Gold 6136 CPUs

3.00GHz. (Each CPU has 12 cores, or 24 hardware threads. The machine has ample RAM for the

tasks we run, at 768GB. We start up to 40 concurrent jobs and none of our experiments should

show significant interference between jobs.) For all tools, timeout is set to 20mins (1200sec). This is

a highly generous time allowance, intended to reveal the full ability of the tools for bug detection,

regardless of their time costs.

We implemented symvalic clients for the top-5 (by number of vulnerable contracts) vulnerability

categories from the SmartBugs repository [Various 2020].
7
The clients build atop the output relations

of Figure 4, such as “variable may hold value under dependencies”.

7.2 Ability to Detect Bugs

The normalized SmartBugs corpus contains 109 contracts with labeled vulnerabilities. We analyze

all contracts in bytecode form, however Manticore is primarily usable with source code input,
8

therefore we use source code for it.

Table 1 shows the recall (i.e., percentage of true vulnerabilities identified) of all tools on the

curated dataset of 109 contracts. We evaluate symvalic analysis pessimally: First, we include the 16

contracts with vulnerabilities that symvalic analysis does not support, under the “Other*” category.

(The numbers of these vulnerabilities are counted just like the rest, when higher is better, and

not counted when lower is better, penalizing symvalic analysis for the omission of these clients.)

Second, we include benchmarks even if we do not agree with them. For instance, in the Access

5
Most high-value accounts are “wallets”, i.e., they don’t have code behind them. However, roughly 1-in-10 are handled by

smart contracts. We deduplicate their code to get the 166 unique bytecodes to analyze.

6
https://github.com/nevillegrech/gigahorse-benchmarks

7
We did not expend effort to develop clients for the last 5 of the vulnerabilities in the SmartBugs repository because a) these

would be numerically insignificant for the experiment, accounting only for 16 out of 109 warnings in the benchmarks; b)

we do not consider these clients to be promising for finding bugs in real-world contracts. E.g., the top-3 such vulnerabilities

are “bad randomness”, “time manipulation”, and “front running”. These can be caught with specific code pattern-matching

in simplistic benchmarks, but these well-known patterns never appear in real contracts any more. The full form of the

vulnerability, however, is semantic and cannot be discerned reliably by static analysis without deep understanding of a

program’s semantics, i.e., interaction with the programmer and programmer-supplied invariants.

8
We expended much effort to run Manticore on bytecode input and got results that were significantly worse. In all

experiments, we tuned Manticore according to instructions supplied by its authors, in direct communication.
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Control category, our assessment is that symvalic analysis finds all true vulnerabilities, although

the tables lists it as missing 6.
9

Category Manticore Mythril Symvalic

Access Control 3⇑16 19% 11⇑16 69% 10⇑16 63%
Arithmetic Error 10⇑13 77% 11⇑13 85% 11⇑13 85%
Denial of Service 0⇑6 0% 0⇑6 0% 4⇑6 67%
Reentrancy 8⇑23 35% 19⇑23 83% 21⇑23 91%
Unchecked Low-Level Calls 3⇑35 9% 14⇑35 40% 35⇑35 100%
Other* 3⇑16 19% 5⇑16 31% 0⇑16 0%
Total 27⇑109 25% 60⇑109 55% 81⇑109 74%
Avg. Coverage 74% 86% 96%

Timeouts+Errors 54 (50%) 10 (9.17%) 0 (0%)

Avg. Runtime 231.1 seconds 107.3 seconds 2.9 seconds

Table 1. Recall: Percentage of true vulnerabilities detected by each tool. Also statement coverage, timeout-
s/errors, average runtimes. Fuller bars are better.

Notably, Manticore times out for half the contracts and has an average running time of 185sec.

(For symvalic analysis, the maximum running time over any of the benchmarks is 50sec.)

Qualitatively the tools justify their architectural characteristics. Manticore is the closest to a pure

symbolic execution tool in the set, and exhibits low completeness: both the statement coverage

metric and its percentage of vulnerabilities detected lag behind other tools—a result also observed

by Durieux et al. [2020].

