
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

UNDERGRADUATE STUDIES

UNDERGRADUATE THESIS

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative
Computation

Anastasios D. Kalogeropoulos

Supervisors: Yannis Smaragdakis, Associate Professor NKUA

 Aggelos Biboudis, PhD Student NKUA

ATHENS

JANUARY 2014

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΠΤΥΧΙΑΚΕΣ ΣΠΟΥΔΕΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Map-Hash-Repeat: Ένα Προγραμματιστικό Πρότυπο για
Επαναληπτικούς Κατανεμημένους Υπολογισμούς

Αναστάσιος Δ. Καλογερόπουλος

Επιβλέποντες: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ

 Άγγελος Μπιμπούδης , Διδακτορικός φοιτητής ΕΚΠΑ

ΑΘΗΝΑ

ΙΑΝΟΥΑΡΙΟΣ 2014

UNDERGRADUATE THESIS

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

Anastasios D. Kalogeropoulos

R.N.: 1115200700061

Supervisor: Yannis Smaragdakis, Associate Professor NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Map-Hash-Repeat: Ένα Προγραμματιστικό Πρότυπο για Επαναληπτικούς
Κατανεμημένους Υπολογισμούς

Αναστάσιος Δ. Καλογερόπουλος

Α.Μ.: 1115200700061

Επιβλέπων: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ

ABSTRACT

In this thesis we describe an initial exploration of the Map-Hash-Repeat pattern of cloud
computation, in the context of the F# programming language and the MBrace cloud
framework. Map-Hash-Repeat can be viewed as a generalization of the well-known
MapReduce pattern, where a) the reduce phase is replaced by “hashing”, i.e., re-distribution
of results over the node topology; b) both the map and the reduce phases are repeatedly
iterated; and c) the final result is produced (possibly via a full reduce phase) upon reaching an
iteration fixpoint.

This pattern seems to capture a general mode of computation, e.g., easily simulating iterative
algorithms, in addition to traditional MapReduce functionality.

Our prototype is in a functional setting, using the F# programming language, and leverages
an existing framework for cloud computation to encode the Map-Hash-Repeat pattern
succinctly.

SUBJECT AREA: Cloud computations, iterative algorithms

KEYWORDS: MapReduce programming model, F#, MBrace cloud programming

 pattern

ΠΕΡΙΛΗΨΗ

Στα πλαίσια αυτής της πτυχιακής εργασίας περιγράφουμε μια αρχική εξερεύνηση του
προτύπου Map-Hash-Repeat για επαναληπτικούς κατανεμημένους υπολογισμούς, με
χρήση της προγραμματιστικής γλώσσας F# και του Mbrace framework. Το
Map-Hash-Repeat αποτελεί μια γενίκευση του γνωστού προγραμματιστικού προτύπου
Map-Reduce, όπου: 1) το reduce στάδιο αντικαθίσταται με διαμοιρασμό των
αποτελεσμάτων στην τοπολογία των κόμβων, 2) το map και το reduce στάδιο
επαναλαμβάνονται και 3) το τελικό αποτέλεσμα προκύπτει (πιθανώς από ένα reduce
στάδιο) όταν φτάσουμε σε κάποιο σταθερό σημείο.

Το πρότυπο φαίνεται να υποστηρίζει ένα γενικότερο τύπο υπολογισμών, για παράδειγμα
υλοποιεί απλούς επαναληπτικούς αλγορίθμους σε συνδυασμό με την κλασσική
λειτουργικότητα του MapReduce.

To πρωτότυπο αυτό αποτελεί ένα λειτουργικό περιβάλλον, χρησιμοποιώντας την
προγραμματιστική γλώσσα F#, και αξιοποιεί ένα ήδη υπάρχον framework για
υπολογισμούς στο δίκτυο ώστε να υλοποιείται συνοπτικά το πρότυπο Map-Hash-Repeat
πρότυπο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογισμοί στο δίκτυο, επαναληπτικοί αλγόριθμοι

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: προγραμματιστικό μοντέλο MapReduce, F#, προγραμματιστικό

μοντέλο MBrace

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor Mr. Yannis Smaragdakis
for suggesting the main idea of my undergraduate thesis. I am also thankful for his
support throughout the period that I have been working on this thesis.

Secondly, I would also like to thank Aggelos Biboudis for his contribution and his
continued support by providing suggestions and comments not only to the programming
part but also to the context of this text in order to take its final form.

Table of Contents

PROLOGUE..13

1 . Introduction...14

2 . Background..15

2.1. MapReduce..15

2.1.1. 2.1.1 MapReduce-based Frameworks...16

2.1.2. 2.1.2 Criticism of MapReduce..16

2.2. Programming in F#..17

2.2.1. Quoted Expressions..17

2.2.2. Asynchronous Workflows..18

2.2.3. Pattern matching...20

2.2.4. Discriminated unions..21

2.2.5. Reference Cells..22

2.3. Programming in Mbrace..22

2.3.1. Concepts...22

2.3.2. Cloud Workflows..22

2.3.3. Cloud Refs...25

2.3.4. MapReduce in Mbrace..27

3 . Map-Hash-Repeat...29

3.1. Overview...29

3.1.1. Description of the algorithm...31

3.1.2. Programming Interface...31

3.2. Examples...33

3.2.1. K-means...33

3.2.2. Map-Hash-Repeat implementation of K-means....................................33

3.3. Implementation...35

3.4. Related Work...37

4 . Conclusion and Future Work..38

Abbreviations..39

Appendix I...40

References..45

LIST OF FIGURES

Figure 1: MapReduce process...15

Figure 2: Iterative Map-Hash-Repeat programming model..30

LIST OF TABLES

Table 1: Quoting an expression – typed quotation...17

Table 2: Quoting an expression – untyped quotation...17

Table 3: Fetching Web pages length asynchronously..18

Table 4: Function return types..19

Table 5: Output fetchAsync method...19

Table 6: Pipeline operator..20

Table 7: Match expression used for pattern matching...20

Table 8: Pattern matching example..21

Table 9: Discriminated union type..21

Table 10: Example of the discriminated union type intOrBool..21

Table 11: Reference cell example..22

Table 12: Hello World example..22

Table 13: A local MBrace runtime initialization...23

Table 14: Execution of the HelloWorld cloud computation...23

Table 15: Fetching Web pages length in parallel...23

Table 16: Type signature of Cloud...24

Table 17: Asynchonous workflow example..24

Table 18: Cloud computation expression with an embeded asynchronous workflow..............24

