
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE PROGRAM
COMPUTER SYSTEMS TECHNOLOGY

MASTER THESIS

General Declarative Must-Alias Analysis

Konstantinos Ferles

Supervisor: Yannis Smaragdakis, Dr.

ATHENS

JUNE 2015



ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
”ΤΕΧΝΟΛΟΓΙΑ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γενική και Δηλωτική Ανάλυση Σίγουρης Συνωνυμίας Δεικτώv

Κωνσταντίνος Φερλές

Επιβλέπων: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής

ΑΘΗΝΑ
ΙΟΥΝΙΟΣ 2015



MASTER THESIS

General Declarative Must-Alias Analysis

Konstantinos Ferles
R.N.: M1261

SUPERVISOR:
Yannis Smaragdakis, Associate Professor

EXAMINATION COMMITTEE:
Yannis Smaragdakis, Associate Professor
Panagiotis Rondogiannis, Associate Professor

ATHENS

JUNE 2015



ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γενική και Δηλωτική Ανάλυση Σίγουρης Συνωνυμίας Δεικτώv

Κωνσταντίνος Φερλές
A.M. Μ1261

ΕΠΙΒΛΕΠΩΝ:
Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:
Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής
Παναγιώτης Ροντογιάννης, Αναπληρωτής Καθηγητής

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2015



ABSTRACT

Most published pointer analysis algorithms are may-analyses: they over-approximate
aliasing or points-to relations. Must-alias analyses are more rarely studied but offer at-
tractive benefits, for optimization and program understanding. In this thesis we give a
declarative model of a rich family of must-alias analyses. Although other specifications of
must-alias algorithms exist in the literature, our emphasis is on modeling and exposing
the key points where the algorithm can adjust its inference power vs. scalability trade-
off. Furthermore, we show that our model can be easily extended to also incorporate a
must-point-to analysis. Our model is executable, in the Datalog language, and forms the
basis for a full-fledged must-alias analysis of Java bytecode. We discuss insights on con-
figuring a must-alias analysis and quantify the impact of design decisions on large Java
benchmarks.

SUBJECT AREA: Program Analysis

KEYWORDS: points-to analysis, alias analysis, context-sensitivity, object-sensitivity,
type-sensitivity



ΠΕΡΙΛΗΨΗ

Οι περισσότερες δημοσιευμένες αναλύσεις για δείκτες είναι ίσως-αναλύσεις: δηλαδή
υπερεκτιμούν τη σχέση συνωνυμίας δεικτών ή τη σχέση “δείχνει-σε”. Οι αναλύσεις
σίγουρης-συνωνυμίας δεικτών έχουν μελετηθεί λιγότερο αλλά προσφέρουν ελκυστικά
πλεονεκτήματα, για τη βελτιστοποίηση και την κατανόηση των προγραμμάτων. Σε αυτήν
την εργασία δίνουμε ένα δηλωτικό μοντέλο για μια πλούσια οικογένεια αναλύσεων
σίγουρης-συνωνυμίας δεικτών. Αν και υπάρχουν ήδη στη βιβλιογραφία φορμαλισμοί
ανλύσεων σίγουρης-συνωνυμίας, δίνουμε έμφαση στη μοντελοποίηση και την ανάδειξη
των κύριων σημείων όπου ένας αλγόριθμος μπορεί να προσαρμόσει την ισορροπία
μεταξύ της συλλογής πληροφορίας και της απόδοσης της ανάλυσης. Επιπλέον, δείχνουμε
ότι το μοντέλο μας μπορεί εύκολα να επεκταθεί για να συμπεριλάβει μια ανάλυση για
τη σχέση “σίγουρα-δείχνει-σε”. Το μοντέλο μας είναι εκτελέσιμο, στη γλώσσα Datalog,
και αποτελεί τη βάση για μια ολοκληρωμένη ανάλυση σίγουρης-συνωνυμίας δεικτών για
κώδικα σε μορφή Java bytecode. Εξετάζουμε σε βάθος πώς μπορεί να παραμετροποιηθεί
η ανάλυση και ποσοτικοποιούμε την επίδραση των σχεδιαστικών αποφάσεών σε μεγάλα
δοκιμαστικά προγράμματα Java.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάλυση Προγραμμάτων

KEYWORDS: “δείχνει-σε” ανάλυση, ανάλυση συνωνύμων, “ευαισθησία”-
συμφραζομένων, “ευαισθησία”-αντικειμένων, “ευαισθησία”-τύπων



To my parents, Eleni & Dimitris



ACKNOWLEDGMENTS

First and foremost, I would to thank my supervisor, Prof. Yannis Smaragdakis, for provid-
ing me with the opportunity to work with him the last few years. I truly enjoyed working on
several research projects under Prof. Smaragdakis’ supervision, his expertise and guid-
ance throughout my studies were valuable and helped me to develop as a researcher.

Next, I would like to thank all the members of the PLAST lab, my first academic home.
Studying in such a fun environment was extremely motivating and helpful. Special thanks
to my labmates, George Balatsouras, Aggelos Biboudis and George Kollias. I am really
grateful for their help and guidance in both academic and non-academic matters.

Finally, I am deeply indebted to my parents and my aunt Katerina. Without their support
nothing that I have accomplished would be possible.



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Background and Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Must-Alias Analysis Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Schema of Analysis Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Core Analysis Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Must-Point-To Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. Discussion: Analysis Configurability . . . . . . . . . . . . . . . . . . . . . . . 27

5. Implementation and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 30

6. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



LIST OF FIGURES

Figure 1: Simple illustration of must-alias inferences. . . . . . . . . . . . . . 14

Figure 2: Our domain input relations and predicates. . . . . . . . . . . . . . . 17

Figure 3: Datalog rules for a model must-alias analysis (simple instructions). 21

Figure 4: Datalog rules for a model must-alias analysis (complex rules). . . . 22

Figure 5: Datalog rules for a model must-point-to analysis. . . . . . . . . . . . 24

Figure 6: Sample optimized rules. . . . . . . . . . . . . . . . . . . . . . . . . 25



LIST OF TABLES
Table 1: 2objH may-point-to analysis statistics. . . . . . . . . . . . . . . . . . 31
Table 2: Average #alias pairs per program element. . . . . . . . . . . . . . . 31
Table 3: Alias pairs for different contexts of the must-alias analysis. . . . . . . 32



General Declarative Must-Alias Analysis

1. INTRODUCTION
Pointer analysis is the backbone of many realistic static analyses, as it offers a scalable
way to model heap behavior. Pointer analysis typically comes in two flavors: alias anal-
ysis, which computes program expressions that may alias, i.e., refer to the same heap
object, and points-to analysis, which computes the heap objects that program variables
and expressions may refer to.

The vast majority of pointer analysis techniques that have appeared in the recent research
literature (e.g., [3,9,11,15,22,26,27]) aremay-analyses. That is, the techniques attempt to
over-approximate the (unattainable) fully precise result. All possible alias pairs are guar-
anteed to be included in the outcome of a may-alias analysis. All possible abstract ob-
jects that may be referenced by a variable are included in the variable’s may-point-to set.
However, spurious inferences (which will never occur in program execution) may also be
included in the analysis output.

In contrast, an under-approximate,must-analysis is often desirable. A must-analysis com-
putes aliasing or points-to relationships that are guaranteed to always hold during program
execution, at the cost of missing some inferences. A must-analysis for pointers is invalu-
able for automatic optimizations, such as constant folding, common subexpression elim-
ination, and register allocation, as well as for better program understanding: the results
of a must-inference are guaranteed facts, of immediate value to the human programmer.
Furthermore, must-analyses are ideal for bug detection that traditionally has a high false-
warnings rate. For instance, a may-analysis for null pointer dereferences (either in may-
alias or may-point-to form) is rarely of engineering value, due to the preponderance of false
warnings. In contrast, a must-analysis for the same problem yields very few warnings, but
virtually all of them are actionable.

In practice, a must-analysis for pointers is often a must-alias analysis, and not a must-
point-to analysis. Points-to facts are harder to establish than aliasing relationships in a
conservative must- fashion. The difficulty is dual: First, the creation sites of objects are
often far from their use sites, making the establishment of must-point-to relationships un-
likely. Second, must-point-to reasoning requires careful modeling of abstract vs. concrete
objects. For instance, for techniques such as strong updates (i.e., replacing the value of
an object field at a store instruction) it is not sufficient to know the abstract object that
the base expression must-point-to, since the abstract object may conflate many concrete
objects during program execution, and only one of them will have its field updated.