Mythril and the symvalic analysis both detect a significant number of the vulnerabilities. Symvalic

analysis exhibits very high (original bytecode) statement coverage (96% vs. Mythril’s 86% and

Manticore’s 74% but with numerous timeouts, for the more complex contracts). In total, symvalic

analysis detects 80 of the 109 vulnerabilities, whereas Mythril detects 60 andManticore 27 (including

the Other* vulnerabilities, which symvalic analysis does not support). Additionally, the average

running time of symvalic analysis is much lower than that of other tools (e.g., 2.9sec vs. 107.3sec

for Mythril).

Recall on its own means little. The message of symvalic analysis is that top-of-class recall can be

achieved while combined with unsurpassed precision. Table 2 shows the percentage of labeled (in

the curated dataset) vulnerabilities among the total flagged by every tool.

As can be seen in the table, Manticore is fully precise regarding its 24 labeled vulnerabilities.

(This is commensurate with Manticore’s nature as a symbolic execution engine, exhibiting high

precision, but one should also keep in mind its 50% timeout rate, which shows that the results only

apply to the simplest contracts.) Mythril issues 104 reports to flag its 55 labeled contracts, while it

times out on 10 out of the 109 contracts. Symvalic analysis reports just 95 vulnerabilities, of which

80 are true positives.

One may ask, what are the 15 false positives of symvalic analysis? Is the dependencies mechanism

not sufficient to maintain precision relative to actual program execution? By inspection, we find that

most of these false positives are not due to imprecise modeling of execution, but due to modeling

9
Two of these are for an outdated vulnerability (checks over tx.origin instead of msg.sender, which is hardly indicative

of a problem in modern contracts), two are over patterns that modern Solidity versions disallow (so they could only arise

for old code, or for assembly code that explicitly implements a security hole), and two are calling a hard-coded external

contract with caller-influenced values (a practice that is common and overwhelmingly not indicating a vulnerability).
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Category Manticore Mythril Symvalic

Access Control 3⇑3 100% 11⇑19 58% 10⇑13 77%
Arithmetic Error 10⇑10 100% 11⇑18 61% 11⇑14 79%
Denial of Service 0/0 - 0⇑23 0% 4⇑10 40%
Reentrancy 8⇑8 100% 19⇑30 63% 21⇑23 91%
Unchecked Low-Level Calls 3⇑3 100% 14⇑14 100% 35⇑39 90%
Other* 3⇑3 100% 5⇑13 38% 0/0 -

Total 24⇑24 100% 55⇑104 53% 81⇑99 82%
Table 2. Precision: Percentage of vulnerabilities (per category) reported by each tool that truly have the
corresponding vulnerability. The “Total” for Mythril and Manticore does not include the “Other*” category,
so that the tools do not look worse merely on vulnerabilities that symvalic analysis does not support. Fuller
bars are better.

of the external environment. For instance, the analysis cannot easily make assumptions about what

values may be returned by an external call. For completely unknown calls, it will assume that the

call can return anything. However, the call may have a specific protocol—e.g., only return a success

flag for the current contract. Thus the analysis will model behaviors that will not be realizable

in practice. (This can be remedied with complete models of the environment, or by taking into

account dynamic behaviors in past transactions. We do not supply such information to any of the

evaluated tools, nor is it clear that they can easily accept it. However, this is clearly a promising

future direction.)

7.3 (Likely) False Warnings

The curated dataset of the SmartBugs study gives an indication as to the ability of an analysis to

find well-recognized vulnerabilities. However, real contracts deployed on the blockchain are a)

more complex; b) much less likely to be vulnerable (and when they are, they are much less likely to

hold Ether [Perez and Livshits 2021]).

Therefore we perform a second experiment with fully-realistic, ultra-high-value contracts: the

166 code bases (some, such as multisig wallets, instantiated tens or hundreds of times) that handle

the 10,000 highest-value (by ETH balance) Ethereum blockchain accounts. Although there is no

full ground truth on vulnerabilities available for these contracts, a better analysis is expected to

a) scale well for them; b) yield few warnings in categories that have direct financial impact (i.e.,

Reentrancy, Access Control, or Arithmetic Error) since true vulnerabilities in these categories are

extremely unlikely to exist.