Table 19: Type signature of Cloud...25

Table 20: Cloud.Parallel combinator example...25

Table 21: Using cloud refs to fetch the length of a web page..26

Table 22: Receive a cloud ref...26

Table 23: Dereferencing a cloud ref...26

Table 24: Functions that manage mutable cloud refs..26

Table 25: mapReduce library in MBrace..27

Table 26: MapHashRepeat pseudocode..31

Table 27: Map-Hash-Repeat user specified functions...32

Table 28: Map-Hash-Repeat user specified functions specially for K-means..........................34

Table 29: Map-Hash-Repeat programming model...36

Table 30: Seq.fold method...37

PROLOGUE

This undergraduate thesis has been implemented since April of 2013 in the University of
Athens at the department of Informatics and Telecommunications.

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

1. Introduction

Map-Hash-Repeat is a cloud programming pattern for iterative computations. It evolves the
MapReduce programming model and it is used to simulate iterative algorithms in an easy way
where both map and reduce phases are iterated and the final result is obtained (via a reduce
phase) once we reach a fixpoint. To elaborate this, a map phase takes place at first and then
the reduce phase is replaced by a re-distribution of the previously computed results over the
node topology. The same procedure goes on until reaching an iteration fixpoint.

The MapReduce programming model is used for processing and generating large data sets in
a distributed way over several machines. A MapReduce program consists of a map phase
which processes some input data and generates (“maps”) it to intermediate <key, value>
pairs according to the user's specifications and a reduce phase that takes a collection of
intermediate <key, value> pairs and “reduces” them according to the same intermediate
key, in order to produce the final result.

Our prototype implementation of the Map-Hash-Repeat programming pattern is based on the
F# programming language in combination with the MBrace cloud computing model. F# is an
open-source programming language. Primarily, F# is a functional language, but it also
supports imperative, object-oriented and functional styles of programming. Some of the main
features of the F# language which are used in our Map-Hash-Repeat implementation are:
code quotations, asynchronous workflows, pattern matching, discriminated unions and
recursion. We also used some of the basic features of the MBrace cloud computing
framework which are the cloud workflows and the cloud refs.

MBrace is a cloud programming model/framework which introduces an expressive and
integrated way of performing large-scale computations running in the cloud. With the help of
the F# programming language, MBrace offers a declarative style for describing distributed
computations using the F# computation expressions which specify parallelism patterns known
as cloud workflows or monads and as a result it express many different kind of algorithmic
patterns, such as MapReduce and other iterative algorithms.

A. Kalogeropoulos 14

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

2. Background

2.1 MapReduce

MapReduce [1] is a programming model for processing large data sets in a distributed
manner over several machines (tasks). It is used to deal with problems that can be seperated
into smaller independent sub-problems and require operations on large data sets. Its concept
is very simple and the main idea is that the inital problem is divided into sub-problems, which
are being distributed over the topology into tasks. There is a boss who takes the initial input
and distributes it to the workers. So, each worker tries to solve a part of the inital problem.
When completed, the boss node collects all the solutions from each worker and combines
them in some way to form the output, which will be the final result of the initial problem.

In more detail, the MapReduce framework consists of two user-specified basic procedures:
Map() and Reduce(). During the "Map" step, the Map() function takes as input a series of
<key_i,value_i> pairs and they are "mapped" into a collection of intermediate
<ikey_j,ivalue_j> pairs that are being distributed to worker nodes. Then, in the "Reduce"
step, each worker performs a computation ("reduce") over the data it received and then
passes the result to the boss in a form of <okey_i,ovalue_i> pair. Finally, the boss node
collects all data from the workers and produces the final output.

1

1 WebMapReduce in Education,

 http://webmapreduce.sourceforge.net/education.php

A. Kalogeropoulos 15

Figure 1: MapReduce process1

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

Figure 1 shows the map and the reduce phase. In Step1, the input data is split into key-value
pairs and the Map() function takes these pairs as input. The output can be one or more
intermediate key-value pairs, as Step 2 shows. In Step3, all intermediate key-value pairs are
grouped by key and in the next step each unique key is being given to the reducer including
all its values. Then, the reducer performs a computation over its values and returns one or
more key-value pairs. In the end, all ouput pairs are collected by the framework. The most
important element is that the model is ideal for parallel programming because each key-value
pair can be computed independently.

One of the most common examples in MapReduce is the wordcount example. In this
example, the goal is to count the number of occurrences of each word in a large set of
documents. This problem can be easily implemented using the MapReduce programming
model. The map function would split the input lines into words and then would emit a
<word,1> pair for each word. Then the pairs with the same key are grouped together and
are passed to the same worker for the reduce step. So, the reduce function takes a collection
of <key,value> pairs and sums the values of the pairs that have the same key. Finally, the
output pairs are in the form of <word,occurences> and are passed to the boss.

2.1.1 MapReduce-based Frameworks

There are many implementations of the MapReduce framework. One of them is the
well-known Apache Hadoop [2] project. Hadoop is an open source MapReduce
implementation written in Java. It is designed to solve big problems that require
computationally extensive operations. These operations can be executed in parallel on a
large number of independent machines. Hadoop uses its own distributed file-system called
Hadoop Distributed File System (HDFS) to provide access to the data from all the servers.

2.1.2 Criticism of MapReduce

Despite the fact that many programmers support the idea of the MapReduce programming
model, many people, mainly from the database community, claim that MapReduce represent
a major step backwards. To support their view, they argue that MapReduce has a serious
performance problem when it comes to access huge amount of data because it uses no
indexes. Its techniques are nothing new and they are more than 20 years old. They also
assert that MapReduce is missing some main features that are provided by any modern
DBMS and it is not compatible with many DBMS tools. However, MapReduce suits well for
processing huge amounts of unstructed data and enables data distribution over the network.