In this work, we present MaDoop: a general must-alias analysis framework, with signif-
icant configurability. Our framework is implemented in the Datalog language, as an ex-
tension of the Doop may-point-to analysis framework [5]. TheMaDoop framework com-
prises some-300 logical rules, as well as scaffolding code for the low-level (flow-sensitive)
modeling of Java bytecode as logical relations. However, the essence of the framework,
for a minimal input language, is well-captured in a small number of rules, which we present

Konstantinos Ferles 12



General Declarative Must-Alias Analysis

in detail in this thesis.

The framework specification is quite modular: extra functionality can be supported as ad-
ditional rules. Furthermore, the framework can be configured to achieve different trade-
offs of inference power (i.e., more alias pairs established) and scalability. For instance, the
framework allows control over context creation, access path creation, and more. An impor-
tant dimension, which our work explores, is that of context-sensitivity. Context-sensitivity
is a concept of diminished value for an alias analysis, since alias pairs already offer a
summary of a function’s behavior, and this summary is customized at call sites. However,
we discuss interesting ways in which context-sensitivity can be profitable in the must-
alias analysis setting. Finally, as is common in practice, a must-alias analysis employs a
may-analysis as a pre-processing step. Our framework concisely captures all the points
at which may- information interfaces with must- information. Furthermore, we analyze and
quantify the impact of the choice of may-analysis on the effectiveness of the must-alias
analysis.

A major benefit of a must-alias analysis is its incrementality. In a well-specified must-alias
analysis, soundness is not compromised if only a portion of the program-under-analysis
or its libraries are available. This key element is emphasized in our declarative model. We
control the program points where the full analysis applies and leverage context-sensitivity
to allow analysis of other program points.

In essence, our analysis infers normal must-alias relationships for a user-selected core
part of the program, and infers conditional, context-qualified must-alias relationships for
other parts that interact with the core program.

Overall, our work:

• models a general, configurable, powerful yet fully declarative must-alias analysis frame-
work, with context-sensitivity used to control analysis applicability;

• applies the framework, with extensions for fully realistic treatment of language features,
to Java bytecode;

• discusses insights and trade-offs of must-alias analysis;

• presents experimental results that illustrate interesting configurations of the must-alias
analysis.

In the rest of the thesis, we present an example for illustration of must-alias reasoning
(Chapter 2), show our analysis algorithm (Chapter 3), discuss its parametric character and
configurability options (Chapter 4), analyze tradeoffs experimentally (Chapter 5), detail
related work (Chapter 6) and conclude (Chapter 7).

Konstantinos Ferles 13



General Declarative Must-Alias Analysis

2. BACKGROUND AND EXAMPLE
We illustrate some basic concepts of must-alias and must-point-to reasoning with a small
example.

1 class A {
2 A next;
3 B member;
4

5 A(A next, B member) {
6 this.next = next;
7 this.member = member;
8 }
9

10 void foo(A a) {
11 member.container = a;
12 }
13 }
14

15 class B {
16 A container;
17 B(A container) {
18 this.container = container;
19 }
20 }
21

22 public class Test {
23 public static void main(String[] args) {
24 B b1 = new B(null);
25 A a1 = new A(null, b1);
26 A a2;
27 if (args != null)
28 a2 = new A(null, b1);
29 else
30 a2 = new A(a1, b1);
31 b1.container = a2;
32 a1.foo(a1);
33 }
34 }

Figure 1: Simple illustration of must-alias inferences.

Consider the small Java program in Figure 1. Even at this size, inspecting the program
requires human effort. A must-alias analysis can provide useful information to tools and
humans alike. The output consists of must-alias pairs: expressions that are guaranteed
to point to the same object. (More precise definitions follow in Chapter 3.) For instance,
a1.member and b1 form an alias pair for almost the entire body of method main. Alias
pairs are established by direct variable assignments (which are plentiful in a compiler
intermediate language, although less so in original source code), as well as heap stores
and loads. A must-alias analysis has to report aliases only when they are guaranteed to
hold, and needs to invalidate them on store instructions or method calls that may change
the fields of objects pointed by subexpressions in an alias pair. In Figure 1, b1.container
is an alias for a2 on (i.e., after) line 31. However, the analysis needs to recognize that line
32 invalidates that alias pair. Line 32 instead establishes an aliasing relationship between

Konstantinos Ferles 14



General Declarative Must-Alias Analysis

b1.container (as well as a1.member.container) and a1. The analysis remains sound
(i.e., safely under-approximate) if the earlier b1.container ∼ a2 alias pair is invalidated,
regardless of whether the new alias pair (b1.container ∼ a1) is established, via inter-
procedural reasoning, on line 32. Such invalidation can take place either conservatively,
at all method call points, or by use of a may-analysis, which informs the must-analysis that
the call to foo will result in changes to the container field of an object.

Other aliasing relationships hold throughout the program. Establishing them often requires
some inter-procedural reasoning—e.g., to see the aliasing effects of the constructor call
on lines 25, 28, or 30. Constructors feature prominently in the example, since they are one
of the best sources of must-alias information in a typical program.

Similarly, we can infer must-point-to relations between access paths and heap objects,
represented by their allocation sites. For instance, access paths b1 and a1 must point to
the heap allocation on lines 24 and 25 respectively. These must-point-to facts are the eas-
iest to establish, since we only have to keep track of the instructions that allocate a new
heap object. However, if we leverage the aforementioned must-alias inferences, we can
infer must-point-to facts for more complex access paths. For example, before line 32 we
know that a1must point to the heap allocated on line 25 (there is no instruction throughout
main that can invalidate this fact). If we propagate this information interprocedurally and
use the fact that within foo member.container and a are aliased (i.e., they point to the
same heap allocation), we can infer that member.container also points to the heap allo-
cated on line 25. We can also propagate this fact back to main (foo’s caller) and infer that
a1.member.container must point to the same heap allocation. As we mention later, the
must-point-to relation holds only if the allocation site refers to the most recently allocated
object, as presented in reference [2].

Konstantinos Ferles 15



General Declarative Must-Alias Analysis

3. MUST-ALIAS ANALYSIS MODEL
We present next our minimal model of a must-alias analysis algorithm. The model is ex-
pressed in the Datalog language. Since the early work of Reps [17], Datalog has been re-
peatedly used to express program analysis algorithms (e.g., [5,13,25,28]). The language
ideally captures the usual program analysis notion of monotonic iteration until fixpoint. Dat-
alog rules infer more facts from combinations of previously established facts, with variables
implicitly quantified existentially. A rule of the form “Head(x,y)← P(x,z), Q(y,z).” means
that if values for x,y,z can be found so that P(x,z) and Q(y,z) are simultaneously true, then
Head(x,y) is inferred. Syntactically, the left arrow symbol (←) separates the inferred facts
(i.e., the head of the rule) from the previously established facts (i.e., the body of the rule).
For our analysis to be expressed in Datalog, we assume that the program-under-analysis
is represented as input relations (typically implemented as database tables) that encode
its different elements. Such pre-processing is a relatively straightforward one-to-one trans-
lation.

3.1 Schema of Analysis Relations

We show our algorithm on a minimal static-single assignment (SSA) intermediate lan-
guage1 with a) a “move” instruction for copying between local variables; b) a “phi” in-
struction for merging of single-assignment variables; c) “store” and “load” instructions for
writing to the heap (i.e., to object fields); d) a “virtual method call” instruction that calls the
method of the appropriate signature defined in the dynamic class of the receiver object;
and e) an “assign heap allocation” instruction that allocates and constructs an object of
the given type. Furthermore, the language can be enhanced with features such as arrays,
static members and calls, exceptions, etc. to be a full-fledged intermediate language. In-
deed, our actual analysis implementation is on the Jimple intermediate language of the
Soot framework [23, 24], which models all features of Java bytecode. Yet the core of the
analysis is expressed faithfully in the minimal language.

Figure 2 shows the domain of the analysis (i.e., the different value sets that constitute
the space of our computation) and four different groups of relations. These relations are
explained in more detail below, but their declarations and type signatures can be handy for
reference. The first group (starting with Alloc) contains relations representing the input
language instructions and other program text information, such as types and member
lookup. The second group (starting withMustAlias) contains relations computed by our
algorithm. The third group (starting with AP) contains functions that produce new objects,
either contexts or access paths. The fourth group (starting with Resolved) also lists input

1That is, every local variable is assigned exactly once in the input program. For variables with multi-
ple assignments in the original source code, the merging of their values is indicated by a ϕ node. var =
ϕ(var1,var2,var3) signifies that the value of var can be either one of the three values on the right-hand side.
For the purposes of static analyses, like ours, that do not track path conditions, it is not relevant which of
the three values is actually picked.