Table 3 shows how the tools fare over the high-value contracts. Manticore could only apply to

the 90 of the 102 contracts that have source code available, due to issues regarding their compilation.

In these, it suffered 92% timeouts. In the three categories where warnings are almost certainly false
positives (Reentrancy, Access Control, and Arithmetic Error), symvalic analysis issues just a small

fraction of the warnings of Mythril. Overall, symvalic analysis issues just 61 vulnerability reports

(13 in the “false positive” categories) over the 146 contracts that it analyzed, timing out for 20

contracts. The analysis exhibits high statement coverage (given the difficulty of the contracts) at

83%.

Mythril issues 81 reports (reports for “Other*” not included) and fails to complete for 45 of the

166 contracts. However, Mythril still issues reports for contracts that time out. We list them in a

separate column because they help illustrate that timeouts are not random: both the percentage of

flagged contracts and the coverage grow once contracts that timeout are included, despite them
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Category Manticore Mythril Mythril w. timeouts Symvalic

Access Control 0⇑7 0% 8⇑121 7% 14⇑163 9% 8⇑148 5%
Arithmetic Error 0⇑7 0% 54⇑121 45% 74⇑163 45% 3⇑148 2%
Denial of Service 0⇑7 0% 6⇑121 5% 23⇑163 14% 13⇑148 9%
Reentrancy 0⇑7 0% 12⇑121 10% 34⇑163 21% 2⇑148 1%
Unchecked Low-Level Calls 0⇑7 0% 1⇑121 1% 1⇑163 1% 37⇑148 25%
Other* 4⇑7 57% 22⇑121 18% 42⇑163 26% 0⇑148 0%
Total 4⇑7 57% 81⇑121 67% 146⇑163 90% 61⇑148 41%
Avg. Coverage 57% 47% 49% 83%

Timeouts+Errors 83⇑90 92% 45⇑166 27% 3⇑166 2% 18⇑166 11%
Avg. Runtime 215.5 seconds 186.73 seconds 475.74 seconds 39.2 seconds

Table 3. Coverage, total timeouts/errors, average runtimes, and reports per vulnerability class for high-value
contracts: all unique contract bytecodes that manage the top-10K Ethereum accounts. The denominator of
fractions is the number of contracts analyzed by the given tool/configuration. The numerator may be larger,
since multiple reports are possible for the same contract in this dataset. We exclude the “Other*” category
from the Total for Manticore and Mythril, to avoid penalizing them for warnings that symvalic does not
support. We include a separate column with Mythril warnings for contracts that were partially analyzed (i.e.,
timed out, but produced some results). Emptier bars are better, except for the “unchecked low-level
calls” and “denial of service” categories (which include mostly/many true positives, respectively).

only being analyzed partially. This indicates that complex contracts lead both to more reports and

to timeouts, and, in fact, timeouts hide extra Mythril reports. With partially-analyzed contracts

included, Mythril issues 146 reports over just 163 contracts—122 of them in the three “false positive”

categories. This is precisely the performance of past tools (issuing too many invalid warnings for

the security inspector to inspect effectively) that Symvalic analysis aims to address. Furthermore,

Mythril issues these reports while only covering 49% of the contracts’ statements.

Conversely, the “unchecked low-level calls” category indeed contains several true positives, even

in deployed, high-value contracts. The analysis of all tools (as well as the labels of the curated

dataset) define the vulnerability as lack of a check of a return value, regardless of the further

implications this omission may have. Indeed, the vulnerability should be seen as more of a “bad

smell”. To some extent, the same is true of the “denial of service” category: it may be true that,

e.g., one of the signers of a multi-sig wallet can overflow a storage array, rendering the contract

unusable. However, this may not be part of the valid threat model for the contract. The vulnerability

should still be considered correctly reported, even though the contract is not third-party-exploitable.

Symvalic analysis issues many warnings in these categories and a brief sampling reveals that most

are true positives.

Summary. The experiments with the curated (SmartBugs) and high-value datasets confirm and

quantify what has been our informal experience with symvalic analysis: it is an analysis that

offers scalable, precise modeling combined with much greater program coverage than other precise

(path-sensitive) static techniques, such as symbolic execution.