A. Kalogeropoulos 16

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

2.2 Programming in F#

2.2.1 Quoted Expressions

In F#, many applications need to know not only the structure of a block of source code but
also the way it operates. In order to do that, F# provides a specially delimited expression
which is called quoted expression so that the expression is compiled into an object which
represents this expression. With this feature, the programmer can see the abstract syntaxt
tree of the code. These quoted expressions can be executed then by alternative means such
as an SQL query or as JavaScript in a client-side Web browser. In other words, this
mechanism lets the programmer convert a computational representation of the program to an
abstract syntax representation of the same language with which you can for instance analyse,
execute, print or compile those programs in other ways.

Quoted expressions come in two ways: typed or untyped. To add type information, one can
place the quotation markers <@ @> around an expression.

For example, the following code shows a typed quotation:

Table 1: Quoting an expression – typed quotation

open Microsoft.Fsharp.Quotations

let expr1 : Expr<int> = <@ 1 + 1 @>

//val expr : Quotations.Expr<int> = Call (None, op_Addition, [Value (1), Value (1)])

As you see in the Table 1, the act of quoting an expression gives you back the expression as
data. The generic type parameter Expr<int> is the result of the expression <@ 1 + 1 @>
which in this example is an integer.

In order to obtain an untyped quotation, one can use the <@@ @@> quotation markers
around an expression, as in the following example below:

Table 2: Quoting an expression – untyped quotation

open Microsoft.Fsharp.Quotations

let expr2: Expr = <@@ 1 + 1 @@>

//comment

//val expr : Quotations.Expr = Call (None, op_Addition, [Value (1), Value (1)])

A. Kalogeropoulos 17

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

In Table 2, the result Expr of the expression is not a generic type.

2.2.2 Asynchronous Workflows

Another important feature of the F# programming language are the asynchronous workflows
[5]. With asynchronous workflows F# provides a programming model which enables the
programmer to indicate which computations are going to be executed in the background
threads in an asynchronous way as the execution continues on the current thread, without
blocking it. For instance, background threads can perform different kinds of work such as
responding to I/O requests, sleeping or waiting to acquire shared data. Asynchronous
workflows avoid the need of explicit callbacks and the user writes the code as if it was
executed sequentially.

To create asynchronous workflows, the code is wrapped in the async computation expression
builder . A computation expression builder is an F# feature which lets the user define the
characteristics of his own computation expression by creating a custom builder class and
defining its methods. The syntax for defining a computation expression of type builder-name
is builder-name { expression }. This type specifies code that controls the execution of the
expression.

The result of an async computation is an Async<'T> object which can be thought of as an
asynchronous computation that will compute a value type 'T. In order to begin an
asynchronous operation the keywords let! (let-bang) and do! (do-bang) are being used. Within
asynchronous workflow expressions, the language construct let! var= expr means “perform
the asynchronous operation expr and bind the result to var when the operation completes.
Then continue by executing the rest of the computations”. The difference between let and let!
is that the first one just stores the result as an asynchronous operation, while the second
executes the asynchronous operation and returns the data.

To start an asynchronous workflow, the simplest way is to use the Async.Start method which
takes an Async<unit> as a parameter in order to begin the execution but in order for the
async operation to return a value, the Async.RunSynchronously method is called immediately
after the Async.Parallel method.

The Async.Parallel method takes a seq<Async<'T>> and starts to execute all the
asynchronous computations in parallel, and then the Async.RunSynchronously method is
called to initiate the execution of the asynchronous computations.

The following example shows how to use asynchronous workflows to fetch several Web
pages in parallel.

Table 3: Fetching Web pages length asynchronously

open System.IO

A. Kalogeropoulos 18

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

open System.Net

let webPages = ["google", "http://google.com"; "yahoo", "http://yahoo.com"]
let fetchAsync(name, url: string) =
 async {
 printfn "Request for %s" name
 let req = WebRequest.Create(url)
 let! resp = req.AsyncGetResponse()
 printfn "Response for %s " name
 let stream = resp.GetResponseStream()
 printfn "Reading response for %s " name
 let reader = new StreamReader(stream)
 let html = reader.ReadToEndAsync().Result
 printfn "Read %d characters for %s " html.Length name
 return (name,html.Length)
 }

Async.Parallel [for name, url in webPages -> fetchAsync(name, url)]
|> Async.Ignore
|> Async.RunSynchronously

The types of these functions are:

Table 4: Function return types

val webPages : (string * string) list

val fetchAsync : name:string * url:string -> Async<string*int>

Running the code in F# interactive, the output is:

Table 5: Output fetchAsync method

Request for yahoo
Request for google
Response for google
Reading response for google
Read 46800 characters for google
Response for yahoo
Reading response for yahoo
Read 91516 characters for yahoo

As one can see in Table 5, there are simultaneous web requests. The most important thing is
that the threads which are responsible for these requests are not blocked.

At the example in Table 3, we use the namespaces System.IO and System.Net provided by
the .NET framework for reading to data streams and using Internet resources easily. The

A. Kalogeropoulos 19

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

webPages function contains a list of tuples and the fetchAsync function takes as input two
strings, a name and a url. The output is an Async<string*int> type object. The next three
lines perform the execution of the program. The pipeline operator |> is defined as shown in
Table 6.

Table 6: Pipeline operator

let (|>) x f = f x

The above operator it applies the first operand (x) to the function given in the second operand
(f).

The Async.Parallel method creates an asynchronous computation and executes all the given
fetchAsync computations in a fork/join pattern. This computation is passed to the
Async.Ignore metho,using the pipeline operator, to run and ignore its result. Finally, the
RunSynchronously method executes in parallel all these sequence computations and awaits
the result.

2.2.3 Pattern matching

Pattern matching is a very powerful and flexible feature of the F# programming language that
is used to examine data structures and their values against one or more conditions. Instead of
using series of if...then...else statements, F# offers the pattern matching. In general,
patterns are used to compare data with a structure, or to decompose data into its parts or to
extract information from structures. They are used in the match expression that has the
following form:

Table 7: Match expression used for pattern matching

match test-expression with

| pattern1 [when condition] -> result-expression1

| pattern2 [when condition] -> result-expression2

| ...