Konstantinos Ferles 16



General Declarative Must-Alias Analysis

V is a set of program variables M is a set of method identifiers
S is a set of method signatures (name+types) F is a set of fields
I is a set of instructions T is a set of types
C is a set of contexts A is V .(F )∗: a set of access paths
H is a set of heap allocations (i.e., allocation sites) N is the set of natural numbers
Alloc(i: I, to: V, heap: H) # i: to = new ...
Move(i: I, to: V, from: V ) # i: to = from
Load(i: I, to: V, base: V, fld: F) # i: to = base.fld
Store(i: I, base: V, fld: F, from: V ) # i: base.fld = from
Call(i: I, base: V, sig: S) # i: base.sig(..)
Phi(i: I, to: V, from1: V, …) # i: to = ϕ(from1, …)
Next(i: I, j: I) # j is CFG successor of i

FormalArg(meth: M, n: N, arg: V ) ActualArg(invo: I, n: N, arg: V )
FormalRet(instr: I, meth: M, ret: V ) ActualRet(invo: I, var: V )
ThisVar(meth: M, this: V ) LookUp(type: T, sig: S, meth: M)
InMethod(instr: I, meth: M)
MustAlias(i: I, ctx: C, ap1: A, ap2: A)
AccessPathMustPointTo(i: I, ctx: C, ap: A, heap: H)
MustCallGraphEdge(invo: I, ctx: C, toMth: M, toCtx: C)
Reachable(ctx: C, meth: M)
RebaseAtCall(i: I, ctx: C, fromVar: V, toVar: V )
RebaseAtReturn(i: I, ctx: C, fromVar: V, toVar: V )
AP(access path expression) = ap: A
RebaseAP(ap: A, fromVar: V, toVar: V ) = newAp: A
NewContext(invo: I, ctx: C) = newCtx: C
Resolved(var: V, type: T) MayAlias(var1: V, var2: V )
CallMayStoreToField(invo: I, fld: F) RootMethod(meth: M)
CallMayAllocateHeap(invo: I, heap: H)
Figure 2: Our domain, input relations (Alloc, ...), computed relations (MustAlias, ...), constructors
(AP, ...), and configuration predicates (Resolved, ...). The input relations are of two kinds: relations
encoding program instructions (the form of the instruction is shown in a comment) and relations

encoding type system and other environment information.

relations, but of a different kind. These are expected to either be supplied by the user for
analysis configuration purposes, or to be computed by an earlier-run may-analysis.

Input Relations. The input relations correspond to our intermediate language features.
They are logically grouped into relations that represent instructions and relations that rep-
resent name-and-type information. For instance, the Move relation represents instruc-
tions that assign a local variable to another. There are similar input relations for other
instruction types (Alloc, Load, Store, and Call, for allocating heap objects, for read-
ing/writing heap object fields, and for virtual calls, respectively). The Phi relation cap-
tures ϕ instructions, for the SSA form of our intermediate language. The Next relation
expresses directed edges in the control-flow graph (CFG): Next(i,j) means that i is a
CFG predecessor of j.

Konstantinos Ferles 17



General Declarative Must-Alias Analysis

Similarly, there are relations that encode type system, symbol table, and program environ-
ment information. For instance, FormalArg shows which variable is a formal argument
of a given method at a certain index (i.e., the n-th argument). The relation is a function
from the first two arguments to the third.ActualArg is similar, but at a method invocation
site. FormalRet combines information on the return variable of a function with the index
of the return instruction. Note that the input intermediate language program is assumed to
be in a single-return form, for each method. ActualRet is a function of its first argument
(a method invocation site) and returns the local variable at the call site that receives the
method call’s return value. ThisVar returns the this variable of a method. LookUp is
a function from its first two arguments to the third. It matches a method signature to the
actual method definition inside a type. InMethod is a function from instructions to their
containing methods.

Computed Relations. Figure 2 also shows the computed relations of our must-alias
analysis. The first relation, MustAlias, is also the main output of the analysis. The re-
lation is defined on access paths, i.e., expressions of the form “var.(fld)*”. The meaning
of MustAlias(i, ctx, ap1, ap2) is that access path ap1 aliases access path ap2 (i.e., they
are guaranteed to point to the same heap object, or to both be null) right after program
instruction i, executed under context ctx, provided that the instruction is indeed executed
under ctx at program run-time. The two access paths are said to form an alias pair. The
second relation, AccessPathMustPointTo, has similar meaning but instead of relating
two access paths, it relates an access path with a heap allocation. That is, AccessPath-
MustPointTo(i, ctx, ap, h) means that, right after instruction i, under context ctx, access
path ap must point to the most recently allocated object represented by allocation site h
(provided i is executed under ctx).

The introduction of access paths and contexts raises natural questions: how complex can
access paths get? What is a context and what does it mean for it to occur at run-time? We
postpone the full treatment of these questions until Chapter 4.

Other computed relations represent intermediate results of the analysis. MustCall-
GraphEdge holds information for fully-resolved virtual calls: invocation site invo will call
method toMth under the given contexts. Reachable computes which methods, and un-
der what context, are of interest to the must-alias analysis. The RebaseAtCall and Re-
baseAtReturn relations hold variable pairs for access-path remapping (between the
caller and the callee) at call sites.

Constructors. We assume a constructor function AP that produces access paths,
and another function RebaseAP that takes an access path and returns a new one
by changing the base variable of the original. For instance, inside a logic program,
“AP(var.fld1.fld2) = ap” means that the access path ap has length 3 and its elements are

Konstantinos Ferles 18



General Declarative Must-Alias Analysis

given by the values of bound logical variables var, fld1 and fld2. Similarly, we construct
new contexts using function NewContext. The above constructor functions also serve to
configure the analysis. If a constructor does not return a value (e.g., because the maxi-
mum context depth has been reached), the current rule employing the constructor will not
produce facts. The constant All is used to signify the initial context.

We shall also useAP as a patternmatcher over access paths. For instance, the expression
“AP(_.fld._) = ap” binds the value of logical variable fld to any field of access path ap. (_
is an anonymous variable that can match any value in a Datalog program.)

Constructors of access paths and contexts are much like other relations. In practical anal-
yses, the space of access paths is made finite, by bounding their length, and similarly for
contexts. Therefore, all possible access paths and contexts could be computed prior to the
analysis start and supplied as inputs. However, this is unlikely to be desirable in practice,
for efficiency reasons, and is limiting in principle: by separating constructors, our model
also allows analyses with unbounded access paths and contexts.

Configuration Predicates. The last four elements of Figure 2 show input predicates
that can be used to configure the must-alias analysis. Predicates Resolved,MayAlias,
CallMayStoreToField, and CallMayAllocateHeap are expected to be computed
by a may-point-to analysis, running as a preprocessing step. Resolved holds variables
that are determined to only point to objects with a unique dynamic type. MayAlias re-
flects whether two variables (in the same method) may point to the same object. Call-
MayStoreToField does a transitive search of all methods that may be called at an
invocation site, invo, looking for store instructions to field fld. Likewise, CallMayAllo-
cateHeap computes the transitive closure of all the abstract heap objects that invo may
possibly allocate. The power of the must-alias analysis will hinge on the precision of these
relations.

Finally, RootMethod is a predicate over methods, used to limit the applicability of base
must-alias reasoning to a user-selected set of methods. As we will see, our analysis algo-
rithm will venture beyond these root methods only to the extent that its context constructor
allows.

3.2 Core Analysis Model

Figures 3 and 4 show our must-alias algorithm. To keep the rules concise, we have em-
ployed some syntactic sugar, which straightforwardly maps to more complex Datalog
rules:

• In addition to conjunction (signified by the usual “,” in a rule body) our rules also employ
disjunction (“;”) and negation (“!”). Negation is stratified: it is only applied to predicates
that are either input predicates or whose computation can complete before the current
rule’s evaluation.

Konstantinos Ferles 19



General Declarative Must-Alias Analysis

• We use the shorthand P* for the reflexive, transitive closure of relation P, which is
assumed to be binary. For larger arities, underscore (_) variables are used to distin-
guish variables of a relation that are affected by the closure rule. Specifically,MustAl-
ias*(i, ctx, _, _) denotes the reflexive, transitive closure of relation MustAlias with
respect to its last two variables.