8 RELATEDWORK

We have referred to directly related work extensively throughout the paper, therefore we next only

discuss conceptual relatives that are not otherwise directly comparable.
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General Program Analysis and Verification. Relational analysis techniques have been successfully

applied in recent years, to tackle the problem of JavaScript static analysis, where precision is

critical to getting a useful analysis. Value partitioning [Nielsen and Møller 2020], is an efficient trace

partitioning [Rival and Mauborgne 2007] variant, where the analysis does not attempt to refine

abstract states, but instead, abstract values. This apporach manages to circumvent the expensive

abstract state partitioning [Ko et al. 2017] or additional backwards analysis [Stein et al. 2019] that

previous apporaches required, while maintaining precision.

Symbolic execution has seen numerous variations that offer a different balance of scalability,

completeness, and precision. Compositional symbolic execution [Anand et al. 2008; Godefroid 2007]

has attempted to address scalability issues by use of summaries. Steering techniques [Li et al. 2013;

Park et al. 2012] attempt to achieve higher coverage or depth, e.g., by prioritizing paths that are yet

unexplored. Symvalic analysis has similar goals, but its coverage is only a small part of the story:

as a static analysis, it explores many values at once and coverage is only incidental. At the same

time, it may suffer from higher imprecision than symbolic execution techniques, since precision is

limited by its current dependencies scheme.

Accordingly, symvalic analysis can be viewed as an attempt to address the state explosion

problem. The model checking literature contains several approaches with similar goals, ranging

from compositional assume-guarantee reasoning [Abadi and Lamport 1993] to symmetry reduc-

tion [Emerson and Sistla 1996; Norris Ip and Dill 1993], to partial order reduction [Flanagan and

Godefroid 2005]. Symvalic analysis uses a very different scheme, due to both symbolic reasoning

and its controlled sacrifice of precision. Conceptually, the combination of abstract interpretation

and model checking (e.g., [Clarke et al. 1994]) has a similar flavor, but the actual mechanisms differ

substantially.

Whitebox [Chipounov et al. 2011; Godefroid et al. 2008, 2012] and (later) greybox [Böhme et al.

2016; Various 2017; Wüstholz and Christakis 2020a,b] fuzzing are approaches that use insights

similar to those of symvalic analysis, in an effort to achieve coverage of a program under test,

especially when the program makes use of very low level library code that is externally modelled.

These approaches work by “fuzzing” an input, following the control flow of a program for concrete

values, yet also potentially using constraint solvers to modify the input to follow alternative control

flow. In the space of smart contracts, where the program is fully modeled, and bugs manifest

themselves in several transactions, symvalic analysis can scale better and cover more program

behaviors, since it is fundamentally a static analysis, overapproximating dynamic conditions and

collapsing many paths.

Symvalic analysis is rather unconventional among analysis techniques, mainly in the ways

described earlier: it uses symbolic expressions inside a full static analysis (not dynamic-symbolic

execution), without delegating the solution of large expressions to an external constraint solver.

There have been other combinations of symbolic expressions and static analyses, especially for

custom analysis clients—e.g., Dudina and Belevantsev [2017] employ a symbolic static analysis for

buffer overflow detection. In contrast, symvalic analysis is client-agnostic: symbolic expressions

are used as regular values for any variable in the program text, without targeting specific kinds of

expressions or specific program features. Furthermore, the mechanism of dependencies (Section 3.2)

is key in the symvalic design, for purposes of precision.

There are certainly many more points in the static analysis design space and some can be

compared for reference. SPLlift [Bodden et al. 2013] shows a modular analysis for software product

lines. This is almost at the opposite end of the spectrum from symvalic analysis: a very scalable

analysis, but much less precise. The SPLlift analysis is explicitly based on the IFDS framework,

which means that it summarizes at the procedure boundary, thus losing precision to gain scalability.

It is interesting to consider whether symvalic analysis could apply to large-scale software product
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lines. This direction would certainly require significant work for a fruitful approach. For instance,

symvalic analysis would likely apply to each Java file separately with the dependencies between

different files modeled rather loosely (e.g., perhaps a single predicate to capture the configuration

of the product line). Padhye and Khedker [2013] describe an analysis that achieves significant

precision (flow- and context sensitivity) in a fairly general analysis setting. This may be a promising

candidate for future combinations with symvalic analysis ideas, especially the use of dependencies

as a data-flow-value context.