In the form in Table 7, test-expression is the expression that will be matched. Most of F#'s
types can be used as text-expressions. The pattern specifies how to deconstruct the
text-expression. The when condition is optional. For a successful matching, the pattern must
satisfy the test-expression and the when condition must evaluate to true. The
result-expression is returned in a successful match. The patterns are tested one by one and
the procedure stops once a match is found.

A simple example for matching constants is described.

A. Kalogeropoulos 20

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

Table 8: Pattern matching example

match 5 with

| 5 -> “Match!”

| 2 -> “This pattern will never be tested.”

In the above example, F# compares the test-expression 5 with the pattern 5 and considers
the match as valid. Then, it evaluates the result-expression and returns the string “Match!”. As
one can notice, the pattern 2 will never be tested. This means that the order of the patterns
matters.

2.2.4 Discriminated unions

Discriminated unions are data types with a finite number of different representations. They
can be though of as the union data type in C. The are defined using the keyword type
followed by a name and then the union cases seperated by the pipe symbol | . Discriminated
unions have the following form:

Table 9: Discriminated union type

type typeName =

 | Case1 [of datatype1] [* datatype2] ...

 | Case2 [of datatype3] [* datatype4] ...
 | ...

For instance, a type is described below, which can me either an integer or a boolean.

Table 10: Example of the discriminated union type intOrBool

type intOrBool =

| Int of int

| Bool of bool

A. Kalogeropoulos 21

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

2.2.5 Reference Cells

A ref cell is used to hold a mutable value, meaning that the user can change it anytime. The
ref operator is used before a value to allocate a new ref cell for the given value. To assign a
new value to a reference cell one can use the assignment operator := and to read its
contents one can use the ! (bang) operator, as the following example shows.

Table 11: Reference cell example

let r = ref 3
printfn “%d” !r
r := 5
printfn “%d” !r

In the above example we create a ref cell that contains the value 3 and then we change its
value to 5.

To clarify this, reference cells point to a memory address. This means that if one has several
ref cells pointing to the same address, changes at that memory address will affect all the ref
cells pointing to it.

2.3 Programming in Mbrace

2.3.1 Concepts

The programming model of MBrace [3] is very similar to the form of the F# asynchronous
workflows. Just as in asynchronous workflows one uses the syntax async {expression} to
set up a computation expression that runs asynchronously, MBrace offers cloud workflows to
introduce distributed computations. Their execution can be performed only within a distributed
environment. The framework provides the MBrace runtime that provides an environment that
abstractly distributes the execution of cloud computations. The environment handles quite
good data distribution but when it comes to big data it is not so efficient. MBrace offers a
mechanism to manage global data, known as cloud refs. In the following section these
concepts are described in details.

2.3.2 Cloud Workflows

MBrace provides cloud workflows in order one to define distributed computations. Their style
bears a strong resemblance to F# asynchronous workflows. In the same way that
asynchronous workflows are scoped by the async { } builder and are being executed in

A. Kalogeropoulos 22

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

threads, cloud computations use the cloud { } expression builder known as cloud block and
are being executed in a distributed way. Their execution is postponed until they are being sent
to the MBrace runtime for evaluation. The type of a cloud computation is ICloud<'T> and
once executed, the output is of type 'T. All cloud blocks must be declared with the [<Cloud>]
attribute.

The following example declares a simple computation.

Table 12: Hello World example

[<Cloud>]
let HelloWorld() =
 cloud {
 return "Hello world"
 }

In Table 12, one can see that this computation returns an ICloud<string> type. This result
should be dereferenced in order to obtain the string type. To instantiate a local MBrace
runtime, the user has to execute the following command:

Table 13: A local MBrace runtime initialization

let runtime = Mbrace.InitLocal 4

The code in Table 13 initializes a cluster of 4 nodes locally on the current machine.

To execute a cloud computation, one can run the following code. The result is type of string
with value “Hello world”.

Table 14: Execution of the HelloWorld cloud computation

Runtime.Run <@ HelloWorld() @>

We can now define the same example in Table 3 using cloud blocks as the following table
shows.

Table 15: Fetching Web pages length in parallel

[<Cloud>]
let cloudFetchAsync() =
 cloud {
 let jobs =
 Array.map (Cloud.OfAsync << fetchAsync) webPages

A. Kalogeropoulos 23

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

 let! results = Cloud.Parallel jobs
 return results
 }

The Array.map function applies the given function to each element of the array and returns a
new array.

This section explains some basic MBrace combinators that are used in the above example.

• Cloud.OfAsync

With this combinator, one can use asynchronous computation expressions inside cloud
blocks. Its type signature is:

Table 16: Type signature of Cloud.OfAsync combinator

Async<'a> → ICloud<'a>

The combinator does not change the semantics of the async computation. It is useful when
one needs to adjust existing asynchronous workflows in cloud workflows. For instance, we
can use the Cloud.OfAsync combinator to embed the following asynchronous workflow,
which causes the execution to stop for x milliseconds, in a cloud block.

Table 17: Asynchonous workflow example

let sleep x =
 async {
 do! Async.Sleep x
 }

Then, the cloud computation is declared in Table 18.

Table 18: Cloud computation expression with an embeded asynchronous workflow

[<Cloud>]
let cloudSleep()=
 cloud {
 do! Cloud.OfAsync (sleep 3000)
 }

A. Kalogeropoulos 24

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

• Cloud.Parallel

The Cloud.Parallel combinator is used to execute cloud computations in parallel. The
signature of the type is:

Table 19: Type signature of Cloud.Parallel combinator

Cloud<'T> [] → Cloud<'T []>

As one can see from the above table, the combinator takes as input an array of cloud
computations and executes them in parallel. The result is an array containing the result
of each computation. It is worth mentioning that each computation is allocated in
different worker and is executed in a fork/join pattern. In other words, the boss waits
until all the workers terminate and then joins the results to return the final result.