• We introduce ∀: syntactic sugar that hides a Datalog pattern for enumerating all mem-
bers of a set and ensuring that a condition holds universally.2 An expression “∀i: P(i)→
Q(i,...)” is true if Q(i,...) holds for all i for which P(i) holds. Such an expression can be
used in a rule body, as a condition for the rule’s firing. Multiple variables can be quanti-
fied by a ∀. If a variable is not bound by a ∀, it remains implicitly existentially quantified,
as in conventional Datalog. However, the existential quantifier is interpreted as being
outside the universal one. For instance, “∀i,j: P(i,j,k)→Q(i,j,k,l)” is interpreted as “there
exist k,l such that for all i,j ...”.

The rules in Figures 3 and 4 are split into five groups. We discuss them in order, next.

Base Rules. The top part of Figure 3 lists six rules: two to initialize interesting analysis
contexts and four for must-alias inferences. The first rule employs configuration predicate
RootMethod. This predicate designates methods that are to be analyzed uncondition-
ally: the inference is made under the special context value All. Additionally, our algorithm
analyzes all methods that are fully resolved, i.e., discovered byMustCallGraphEdge.

The above mechanism controls the application extent of the analysis. Recall that incre-
mentality is a key benefit of a must-alias analysis. Therefore, it is desirable to be able
to apply the algorithm as locally as the user may desire. The context mechanism is then
used to explore other code, but only to the extent that such exploration benefits the root
methods intended for analysis.

The four MustAlias rules handle one instruction kind each: Move, Phi, Load, and
Store. The Move rule merely establishes an aliasing relationship between the two as-
signed variables, at the point of the move instruction. The Phi rule promotes aliasing re-
lationships that hold for all the right-hand sides of a ϕ instruction to its left hand side. The
Load and Store rules establish aliases between the loaded/stored expression, base.fld,
and the local variable used.

Inter-Procedural Propagation Rules. The bottom part of Figure 3 presents five rules
responsible for the inter-procedural propagation of access path aliasing.

The first rule continues the handling of program instructions with a treatment of Call. At a
Call instruction, for method signature sig over object base, if base has a unique (resolved)

2Emulating universal quantification in Datalog requires ordered domains. In practice this is not a restric-
tion: an arbitrary ordering relation (e.g., by internal id of facts as assigned by the implementation) can be
imposed on all our domains.

Konstantinos Ferles 20



General Declarative Must-Alias Analysis

Reachable(ctx,m)← RootMethod(m), ctx = All.
Reachable(toCtx,toMth)←MustCallGraphEdge(_, _, toMth, toCtx).

MustAlias(i, ctx, AP(from), AP(to))←
Move(i, to, from), InMethod(i, m), Reachable(ctx,m).

MustAlias(i, ctx, AP(from), AP(to))←
(∀from: Phi(i, to, …, from, …)→MustAlias(i, ctx, AP(from), ap)),
InMethod(i, m), Reachable(ctx,m).

MustAlias(i, ctx, AP(to), AP(base.fld))←
Load(i, to, base, fld), InMethod(i, m), Reachable(ctx,m).

MustAlias(i, ctx, AP(from), AP(base.fld))←
Store(i, base, fld, from), InMethod(i, m), Reachable(ctx,m).
MustCallGraphEdge(i, ctx, toMth, toCtx)←
Call(i, base, sig), InMethod(i, m), Resolved(base, type),
LookUp(type, sig, toMth), Reachable(ctx,m), NewContext(i,ctx) = toCtx.

RebaseAtCall(i, ctx, var, toVar)←
MustCallGraphEdge(i, ctx, toMth, _),
((FormalArg(toMth, n, toVar), ActualArg(i, n, var));
(ThisVar(toMth, toVar), Call(i, var, _))).

RebaseAtReturn(i, ctx, var, toVar)←
MustCallGraphEdge(i, ctx, toMth, _),
((ActualRet(i, toVar), FormalRet(_, toMth, var));
(ActualArg(i, n, toVar), FormalArg(toMth, n, var));
(Call(i, toVar, _), ThisVar(toMth, var))).

MustAlias(firstInstr, toCtx, ap1, ap2)←
MustCallGraphEdge(i, ctx, toMth, toCtx),
InMethod(firstInstr, toMth), (∀k→ !Next(k, firstInstr)),
(∀j: Next(j, i)→MustAlias(j, ctx, callerAp1, callerAp2)),
RebaseAtCall(i, ctx, var1, toVar1), RebaseAP(callerAp1, var1, toVar1) = ap1,
RebaseAtCall(i, ctx, var2, toVar2), RebaseAP(callerAp2, var2, toVar2) = ap2.

MustAlias(i, ctx, ap1, ap2)←
MustCallGraphEdge(i, ctx, toMth, toCtx), FormalRet(ret, toMth, _),
MustAlias(ret, toCtx, calleeAp1, calleeAp2),
RebaseAtReturn(i, ctx, var1, toVar1), RebaseAtReturn(i, ctx, var2, toVar2),
RebaseAP(calleeAp1, var1, toVar1) = ap1,
RebaseAP(calleeAp2, var2, toVar2) = ap2.

Figure 3: Datalog rules for a model must-alias analysis: handling move, load, store, and call
instructions.

type, then the method is looked up in that type, and aMustCallGraphEdge is inferred
from the invocation instruction to the target method. The callee context is computed us-
ing constructor NewContext. Recall that the NewContext function may fail to return a
new context (e.g., because ctx has already reached the maximum depth and toCtx would
exceed it) in which case the rule will not infer new facts.

The other four rules handle access path rebasing, i.e., the mapping of an access path

Konstantinos Ferles 21



General Declarative Must-Alias Analysis

MustAlias(i, ctx, _, _)←MustAlias*(i, ctx, _, _).

MustAlias(i, ctx, ap1, ap2)←
MustAlias(i, All, ap1, ap2), InMethod(i, meth), Reachable(ctx, meth).

MustAlias(i, ctx, ap3, ap4)←
MustAlias(i, ctx, ap1, ap2), AP(ap1.fld) = ap3, AP(ap2.fld) = ap4.
MustAlias(i, ctx, ap1, ap2)←
!Store(i, _, _, _), !Call(i, _, _), (∀j: Next(j, i)→MustAlias(j, ctx, ap1, ap2)).

MustAlias(i, ctx, ap1, ap2)←
Call(i, _, _), (∀j: Next(j, i)→MustAlias(j, ctx, ap1, ap2)),
AP(var1) = ap1, AP(var2) = ap2.

MustAlias(i, ctx, ap1, ap2)←
Call(i, _, _), (∀j: Next(j, i)→MustAlias(j, ctx, ap1, ap2)),
(∀fld: (AP(_.fld._) = ap1; AP(_.fld._) = ap2)→ !CallMayStoreToField(i, fld)).

MustAlias(i, ctx, ap1, ap2)←
Store(i, base, fld, _), (∀j: Next(j, i)→MustAlias(j, ctx, ap1, ap2)),
(!AP(_.fld._) = ap1; (AP(var1.fld) = ap1, !MayAlias(var1, base))),
(!AP(_.fld._) = ap2; (AP(var2.fld) = ap2, !MayAlias(var2, base))).

Figure 4: Datalog rules for a model must-alias analysis: transitive closure, context weakening,
access path extension, and frame rules.

from the local variables of one method to those of another, during calls and returns. The
rules establishing RebaseAtCall and RebaseAtReturn are straightforward. The for-
mer computes mappings from every actual parameter to its matching formal parameter,
as well as from the base variable of the call to this. The latter computes inverse mappings
(recall that our input is in SSA form, so the values of local variables cannot be reassigned),
as well as a mapping from actual return variable to the formal one, inside the caller.

The last two rules in Figure 3 employ these mappings. Alias pairs that hold for every prede-
cessor instruction, j, of the calling instruction, i, are rebased (using functionRebaseAP) per
the RebaseAtCall mappings and inferred for the first instruction of the called method.
(The first instruction of the called method is computed as the only instruction in the method
that has no CFG predecessors. This convention is assumed to hold for our input interme-
diate language.) Alias pairs that hold at the return instruction of a method are rebased,
per the RebaseAtReturn mappings, and inferred for the invocation site.

Crucially, the handling of a method return is the point where a context can become
stronger. MustAlias facts that were inferred to hold under the more specific toCtx are
now established, modulo rebasing, under ctx.

Transitive Closure, Reachability, Access Path Extension, and Contexts. The top
part of Figure 4 contains straightforward, yet essential, rules. The very top rule makes
relationMustAlias symmetrically and transitively closed.

The second rule is a context weakening rule: any must-alias fact that holds for an All

Konstantinos Ferles 22



General Declarative Must-Alias Analysis

context also holds for any specific context and method of interest (i.e., in Reachable).