Program Analysis for Ethereum Smart Contracts. The small size and high value of Ethereum smart

contracts has made them a suitable target for applying a variety of program analysis techniques,

resulting in a plethora of academic [Brent et al. 2020; Grech et al. 2018; Kolluri et al. 2019; Lagou-

vardos et al. 2020; Luu et al. 2016; Nguyen et al. 2020; Nikolić et al. 2018; Torres et al. 2019; Tsankov

et al. 2018] and industrial [Feist et al. 2019; Grieco et al. 2020; Honig 2020; Mossberg et al. 2019;

The Certora team 2017] tools emerging. While most smart contract tools focus on vulnerability

detection, past work has also focused on empirically identifying optimization opportunities [Chen

et al. 2020], gas cost estimation [Albert et al. 2020a] using recurrence-relation theories or even

superoptimization [Albert et al. 2020b] using SMT.

Tools [Hajdu and Jovanović 2020; Kolluri et al. 2019; Krupp and Rossow 2018; Luu et al. 2016;

Mossberg et al. 2019; Nikolić et al. 2018] applying symbolic execution techniques have been very

popular due to the precision of their reported warnings. (And also, a cynic might remark, their ease

of implementation on a platform where the source language changes constantly and the low-level

IR is extremely hard to analyze.) In Section 7 we evaluated our symvalic analysis against Mythril

[Honig 2020] and Manticore [Mossberg et al. 2019], two state-of-the-art tools that employ symbolic

execution techniques, with symvalic analysis having higher warning precision and statement

coverage with vulnerability completeness comparable or superior to that of the best competitor.

Additionally, approaches [Albert et al. 2018; Brent et al. 2020, 2018; Feist et al. 2019; Grech et al.

2018; Lagouvardos et al. 2020; Tsankov et al. 2018] based on static analysis have seen success due

to their high completeness and scalability. Even though conventional static analysis tools [Brent

et al. 2020] have achieved high precision by tuning the analysis to common programming patterns

found in Ethereum smart contracts, as we discussed in Section 2, symvalic analysis offers a more

precise analysis while being agnostic to these specific program patterns.

Fuzzing-based tools [He et al. 2019; Jiang et al. 2018; Nguyen et al. 2020; Wüstholz and Christakis

2020a,b] have also been successful in precisely reporting smart contract vulnerabilities. Notably,

the recently presented Harvey fuzzer [Wüstholz and Christakis 2020b] combines static analysis

with fuzzing by using static analysis to guide a greybox fuzzer.

9 CONCLUSIONS

We presented symvalic analysis: a value-flow static analysis where the values can be symbolic

expressions. The analysis achieves a rare balance between scalability, precision, and completeness—

squeezed between the state explosion problem and imprecise approximation. For the setting of

Ethereum smart contracts, the analysis yields high-value vulnerability warnings, which have

already resulted in significant real-world impact, rescuing several millions in vulnerable funds.

We view symvalic analysis as an approach that holds promise for taming the state explosion

problem in the general software verification and validation setting. Traditional execution-based ap-

proaches (including concrete execution, testing, dynamic-symbolic execution, and model checking)

are horizontal: they keep an extremely detailed state about all variables/memory locations at every

single point of modeling a program’s behavior. This results in the precision of the modeling but

also in difficulties in scalability and behavior completeness. In contrast, value-flow static analysis
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techniques are vertical: they keep a large set of values per-variable (or other program entity), but

the values are rarely correlated—resulting in completeness but precision loss. Symbolic value-flow

analysis keeps some of the horizontal and some of the vertical elements. It attempts to keep much

of the completeness of static analysis, yet make it precise by a) employing concrete values and

symbolic constraint solutions when necessary to satisfy program path conditions; b) connecting

values together via the mechanism of dependencies. We hope that the technique will find further

future adoption, helped by strong evidence of impact in the domain of Ethereum smart contracts.
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