The following example shows the use of the Cloud.Parallel combinator.

Table 20: Cloud.Parallel combinator example

[<Cloud>]
let parallelExample() =
 cloud {
 let func x y = cloud {return x + y}
 let jobs = [|for i in 1 .. 1000 -> func i (i*i) |]
 let! results = Cloud.Parallel jobs
 return results
 }

The parallelExample cloud workflow creates 1000 cloud computations that are being
executed in parallel using the Cloud.Parallel combinator and finally the results are
being collected.

2.3.3 Cloud Refs

Cloud refs are very similar to F#'s reference cells but they are distributed and immutable by
design. Once they are being declared, they require a real-time decision by the runtime as far
as the locality and the load mechanism is concerned. The MBrace runtime uses some
techniques, such as caching local copies to workers, to manage the values of the cloud refs
and lessening duplicate copies of repeating data. The type of the cloud refs is
ICloudRef<'T>, where 'T is the type of the contained value.

A. Kalogeropoulos 25

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

Using the fetchAsync function we defined in Table 3, one can create a cloud workflow to get
the length of a web page, but this time a reference to the result will be returned that will
contain the value instead of the actual value.

Table 21: Using cloud refs to fetch the length of a web page

[<Cloud>]
let getRef() =
 cloud {
 let! jobs = Cloud.OfAsync <| fetchAsync ("google", "http://google.com")
 let! ref = CloudRef.New jobs
 return ref
 }

The CloudRef.New method creates a new cloud ref that contains the given value. The result
of the getRef function is of type ICloudRef<string*int>, which is a reference to the result.
To get the cloud ref, one can run:

Table 22: Receive a cloud ref

let cloudRef = runtime.Run <@ getRef() @>

In order to get the actual value of the above cloud ref, the programmer has to run the
following line:

Table 23: Dereferencing a cloud ref

let data = cloudRef.Value

In the context of a cloud computation, the user can get the value of a cloud ref using the
CloudRef.Read method. This method takes a cloud ref ICloudRef<'a> and returns a
workflow ICloud<'a> that contains the enclosed value.

However, there is a mutable version of cloud refs; the MutableCloudRef type. The difference
between the immutable and the mutable version is that a mutable cloud ref can update its
contained value and it can be deallocated manually by the user. These imply that the values
can not be cached. Mutable cloud refs usually are used to define user-specified data
structures or to create synchronization mechanisms like semaphores. The type of the
MutableCloudRef is IMutableCloudRef<'T>, where 'T is the type of the contained value.

The following describes some useful functions that are used to manage the mutable cloud
refs.

Table 24: Functions that manage mutable cloud refs

Name Type Description

MutableCloudRef.New 'a → ICloud<ICloudRef<'a>> Takes a value and creates a

A. Kalogeropoulos 26

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

new MutableCloudRef.

MutableCloudRef.Read IMutableCloudRef<'a> →
ICloud<'a>

Returns the value of the
given MutableCloudRef.

MutableCloudRef.Force IMutableCloudRef<'a>*'a →
ICloud<unit>

It tries to update the value of
the given MutableCloudRef
with the given value without
checking if it was updated by
someone else.

MutableCloudRef.Set IMutableCloudRef<'a>*'a →
ICloud<bool>

It tries to update the given
MutableCloudRef with the
given value and returns true if
on success. If its value has
been modified since the last
time that it was read it returns
false.

MutableCloudRef.SpinSet IMutableCloudRef<'a>*('a → 'a) →
ICloud<unit>

It updates a
MutableCloudRef using the
function given in the second
argument.

2.3.4 MapReduce in Mbrace

The MBrace framework provides a library that one can define and execute MapReduce tasks.
The recursive mapReduce method is very simple. It takes a user-specified map and reduce
function, an identity value to be used as a termination condition and a list with the input
values. The algorithm splits, if needed, the input into halves and passes each half in two
mapReduce calls and executes them in parallel.

Table 25: mapReduce library in MBrace

[<Cloud>]
let rec mapReduce (map : 'T -> ICloud<'R>)
 (reduce : 'R -> 'R -> ICloud<'R>)
 (identity : 'R)
 (input : 'T list) =
 cloud {
 match input with
 | [] -> return identity
 | [value] -> return! map value
 | _ ->
 let left,right = List.split input
 let! r1,r2 =
 (mapReduce map reduce identity left)
 <||>

A. Kalogeropoulos 27

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

 (mapReduce map reduce identity right)
 return! reduce r1 r2
 }

In the above code, the List.split method is an Mbrace function that takes a list and splits it in
half, returning the two new lists in a tuple. The parallel decomposition operator <||> is an
abbreviation of the Cloud.Parallel combinator but only for a 2-dimensional array as input.

A. Kalogeropoulos 28

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

3. Map-Hash-Repeat

3.1 Overview

Map-Hash-Repeat is a programming pattern for supporting iterative computations in the
cloud. Its main idea is based on the MapReduce programming model but there are
differences in how the reduce phase is defined as well as in the computation of the final
output. Map-Hash-Repeat requires an initial node topology in memory to apply the pattern.
This limitation is necessary because the algorithm needs an initial input to generate the final
solution in the next iterations. Once this has been done, the algorithm executes iteratively two
main steps: the first being a map step that is similar to MapReduce's map and a second being
the reduce step defined in a different manner. During the map phase, intermediate values are
computed in one step. The reduce phase that follows is different from that in MapReduce:
instead of reducing these values, these are being distributed over the topology. The concept
is that during the nth iteration the algorithm uses the values computed during the previous
iteration to compare them with the new ones. The algorithm terminates once in all nodes the
previous computed value and the new one are the same.

This implies that each node has to keep the value it computed in the previous iteration. Once
all nodes terminate, the iteration stops and the output is produced. In the meantime, the node
topology can change appropriately according to the newly computed values. The importance
of this redistribution is the fact that the new topology is based on the newly computed values,
which helps the algorithm to converge faster.