The third rule of Figure 4 allows access path extension: if two access paths alias, extend-
ing them by the same field suffix also produces aliases. It is important to note that the
constructor AP is not used in the head of the rule, thus the extended access paths are not
generated but assumed to exist. Thus, the rule does not spur infinite creation of access
paths. We discuss the issue of the space of access paths and how to populate it efficiently
in Chapter 4.

Frame Rules: From One Instruction To The Next. Our last four rules, in the bottom
part of Figure 4, determine how must-alias facts can propagate from one instruction to its
successors. These rules liberally employ negation. They establish that must-alias facts
are propagated if some disabling conditions do not hold. Therefore, for a full-fledged anal-
ysis, the rules need to be enriched with more preconditions, to cover all different kinds of
program instructions that may invalidate access paths.

Each rule body contains a premise that establishes must-alias facts that hold for all prede-
cessors of an instruction. The first rule then simply states that all aliases are propagated
if the instruction is not a store or a call. (Because of our SSA-input assumption, access
paths cannot be invalidated via move instructions.) The second rule propagates over call
instructions alias relationships between access paths that consist of mere variables.

The last two rules are more interesting. The next-to-last rule propagates an alias pair over
a call, as long as no field contained in either access path is invalidated by any method
transitively reachable from the call site. The latter condition is established by configuration
predicate CallMayStoreToField, supplied by a prior may-analysis.

The very last rule propagates alias pairs over a store instruction, as long as, for both
access paths, either the stored field is not in the access path or the access path is of
the simple form var.fld and var cannot be aliased to the base of the store. This reasoning
again employs the results of a prior may-alias analysis, encoded in configuration predicate
MayAlias.

3.3 Must-Point-To Modeling

Now we present the additional rules needed in order to include a must-point-to analysis in
our core model. PredicateAccessPathMustPointTo calculates the heap that an acess
path points to per program point (under a context ctx). Since we are modeling a “must”
analysis, the heap object an access path can point to is unique, therefore AccessPath-
MustPointTo is a function from its three first arguments to the fourth.

Recall that if AccessPathMustPointTo holds for an access path ap and a heap object
h, this means that ap points to the most recently allocated object represented by allocation
site h [2]. This is the only way to ensure that h is not a summary object. This is a necessary

Konstantinos Ferles 23



General Declarative Must-Alias Analysis

AccessPathMustPointTo(i, ctx, AP(to), heap)←
Alloc(i, to, heap), InMethod(i, m),
Reachable(ctx,m).

AccessPathMustPointTo(firstInstr, toCtx, calleeAp, heap)←
MustCallGraphEdge(i, ctx, toMth, toCtx),
InMethod(firstInstr, toMth), (∀k→ !Next(k, firstInstr)),
(∀j: Next(j, i)→MustAlias(j, ctx, callerAp, heap)),
RebaseAtCall(i, ctx, var, toVar), RebaseAP(callerAp, var, toVar) = calleeAp.

AccessPathMustPointTo(i, ctx, callerAp, heap)←
MustCallGraphEdge(i, ctx, toMth, toCtx), FormalRet(ret, toMth, _),
AccessPathMustPointTo(ret, toCtx, calleeAp, heap),
RebaseAtReturn(i, ctx, var, toVar), RebaseAP(calleeAp, var, toVar) = callerAp.
AccessPathMustPointTo(i, ctx, ap, heap)←
!Store(i, _, _, _), !Call(i, _, _), !Alloc(i, _, _),
(∀j: Next(j, i)→ AccessPathMustPointTo(j, ctx, ap, heap)).

AccessPathMustPointTo(i, ctx, ap, heap)←
Call(i, _, _), (∀j: Next(j, i)→ AccessPathMustPointTo(j, ctx, ap, heap)),
(∀fld: (AP(_.fld._) = ap)→ !CallMayAllocateHeap(i, heap), !CallMayStoreToField(i, fld)).

AccessPathMustPointTo(i, ctx, ap, heap)←
Store(i, base, fld, _), (∀j: Next(j, i)→ AccessPathMustPointTo(j, ctx, ap, heap)),
(!AP(_.fld._) = ap; (AP(var.fld) = ap, !MayAlias(var, base))).
AccessPathMustPointTo(i, ctx, ap2, heap)←
MustAlias(i, ctx, ap1, ap2), AccessPathMustPointTo(i, ctx, ap1, heap).

Figure 5: Datalog rules for a model must-point-to analysis.

requirement in order to perform strong updates.

Figure 5 presents the Datalog rules that populate the AccessPathMustPointTo pred-
icate. As before, we separate the rules into three groups. The first group presents rules
related to allocation instructions and interpocedural propagation of AccessPathMust-
PointTo facts. The second group presents the frame rules for AccessPathMust-
PointTo, i.e., how we propagate facts from instruction to the next one. Lastly, the third
group presents how must-point-to analysis interacts with must-alias. Next we briefly dis-
cuss the key points for each group of rules.

Allocations and interpocedural logic. The first rule is the most crutial one, since heap
allocations are the source for all must-point-to facts. At each allocation site, we can infer
that the target variable must point to the heap allocation. The interpocedural logic is similar
to the must-alias algorithm, as presented in figure 3, since it also uses theRebaseAtCall
and RebaseAtReturn predicates.

Frame rules. Again the frame rule logic is almost identical to the must-alias analysis.
The key point again is to detect instructions that may affect an access path in order to

Konstantinos Ferles 24



General Declarative Must-Alias Analysis

AccessPathMustPointTo(i, All, AP(to), heap)←
Alloc(i, to, heap), InMethod(i, m),
Reachable(_,m).

AccessPathMustPointTo(i, ctx, ap2, heap)←
MustAlias(i, ctx1, ap1, ap2), AccessPathMustPointTo(i, ctx2, ap1, heap),
⊓(ctx1, ctx2) = ctx.

Figure 6: Optimized rules that avoid materializing redundant facts.

stop propagating AccessPathMustPointTo facts. However, these frame rules must
also ensure that every access path points to the most recently allocated object. To estab-
lish this we use the CallMayAllocateHeap relation at the second frame rule, the one
responsible to propagate AccessPathMustPointTo facts after a call instruction.

Interaction with must-alias. Finally, the last group contains a single rule that combines
the two parts of our model, must-alias and must-point-to analyses. Until now we have seen
how we establish AccessPathMustPointTo facts only for simple variables. By exploit-
ing our must-alias analysis, which holds for arbitrary access paths, we can infer Access-
PathMustPointTo facts for more complex paths. The last rule of Figure 5 captures the
aforementioned logic in a straightforward manner. If we know that theMustAlias relation
holds for two access paths and that AccessPathMustPointTo holds for either of them,
we infer an AccessPathMustPointTo edge for the other.

A crucial optimization. The weakening rule, presented in Figure 4, is the one that glues
all the analysis together. This rule is responsible for combining facts that hold uncondition-
ally, i.e., under the special context value All, and facts that hold under a specific calling
context. However, we avoidmaterializing these facts sinceMustAlias is a dense relation.
Instead, we employ several optimizations to achieve context weakening. For example, we
define operator ⊓ for two contexts as follows:

⊓(ctx1, ctx2) =



ctx1, ctx2 = All

ctx2, ctx1 = All

ctx1, ctx1 = ctx2

⊥, ctx1 != ctx2 ∧ ctx1 != All ∧ ctx2 != All

So, when two predicates that involve contexts apear in the body of a rule, we bound their
contexts to different variables and provide them to the ⊓ operator. If the result is bottom,
the rule body is false and the rule produces no facts; otherwise we use the returned context
in the head of the rule as the context of the newly inferred facts.

To illustrate the optimization consider the first and last rules in Figure 5. The first one
infers an AccessPathMustPointTo fact for every reachable context. Nevertheless, we

Konstantinos Ferles 25



General Declarative Must-Alias Analysis

can safely infer that AP(to) must-point to heap only under the special context All, since
Alloc is not affected by the calling context. The same applies for other instructions as
well, such as Move, Load, etc. Now, we also need to adjust the last rule of Figure 5,
because it depends on existing MustAlias and AccessPathMustPointTo facts. The
two optimized rules are presented in Figure 6.

Konstantinos Ferles 26



General Declarative Must-Alias Analysis

4. DISCUSSION: ANALYSIS CONFIGURABILITY
The analysis model of the previous section is configurable in many ways. The creation of
access paths and contexts (e.g., their maximum depth), the choice of may-analysis, the
applicability to specific parts of the program, are all means to configure the analysis. We
discuss some topics in more detail next.

Context-Sensitivity in Must-Alias. The use of context in our must-alias analysis is sub-
tle, with several aspects deserving clarification.

The concept of context in a pointer analysis is used to distinguish different dynamic ex-
ecution flows when analyzing a method. That is, the same method gets analyzed once
per each applicable context, under different information. The context effectively encodes
different scenarios under which the method gets called, allowing more faithful analysis in
the specialized setting of the context.

Our analysis model of Chapter 3 employs context (Figure 3) to transmit alias pairs from
a caller to a callee, yet qualify such MustAlias facts with the context identifier to which
they pertain. This enables producing more alias pairs, however, their validity is conditional
on the context used. Still, this conditional information can be used for further inferences,
in logical rules not shown in Figures 3 and 4. For instance, MustAlias inferences can
be combined with allocation instructions (allocation sites can be viewed as global access
paths) in order to determine, when possible, which objects an access path must point to.
In turn, this can inform virtual method resolution, which our current rules (Figure 3) only
perform via a may-analysis. In this way, specialized alias relations for a given context
can result in more inferences (since a method call may now have a known target). These
inferences can be propagated back to the caller, where they hold unconditionally. (Recall
that the rules handling returns can remove access path assumptions.) Generally, the use
of a deeper context in a must-analysis can extend its reach, allowingmore inferences, i.e.,
a larger result, whereas in a may-analysis it results inmore precision, i.e., a smaller result.

What can our context be, however? In typical context-sensitive pointer analyses in the lit-
erature, a variety of context creation functions can be employed. There are context flavors
such as call-site sensitivity [19,20], object sensitivity [14,15], or type sensitivity [21]. Our
NewContext constructor (employed at method calls) could be set appropriately to produce
such context variety. However, the current form of our rules restricts our options to call-
site sensitivity, only allowing variable depth. The signature of constructor NewContext is
NewContext(invo: I, ctx: C) = newCtx: C. The assumption is that the new context produced
uniquely identifies both invocation site invo and its context, ctx. Effectively, if NewContext
produces a newCtx at all, it can do little other than push invo onto ctx and return the result.
This assumption is reflected in our other rules—for instance:

Konstantinos Ferles 27



General Declarative Must-Alias Analysis

MustAlias(firstInstr, toCtx, ap1, ap2)←
MustCallGraphEdge(i, ctx, toMth, toCtx),
InMethod(firstInstr, toMth), (∀k→ !Next(k, firstInstr)),
(∀j: Next(j, i)→MustAlias(j, ctx, callerAp1, callerAp2)),
RebaseAtCall(i, ctx, var1, toVar1), RebaseAP(callerAp1, var1, toVar1) = ap1,
RebaseAtCall(i, ctx, var2, toVar2), RebaseAP(callerAp2, var2, toVar2) = ap2.

In the above, allMustAlias inferences from (all predecessors of) call site i under context
ctx are transmitted to the first instruction of toMth, under context toCtx. Thus, toCtx should
be enough to establish that these inferences must hold. There is no room for conflating
information from multiple execution paths.

We can fix the rules to allow such generality. For the above rule, we get:

MustAlias(firstInstr, toCtx, ap1, ap2)←
(∀i, ctx:MustCallGraphEdge(i, ctx, toMth, toCtx)→
InMethod(firstInstr, toMth), (∀k→ !Next(k, firstInstr)),
(∀j: Next(j, i)→MustAlias(j, ctx, callerAp1, callerAp2)),
RebaseAtCall(i, ctx, var1, toVar1), RebaseAP(callerAp1, var1, toVar1) = ap1,
RebaseAtCall(i, ctx, var2, toVar2), RebaseAP(callerAp2, var2, toVar2) = ap2).

That is, the first premise of the rule becomes the guard of a ∀, and the entire rest of the
body is now under the ∀. The meaning of the new rule is that a caller-side alias pair is
transmitted to the callee only if all call sites and contexts, (i and ctx) that result in calls to
toMth under the same toCtx agree that the alias pair is valid.3

With such a modification to our rules, it is possible to use arbitrary NewContext construc-
tors that conflate or distinguish context information as they see fit. However, in practice,
different context flavors are unlikely to be useful: the same alias pairs will rarely hold for
different call sites. Since alias pair information is kept on a per-instruction-context basis,
call-site sensitivity is quite natural in the domain, and allows weakening the ∀ premise to
a single call site.

The requirement that NewContext(i,ctx) produce contexts that uniquely identify both i and
ctx means that context can only grow (and not mutate) from an original source in our anal-
ysis. Consider a set of three methods, meth1, meth2, and meth3, each calling the next.
If we allow NewContext to produce contexts that are stacks of invocation sites, i, each
starting with All and growing up to depth 2, then starting from meth1 we will propagate its
aliases to meth2, which will propagate the resulting combined aliases to meth3. The prop-
agation will stop there, i.e., the aliases of meth1 cannot influence inferences for callees of
meth3. However, meth3 (assuming the user designates it a root method) will itself also be
analyzed with a context of All, allowing its own aliases (independently derived from those

3An even better version of the rule would check that all call sites that result in the same context agree
on access paths after rebasing. However, this requires more significant refactoring of our rules and hinders
our illustration.

Konstantinos Ferles 28



General Declarative Must-Alias Analysis

of meth1 or meth2) to be a source of a similar propagation.

Access Path Creation. Our access path constructor, AP, hides the details of the space
of access paths and their construction. There are several different policies that an analysis
can pick. In theory, we could up-front populate the entire combinatorial space of “var.(fld)*”
up to a certain depth. However, the large sizes of the domains of variables and fields
make this prohibitive. An efficient way to create access paths lazily (also used in our full
implementation) is to initially generate all primitive access paths (variables and variable-
single-field combinations) that appear explicitly in the program text, and then close the set
of access paths by employing the rule:

AP(ap2.fld) = newAp←MustAlias(i, ctx, ap1, ap2), AP(ap1.fld) = _.

Note that one use of the constructor AP is in the head of the rule (thus generating new
access paths on the fly) and one in the body (checking that the access path already exists).
That is, extended access paths (base.field) are generated only if their base access path is
found to be aliased with another path, which already exists with the field suffix.

Finally, new access paths are also generated on the fly by rebasing (at method calls and
returns) per the RebaseAP constructor.

Konstantinos Ferles 29



General Declarative Must-Alias Analysis

5. IMPLEMENTATION AND EXPERIMENTS
The minimal model of earlier sections captures the essence of our full-fledged imple-
mentation. Our framework, MaDoop, is built on top of the Doop Datalog framework for
may-point-to analysis of Java bytecode [5]. Whereas Doop is a flow-insensitive points-
to analysis framework (ignoring the order of instructions in a method), MaDoop adds
flow-sensitive modeling of the Java bytecode program (a full control-flow graph over ba-
sic blocks). All program structure information is represented as logical tables, which are
subsequently processed by about 300 logical rules.

To demonstrate the framework experimentally, we apply it to the DaCapo benchmark pro-
grams [4] v.2006-10-MR2 under JDK 1.7.0_55. We use the LogicBlox Datalog engine,
v.3.10.14, on a Xeon E5-2667 3.3GHz machine with only one thread running at a time
and 256GB of RAM. When a may-analysis is needed, we employ the most precise anal-
ysis that scales to large programs in the Doop framework—a 2-object-sensitive analysis
with a context-sensitive heap (2objH).

We study five of the DaCapo benchmarks: antlr, chart, luindex, lusearch, pmd. We wanted
a small enough set for human inspection of alias pairs at select program points, as well
as programs for which a 2objH analysis terminates. The scalability of our own must-alias
analysis is not a concern: as discussed earlier, a must-alias analysis is naturally incremen-
tal. Hence, scalability to large programs is largely not an issue: we can apply the analysis
to just the application classes or to a smaller hand-selected subset of the program code.

Table 1 presents statistics on the sizes of the benchmarks, in terms of application code
deemed reachable by the Doop may-point-to analysis (2objH), as well as the running
time of this analysis. We also include the execution time for the preparatory computation
over the may-analysis results (“must pre-analysis” column)—i.e., the time to compute our
required input predicates, Resolved,MayAlias and CallMayStoreToField.

Our must-alias analysis is run with a maximum access path length of 3. Context depth
varies per experiment, as discussed below.

Comparison with Intra-Procedural Analysis. As a first measure of the value of our
inter-procedural must-alias analysis, we compare it against intra-procedural analyses. Tra-
ditional compilers can already compute aliases using intra-procedural data-flow analysis
and employ them for optimizations such as common subexpression elimination, constant
folding, or register allocation. It is interesting to consider whether there is benefit from con-
sidering more precisely the effects of called methods, in order to infer more local aliases.