A. Kalogeropoulos 29

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

A. Kalogeropoulos 30

While the old and the new
values are different

Map(): compute
intermediate values

Change node topology

Distribute the
Intermediate values

Change node topology

Compare the old with
the new values

Not equal
values

Initial node topology

Final result

Figure 2: Iterative Map-Hash-Repeat
programming model

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

3.1.1 Description of the algorithm

The following algorithm describes the Map-Hash-Repeat programming pattern.

Table 26: MapHashRepeat pseudocode

computeValues := computes the new values that will be used for the next iterations
createNewTopology:= creates a new topology according to the already computed values
keepPrevState := swap the prevValue with the newValue

function recursive mapHashRepeat(input1, input2) :
newValues := computeValues(input1,input2);
for each node n in input2:

n.Values := add(newValues[n]);

newTopology := createNewTopology(input1,input2);

//returns an array of boolean values, one from each node, on whether
//the previous value equals the new one or not

states :=
[|

for each node n in input2:
prevValue := n.getPrev;
newValue := newTopology[n];
keepPrevState(prevValue,newValue,n);
if newValue == prevValue:

return true;
else:

return false;
|]

finalState := true;
for each state s in states:

finalState := state && true;

if finalState == true:
return (input1,input2);

else:
mapHashRepeat(input1,input2);

3.1.2 Programming Interface

To simulate an iterative algorithm in the Map-Hash-Repeat programming model one should
define some user specified functions that are used during the execution of the main algorithm.

A. Kalogeropoulos 31

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

The following table describes these functions.

Table 27: Map-Hash-Repeat user specified functions

Name Type Description

1. createNodes int->int →
ICloud<IMutableCloudRe
f<Node<int,(float *
float),Set<int>>> []>

This function is used to create and distribute
the initial data to the MBrace workers. The
user needs to pass as arguments the number
of the initial data and the number of the
clusters. With the help of the cloud refs,
offered by the MBrace programming model,
this function returns a cloud computation of an
array that contains references of the data and
the center nodes. Dereferencing these
computations, one can get the values of the
data and the center nodes. Each node is of
type Node.

2. createNeighbors IMutableCloudRef<Node
<int,
(float*float),'oldV>>[]
->
ICloud<IMutableCloudRe
f<Node<int,(float
*float),'oldV>> []
*IMutableCloudRef<Nod
e<int,(float *
float),'oldV>> []>

This function takes as an input the cloud
references of two arrays of type Node. The
goal is to create an initial topology. The output
is a tuple in a cloud computation which
contains the cloud references of both inputs.

3. compute IMutableCloudRef<Node
<int,(float *
float),'oldV>> [] →
IMutableCloudRef<Node
<int,(float
*float),'oldV>> [] →
ICloud<unit []>

This function is used to calculate the
computation that will be used in the future
iterations of the algorithm. It takes as
parameters the cloud references of t two
arrays of type Node.

4. computeNeighbo
rs

IMutableCloudRef<Node
<'Id,(float*float),'oldV>>
[] →
IMutableCloudRef<Node
<'Id,(float *
float),'oldV>> [] →
ICloud<Map<'Id,Set<int
>>>

This function takes as input two arrays of type
Node and calculates the new topology in the
future iterations. It returns a mapping
specifying how the new topology is defined.

A. Kalogeropoulos 32

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

5. isDone IMutableCloudRef<Node
<'Id,'newV,'oldV>> →
Set<'Id> →
ICloud<bool>

This function is used to check whether we
reach a fixpoint or not. It takes as input a
cloud reference of type Node and a set of
values and checks if the previous computed
values are the same with the old ones and
returns a boolean value.

3.2 Examples

3.2.1 K-means

K-means is an algorithm which is used to identify the best way to partition a specific dataset
into k clusters in which the distance between each member of the cluster and the cluster's
centroid is the minimum. The user specifies a set of input data and the number k of the
clusters to be created. Each element in the input data can be a d-dimensional array. The main
idea is that k initial centroids are randomly defined and then k clusters are being created.
Then, each element in the dataset is assigned to the cluster with the closest centroid. For
each cluster, the algorithm recalculates the centroids and all the elements are reassigned to
the clusters depending on the new centroid values. The same procedure is repeated until the
elements can no longer change clusters.

K-means always converges in polynomial time but it is important to mention that it does not
always find the optimal solution. Also, despite the fact that K-means clustering is an NP-hard
problem, there are heuristic methods which can be used in order for the algorithm to converge
in polynomial time.

3.2.2 Map-Hash-Repeat implementation of K-means

The Map-Hash-Repeat cloud programming pattern can simulate easily iterative algorithms,
one of them is K-means, which was described above. In our example, for the sake of
simplicity, 2-dimensional points are used for the implementation of the K-means algorithm
using the Map-Hash-Repeat pattern. The basic idea is to distribute the elements from the
dataset to MBrace workers and then execute the K-means algorithm in order to define the
final clusters. In this section the K-means algorithm is described in terms of
Map-Hash-Repeat terminology:

The dataset is a generic data type and is defined as a discriminated union Node which can
have the value N with the following set of fields:

• a node identifier 'Id

• a type parameter 'value1 which will keep the coordinates of the points

• another type parameter 'value2 which keeps the set of nodes that were in the cluster in

A. Kalogeropoulos 33

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

the previous iteration in order to be checked with the new one and determine if it has

been changed

• a set of identifiers Set<'Id> which keeps the identifiers of the nodes that are closest

to the center node

As mentioned, In order to enable execution specific to K-means, one should define the
functions in the Table 27. These functions are described in Table 28.

Table 28: Map-Hash-Repeat user specified functions specially for K-means

Name Type Description

1. createNodes int->int →
ICloud<IMutableCloudRe
f<Node<int,(float *
float),Set<int>>> []>

The user needs to pass as arguments the
number of the initial data and the number of
the clusters. This function returns a cloud
computation of an array that contains
references of the data and the center nodes.
Dereferencing these computations, one can
get the values of the data and the center
nodes. Each node is of type Node. The first
field is a unique identifier. In order to
distinguish the data nodes from the centers,
the identifiers of the latter are negative
numbers. The second field is a tuple of two
floats that specify the coordinates of the
corresponding node. The last two fields are
both empty sets.