For this experiment, we ran our analysis algorithm (with a context depth of 1) over the
entire application portion of the benchmarks. That is, the size of our RootMethod set is
the number of methods shown in Table 1.

The first and last settings shown in Table 2 (“intra-procedural” and “inter-procedural”, re-

Konstantinos Ferles 30



General Declarative Must-Alias Analysis

may analysis time

Benchmark methods classes core (2objH) must pre-analysis

antlr 1635 228 4m42s 0m51s
chart 1173 515 9m56s 0m57s
luindex 690 349 2m25s 0m27s
lusearch 1046 349 2m35s 0m29s
pmd 1877 553 3m06s 0m35s

Table 1: Statistics for reachable application code, 2objH may-point-to analysis and must
pre-analysis.

Alias pairs
intra-procedural intra-proc.+may

Bench. per instruction per return time per instruction per return time

antlr 58 34 3m04s 82 44 3m07s
chart 50 40 2m41s 59 44 2m25s
luindex 11 11 0m70s 17 14 0m71s
lusearch 12 11 0m74s 17 13 0m76s
pmd 28 23 3m28s 34 27 3m02s

inter-proc.−may inter-procedural

per instruction per return time per instruction per return time

antlr 58 34 3m41s 580 154 20m56s
chart 51 40 3m22s 76 53 17m19s
luindex 12 11 0m87s 31 26 2m46s
lusearch 12 11 0m94s 27 21 3m03s
pmd 28 23 4m48s 41 32 9m27s

Table 2: Average #alias pairs per program element (divided by 2, i.e., with equivalent symmetric
pairs removed), and timings for various settings.

spectively) present a purely intra-procedural analysis and our full inter-procedural algo-
rithm. The intra-procedural analysis does not exploit aliasing inferences from other meth-
ods, and conservatively invalidates alias pairs at method calls and heap stores.

The main metric to watch for in this comparison is “alias pairs per instruction”, i.e., the
first of the three columns in every grouping of numbers. As can be seen, the full inter-
procedural analysis (last of the four settings shown in Table 2) yields significantly richer
information than the intra-procedural analysis (first setting). With only intra-procedural in-
formation, we can infer at most one half, and often less than one third, of the alias pairs.
The alias pairs shown are unconditional (i.e., for context All) with symmetric pairs re-
moved. The numbers are over the Jimple intermediate language of the Soot framework
and, thus, the alias pairs are more numerous than one would expect from program inspec-
tion, due to the introduction of several temporary variables.

Konstantinos Ferles 31



General Declarative Must-Alias Analysis

Alias pairs under 1-must-context Alias pairs under 5-must-context

Benchmark per instr. per all-return time per instr. per all-return time

antlr 10 8 0m51s 19 12 2m48s
chart 25 13 1m25s 30 18 1m21s
luindex 8 6 0m20s 9 7 0m25s
lusearch 6 5 0m22s 9 7 1m12s
pmd 6 4 0m25s 11 9 10m12s

Table 3: Alias pairs (with equivalent symmetric pairs removed, i.e., numbers divided by 2), and
timings for different contexts of the must-alias analysis.

Value of May-Analysis for Must- Inference. Table 2 shows two more settings of our
analysis: intra-procedural+may and inter-procedural−may. These help us quantify how ex-
actly may-analysis information contributes to the must-analysis.

The intra-procedural+may setting does intra-procedural must-alias reasoning but invali-
dates access paths by employing the inter-procedural may-alias analysis. That is, of the
three predicates computed by the may-analysis, the intra-procedural+may analysis does
not use predicate Resolved to do virtual method resolution, but does use predicates
MayAlias and CallMayStoreToField, in order to decide when to invalidate access
paths at call and store instructions. Conversely, the inter-procedural−may analysis does
use predicate Resolved to do virtual method resolution, but does not use predicates
MayAlias and CallMayStoreToField, instead invalidating alias information conser-
vatively at store and call instructions.

These variations of settings give us a picture of the separate benefit from various kinds of
inter-procedurality (may vs. must reasoning). As can be seen, inter-procedural reasoning
benefits greatly from both kinds of inter-procedural may-analysis information. The inter-
procedural−may setting is significantly less effective than the full inter-procedural analysis,
while still typically much better than intra-procedural+may, which, in turn, is better than the
purely intra-procedural setting.

Note that all of the above configurations were produced via straightforward configuration
of our full implementation. This is testament to the inherent configurability of a modular,
declarative framework. This ease of experimentation is testament to the inherent config-
urability of a modular, declarative framework, as opposed to a monolithic implementation.

Timings. Table 2 also shows the running time for our analysis, as well as for intra-
procedural analyses. As can be seen, the must-alias analysis is quite fast. In the case
of antlr, the analysis time blows up, but so do the inferred facts. Generally, our timings
do not aim to reflect an ideal implementation of the declarative rules. Specifically, our
Datalog engine does not use union-find trees for the equivalence classes of reflexively
and transitively closed relations, thus incurring significant overhead. On the other hand,
our implementation is heavily optimized in terms of rule execution and indexing (for fast

Konstantinos Ferles 32



General Declarative Must-Alias Analysis

combination of relations), to an extent that a manual implementation will have difficulties
matching.

Results for Human Inspection. For human inspection of aliases, we have found it use-
ful to produce all alias pairs that hold (unconditionally, i.e., under an All context) for all
return statements of a method. This “forall” intersection of aliasing information over all re-
turn sites offers a good summary of the method’s effects, and is more concise than alias
information at a single given instruction.

Table 2 shows the sizes of the sets computed in this fashion, as the second of the three
columns for every analysis setting. As can be seen, the full inter-procedural must-alias
analysis is again significantly more information-rich than any other setting. The sizes of
the resulting alias sets (from 10 to 27) are small enough for human inspection and typically
quite informative.

Exploring Parts of the Program, Using Context. To explore parts of the program only
conditionally (with alias pairs qualified by context), we selected at random 20 methods in
each of the benchmarks. We ran the analysis with these methods in the RootMethod set,
and different maximum context depth values, to allow exploration of code outside that set
as much as the context depth permits.

Table 3 shows the result of this experiment, for context depth settings of 1 and 5. The
alias pairs shown are computed at the root methods only, i.e., they do not count alias
pairs in the methods analyzed under a non-All context, but they do count the impact of
such methods on the alias information at the original root method set.

The execution time demonstrates the incrementality of themust-alias analysis—its running
time was often negligible.

For a deeper context, the analysis produces often significantly richer facts. Since themeth-
ods of origin are randomly selected, the number of extra alias pairs (when mapped back
at the root methods) varies, but is generally consistent.

Konstantinos Ferles 33



General Declarative Must-Alias Analysis

6. RELATED WORK
There are several approaches in the literature that combinemay- andmust-analyses in the
pointer analysis setting. Our approach is a must-alias analysis applied to Java bytecode,
but conceptually it is distinguished by its minimizing the distance between the implemen-
tation and the declarative specification, and by its exposition of configuration points.

Ma et al. [12] present an algorithm for null-pointer dereference detection using a context-
insensitive may-alias and a must-alias analysis; the latter is used to increase the precision
of the former, by enabling strong updates when possible.

Nikolić and Spoto [16] present a must-alias analysis that tracks aliases between program
expressions and local variables (or stack locations, since they analyze Java bytecode,
which is a stack-based representation). The analysis itself does not expose any clear
configuration points but it is related to ours both because of its application to Java byte-
code and because it is constraint-based: the analysis is a generator of constraints, which
are subsequently solved to produce the analysis results. Abstractly, this is a relative of our
Datalog-based approach, but it is unclear how the two may compare in terms of engineer-
ing tradeoffs.

Emami et al. [7] present an approach that simultaneously calculates both must- and
may-point-to information for a C analysis. Their empirical results “show the existence
of a substantial number of definite points-to relationships, which forms very valuable
information”—much in line with our own experience.

Must- information is often computed in conjunction with a client analysis. One of the best
examples is the typestate verification of Fink et al. [8], which demonstrates the value of a
must-analysis and the techniques that enable it.

The analysis of [6] is essentially a flow-sensitivemay-point-to analysis that performs strong
updates, as it maps access paths to heap objects (abstracted by their allocation sites). As
in this thesis, it uses a flow-insensitive may-point-to analysis to bootstrap the main analy-
sis. However, it provides no definite knowledge of any sort, since the aim is to increase the
precision of the may-analysis. For instance, even if an access path points to a single heap
object, according to the De and D’Souza analysis, there is nomust point-to information de-
rived, since this object could be a summary object (i.e., one that abstracts many objects
allocated at the same allocation site). To reason about such cases, other approaches,
such as the more expensive shape analysis algorithms [18], additionally maintain sum-
mary information per heap object. In this way, they allow must point-to edges to exist only
if the target is definitely not a summary node.