2. createNeighbors IMutableCloudRef<Node
<int,
(float*float),'oldV>>[]
->
ICloud<IMutableCloudRe
f<Node<int,(float
*float),'oldV>> []
*IMutableCloudRef<Nod
e<int,(float *
float),'oldV>> []>

This function takes as input the cloud
references of the data nodes and the center
nodes. Firstly, it seperates the data from the
centers of the first input parameter and then it
calculates the euclidean distance between
each data element and each center. After
finding the closest center node for each data
node, the function updates the values of the
centroids by adding the identifier of the closest
data node in the set of the identifiers of the
corresponding center. The output is a tuple in
a cloud computation which contains the cloud
references of both data nodes and the
updated centers.

3. compute IMutableCloudRef<Node
<int,(float *
float),'oldV>> [] →
IMutableCloudRef<Node
<int,(float

This function takes as parameters the cloud
references of the data nodes and the centers.
Then, for every center, it takes the coordinates
of the nodes who are closerst to it and
calculates the new centroids which will be the

A. Kalogeropoulos 34

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

*float),'oldV>> [] →
ICloud<unit []>

coordinates of the centers of the new clusters.
Afterwards, it replaces the previous
coordinates of the centers with the new ones.

4. computeNeighbo
rs

IMutableCloudRef<Node
<'Id,(float*float),'oldV>>
[] →
IMutableCloudRef<Node
<'Id,(float *
float),'oldV>> [] →
ICloud<Map<'Id,Set<int
>>>

This function takes as input parameters the
cloud references of the data nodes and the
centers and calculates the euclidean distance
between each data node from all the centers.
From all these calculations, the function gets
the one with the minimum value and
associates the data node to the closest center.
Finally, it returns a mapping of each center
identifier as a key and a set of identifiers of the
closest data nodes to this specific center as a
value.

5. isDone IMutableCloudRef<Node
<'Id,'newV,'oldV>> →
Set<'Id> →
ICloud<bool>

This function checks whether the cluster has
been changed or not. It takes as input a center
node and a set of identifiers. These identifiers
belong to the data nodes which are closest to
the given center. If the current set of the
identifiers of the center is the same as the
given set, then the function returns true,
otherwise false.

Once one has defined the previous functions, the recursive “mapHashRepeat” function is
invoked by the Map-Hash-Repeat framework which takes cloud references of the data nodes
and the centers alongside with the functions 3,4,5 from Table 28 as input parameters in order
to execute the internal algorithm. In every iteration the algorithm calculates the new centroids
using the “compute” function and then assigns each node the closest center using the
“computeNeighbors” function. In the next step for each center the algorithm checks whether
the new set of the identifiers of the closest nodes which it calculated before is the same as the
old one or not. If the two sets are the same then a boolean value “true” is stored in an array,
otherwise a boolean value “false” is stored. Finally, the array contains as many boolean value
as the number of the center nodes and if all these values are true it means that the clusters
no longer change and the algorithm terminates returning the data nodes and the center
nodes. On the other hand, if even one of the values is false the “mapHashRepeat” function is
called with the new computations and the same procedure is followed.

In Appendix I, one can see the full implementation of the K-means algorithm in the
Map-Hash-Repeat pattern.

3.3 Implementation

Our implementation of the Map-Hash-Repeat programming model is based on the F#
programming language and the Mbrace cloud framework. The main reason why we chose

A. Kalogeropoulos 35

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

this programming language is because the Mbrace framework is written in F# and takes
advantage of many of the language features. Also, many common programming tasks, like list
processing, are much more simpler in F#. The following table shows the implementation of
the Map-Hash-Repeat programming model in F#.

Table 29: Map-Hash-Repeat programming model

[<Cloud>]
let rec mapHashRepeat (input1 : IMutableCloudRef<Node<'Id,'newV,'oldV>> [])
 (input2 : IMutableCloudRef<Node<'Id,'newV,'oldV>> [])
 (computeValues : (IMutableCloudRef<Node<'Id,'newV,'oldV>> [] ->
 IMutableCloudRef<Node<'Id,'newV,'oldV>> [] ->
 ICloud<Map<'I,'C>>))
 createNewTopology
 isDone = cloud {

 let keepPrevState (node : IMutableCloudRef<Node<'Id,'newV,'oldV>>) newV = cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(v1,v2,oldSet,currentV) ->
 let newData = (v1,v2,currentV,newV)
 do! MutableCloudRef.Force(node,N(newData))
 }

 let! newValues = computeValues input1 input2

 let distribute =
 Array.map (fun input -> cloud {
 let! cloudInput = MutableCloudRef.Read(input)
 match cloudInput with
 | N(v1,v2,oldV,newV) ->
 do! MutableCloudRef.Force(input,N(v1,newValues.[v1],oldV,newV))
 }) input2

 let! _ = distribute |> Cloud.Parallel

 let! newTopology = createNewTopology input1 input2
 let checkAll =
 [|
 for input in input2 -> cloud {
 let! cloudInput = MutableCloudRef.Read(input)
 match cloudInput with
 | N(v,_,_,_) when Map.containsKey (v) newTopology ->
 let comp = newTopology.[v]
 let! ok = isDone input comp
 do! keepPrevState input comp
 return ok
 }
 |]

 let! check = Cloud.Parallel checkAll

A. Kalogeropoulos 36

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

 let fixpoint = check |> Seq.fold (fun acc item -> acc && item) true
 match fixpoint with
 | true -> return (input1,input2)
 | false ->
 return! mapHashRepeat input1 input2 computeValues createNewTopology isDone
}

The programming model requires an initial node topology to apply the above function. The
algorithm applies the user-specified computeValues function to the input lists and then
distributes in parallel the new values to the second input list each time to the appropriate
element. A new node topology is created using the user-specified createNewTopology
function according to these new values. Afterwards, each element from the second input is
checked in parallel to determine whether its value computed in the n th-1 iteration is the same
as the new value, or not. An array of boolean values is created that contains one value for
each element from the input2. This value is true if the previous value equals the new one,
otherwise is false. At the same time, the new value is stored in the element for future
iterations. Finally, the array is “reduced” by applying the boolean and operation to each
element and returns an accumulator of the results. If the value of the accumulator is true, it
means that we reached a fixpoint. Otherwise, the next iteration begins by calling the again the
mapHashRepeat function.