An approach for integrating must point-to reasoning in an analysis is to propagate such
information only at instructions where we know that the given heap allocation target still
refers to the last object allocated at that site [1]. Thus, an execution path that may create
another object at the same site (such as when reaching the end of the loop) would invali-

Konstantinos Ferles 34



General Declarative Must-Alias Analysis

date any previous must-point-to facts (i.e., it will stop them from propagating any further).

Jagannathan et al. [10] present an algorithm for must-alias analysis of functional lan-
guages. The algorithm adapts must-alias insights to the setting of captured variables. For
instance, must-alias information for non-summary objects permits strong updates, which
the authors find to improve analysis precision.

Generally, must-analyses can vary greatly in sophistication and can be employed in an
array of different combinations with may-analyses. The analysis of Balakrishnan and
Reps [2], which introduces the recency abstraction, distinguishes between the most re-
cently allocated object at an allocation site (a concrete object, allowing strong updates)
and earlier-allocated objects (represented as a summary node). The analysis additionally
keeps information on the size of the set of objects represented by a summary node. At
the extreme, one can find full-blown shape analysis approaches, such as that of Sagiv et
al. [18], which explicitly maintains must- and may- information simultaneously, by means
of three-valued truth values, in full detail up to predicate abstraction.

Konstantinos Ferles 35



General Declarative Must-Alias Analysis

7. CONCLUSIONS
We presented a modular, declarative algorithm model for must-alias analyses and dis-
cussed its features and configurability options. The model faithfully reflects MaDoop: a
full-fledged implementation of more than 300 Datalog rules to analyze Java bytecode.
Our analysis interfaces with the may-point-to analyses of the Doop framework and can
leverage their precision, at clearly defined interaction points.

The literature on must-alias analyses is sparse and the distance of specification to imple-
mentation is typically large. In our literature survey we have not found a single must-alias
analysis publication that concretely refers to another and shows how its approach differs.
Thus, the goal of our work is largely to provide concrete exposition and a reference point.
We believe that our model is clear yet concrete enough to spur further development and
a better understanding of the comparative features of different must-alias analysis algo-
rithms. In practical terms, must-alias analysis is valuable and woefully under-exploited in
the literature. Our experiments show concrete value for (human) program understanding
and (automatic) optimization.

Konstantinos Ferles 36



General Declarative Must-Alias Analysis

REFERENCES
[1] Altucher, R.Z., Landi, W.: An extended form of must alias analysis for dynamic allo-

cation. In: Proc. of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 74–84. POPL ’95, ACM, New York, NY, USA (1995)

[2] Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated storage. In:
Proc. of the 14th International Symp. on Static Analysis. pp. 221–239. SAS ’06,
Springer (2006)

[3] Berndl, M., Lhoták, O., Qian, F., Hendren, L.J., Umanee, N.: Points-to analysis using
BDDs. In: Proc. of the 2003 ACM SIGPLAN Conf. on Programming Language Design
and Implementation. pp. 103–114. PLDI ’03, ACM, New York, NY, USA (2003)

[4] Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: Proc. of the 21st Annual ACM SIGPLAN Conf. on Ob-
ject Oriented Programming, Systems, Languages, and Applications. pp. 169–190.
OOPSLA ’06, ACM, New York, NY, USA (2006)

[5] Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: Proc. of the 24th Annual ACM SIGPLAN Conf. on Object Ori-
ented Programming, Systems, Languages, and Applications. OOPSLA ’09, ACM,
New York, NY, USA (2009)

[6] De, A., D’Souza, D.: Scalable flow-sensitive pointer analysis for java with strong up-
dates. In: Proceedings of the 26th European Conference on Object-Oriented Pro-
gramming. pp. 665–687. ECOOP’12, Springer-Verlag, Berlin, Heidelberg (2012)

[7] Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Proc. of the 1994 ACM SIGPLAN
Conf. on Programming Language Design and Implementation. pp. 242–256. PLDI
’94, ACM, New York, NY, USA (1994)

[8] Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verification
in the presence of aliasing. In: International Symposium on Software Testing and
Analysis (ISSTA). pp. 133–144. ACM, New York, NY, USA (2006)

[9] Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer anal-
ysis for millions of lines of code. In: Proc. of the 2007 ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation. pp. 290–299. PLDI ’07, ACM, New
York, NY, USA (2007)

[10] Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.: Single and loving it: Must-alias
analysis for higher-order languages. In: Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 329–341. POPL
’98, ACM, New York, NY, USA (1998)

[11] Kastrinis, G., Smaragdakis, Y.: Efficient and effective handling of exceptions in Java

Konstantinos Ferles 37



General Declarative Must-Alias Analysis

points-to analysis. In: Proc. of the 22nd International Conf. on Compiler Construction.
pp. 41–60. CC ’13, Springer (2013)

[12] Ma, X., Wang, J., Dong, W.: Computing must and may alias to detect null pointer
dereference. In: Proc. of the 3rd International Symp. On Leveraging Applications
of Formal Methods, Verification and Validation. ISoLA ’08, vol. 17, pp. 252–261.
Springer (2008)

[13] Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript applica-
tions in the presence of frameworks and libraries. In: Proceedings of the ACM SIG-
SOFT International Symposium on the Foundations of Software Engineering (Aug
2013)

[14] Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to
and side-effect analyses for Java. In: Proc. of the 2002 International Symp. on Soft-
ware Testing and Analysis. pp. 1–11. ISSTA ’02, ACM, New York, NY, USA (2002)

[15] Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to
analysis for Java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41 (2005)

[16] Nikolić, D., Spoto, F.: Definite expression aliasing analysis for Java bytecode. In:
Proc. of the 9th International Colloquium on Theoretical Aspects of Computing. IC-
TAC ’12, vol. 7521, pp. 74–89. Springer (2012)

[17] Reps, T.W.: Demand interprocedural program analysis using logic databases. In:
Ramakrishnan, R. (ed.) Applications of Logic Databases, pp. 163–196. Kluwer Aca-
demic Publishers (1994)

[18] Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM
Transactions on Programming Languages and Systems 24(3), 217–298 (May 2002)

[19] Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Much-
nick, S.S., Jones, N.D. (eds.) Program flow analysis: theory and applications, chap. 7,
pp. 189–233. Prentice-Hall, Inc., Englewood Cliffs, NJ (1981)

[20] Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie Mellon University (may 1991)

[21] Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Understanding
object-sensitivity. In: Proc. of the 38th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages. pp. 17–30. POPL ’11, ACM, New York, NY, USA (2011)

[22] Sridharan, M., Bodík, R.: Refinement-based context-sensitive points-to analysis for
Java. In: Proc. of the 2006 ACM SIGPLAN Conf. on Programming Language Design
and Implementation. pp. 387–400. PLDI ’06, ACM, New York, NY, USA (2006)

[23] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot - a
Java bytecode optimization framework. In: Proc. of the 1999 Conf. of the Centre for
Advanced Studies on Collaborative research. pp. 125–135. CASCON ’99, IBM Press
(1999), http://dl.acm.org/citation.cfm?id=781995.782008

[24] Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sundaresan, V.:
Optimizing Java bytecode using the Soot framework: Is it feasible? In: Proc. of the

Konstantinos Ferles 38

http://dl.acm.org/citation.cfm?id=781995.782008


General Declarative Must-Alias Analysis

9th International Conf. on Compiler Construction. pp. 18–34. CC ’00, Springer (2000)
[25] Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with binary decision

diagrams for program analysis. In: Proc. of the 3rd Asian Symp. on Programming
Languages and Systems. pp. 97–118. APLAS ’05, Springer (2005)

[26] Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proc. of the 2004 ACMSIGPLANConf. on Programming
Language Design and Implementation. pp. 131–144. PLDI ’04, ACM, New York, NY,
USA (2004)

[27] Yong, S.H., Horwitz, S., Reps, T.: Pointer analysis for programs with structures and
casting. In: PLDI ’99: Proceedings of the ACM SIGPLAN 1999 Conference on Pro-
gramming Language Design and Implementation. pp. 91–103 (1999)

[28] Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in Datalog. In: Proc. of the 2014 ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation. pp. 239–248. PLDI ’14, ACM, New
York, NY, USA (2014)

Konstantinos Ferles 39


	Introduction
	Background and Example
	Must-Alias Analysis Model
	Schema of Analysis Relations
	Core Analysis Model
	Must-Point-To Modeling

	Discussion: Analysis Configurability
	Implementation and Experiments
	Related Work
	Conclusions