The seq.fold function is used to determine whether we reached a fixpoint or not. It takes a
function, an accumulator and a sequence of elements and applies the given function to each
element while keeping each time the result in an accumulator. Its type is declared below.

Table 30: Seq.fold method

Seq.fold : ('State -> 'T -> 'State) -> 'State -> seq<'T> -> 'State

3.4 Related Work

There are many improved implementations based on the well-known MapReduce
programming model but not many of them support iterative computations in the cloud. Twister
[4] is a MapReduce runtime, implementing a programming model that supports iterative
MapReduce computations in an efficient way. Twister separates the data into two types: static
and dynamic. Static data is used in every iteration and remains the same in each computation
while the dynamic data are the output of every iteration and in many algorithms are used in
the next iteration. Instead of reloading the static data in each iteration, Twister introduces a
new “configure” step to load the static data to the map/reduce tasks using long running
(cacheable) map/reduce tasks that exist during each computation. There is also an optional
reduction phase known as “combine”, which one can use to combine the results from all the
reduce tasks in a single value.

A. Kalogeropoulos 37

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

4. Conclusion and Future Work

In this thesis we introduced the Map-Hash-Repeat cloud programming pattern for iterative
computations, which is relevant to the well-known MapReduce pattern. Our implementation is
based on the F# programming language and the MBrace programming model. We have
discussed the basic concepts of the MapReduce programming model and the main features
of the F# programming language that were used in our prototype in combination with some of
the features of the Mbrace framework. We have also presented in details the
Map-Hash-Repeat algorithm and its concepts and then we discussed the K-means algorithm
and its implementation using the Map-Hash-Repeat programming pattern.

In the future, we plan to create a library that will provide the support to develop more iterative
algorithms using the Map-Hash-Repeat programming model.

A. Kalogeropoulos 38

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

Abbreviations

HDFS Hadoop Distributed File System

SQL Structured Query Language

DBMS Database Management System

A. Kalogeropoulos 39

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

Appendix I

Here we implement the K-means algorithm using the Map-Hash-Repeat programming
pattern.

type Node<'Id,'newV,'oldV
 when 'Id : comparison and 'oldV : comparison> =
 | N of 'Id*'newV*'oldV* Set<'Id>

[<Cloud>]
let rec seqMap (f : 'T -> ICloud<'S>) (inputs : 'T list) : ICloud<'S list> =
 cloud {
 match inputs with
 | [] -> return []
 | x :: xs ->
 let! v = f x
 let! vs = seqMap f xs
 return v :: vs
 }

[<Cloud>]
let createNodes (numData : int) (k : int) = cloud {
 let rnd = System.Random()
 let! initVals = [|
 for i in 1..numData ->
 MutableCloudRef.New(N((1,(rnd.Next(0,11) |> float,rnd.Next(0,11) |> float),(Set.empty : int
Set),Set.empty)))
 |]
 |> Cloud.Parallel
 let! initCenters =
 [|for i in 1..k ->
 MutableCloudRef.New(N((-i,(rnd.Next(0,11) |> float,rnd.Next(0,11) |> float),(Set.empty : int
Set),Set.empty)))
 |]
 |> Cloud.Parallel
 return Array.append initVals initCenters
}

[<Cloud>]
let createNeighbors (nodes : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) = cloud {

 //find the centers (nodes with id < 0)
 let! getCenters =
 [|for node in nodes -> cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(id,_,_,_) when id < 0->
 return Some node
 | N(id,_,_,_) ->
 return None
 }|]
 |> Cloud.Parallel

A. Kalogeropoulos 40

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

 //centers
 let centers =
 getCenters
 |> Array.choose (fun x -> match x with
 |Some(ref) -> Some ref

 | None -> None)
 let! getNodes =
 [|for node in nodes -> cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(id,_,_,_) when id > 0->
 return Some node
 | N(id,_,_,_) ->
 return None
 }|]
 |> Cloud.Parallel

 let dataNodes =
 getNodes
 |> Array.choose (fun x -> match x with
 |Some(ref) -> Some ref
 | None -> None)
 //distance
 let dist (x1, y1) (x2, y2) : float =
 let xDistance = x1 - x2
 let yDistance = y1 - y2
 xDistance * xDistance + yDistance * yDistance

 //get the coordinates of the centers
 let! centerCoords =
 [|for center in centers -> cloud {
 let! cloudNode = MutableCloudRef.Read(center)
 match cloudNode with
 | N(id,coords,_,_) ->
 return (id,coords)
 } |]
 |> Cloud.Parallel

 //calculate distances between each node and each center and return (centerId,minDistance) pairs
 let! minPairs =
 [| for node in dataNodes -> cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(_,coord,_,_) ->
 return (Array.map (fun (id,c) -> (id,dist c coord)) centerCoords) |> Array.minBy snd
 }
 |]
 |> Cloud.Parallel

 //create clusters
 let addN pairMap = cloud {
 match pairMap with
 | (nodeId,clusterId) ->
 for center in centers do
 let! cloudNode = MutableCloudRef.Read(center)
 match cloudNode with
 | N(id,newv,oldSet,newSet) when id = clusterId ->

A. Kalogeropoulos 41

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

 do! MutableCloudRef.Force(center,N(id,newv,oldSet,newSet.Add(nodeId)))
 | N(id,newv,oldSet,newSet) ->
 do! MutableCloudRef.Force(center,N(id,newv,oldSet,newSet))
 }
 let! _ =
 minPairs
 |> Array.mapi (fun i (clusterId,minDist) -> (i+1,clusterId)) //node i will be added to cluster with id x
 |> Array.toList
 |> seqMap addN

 return (dataNodes,centers)
}

//compute the new centers
[<Cloud>]
let compute (nodes : IMutableCloudRef<Node<'Id,'newV,'oldV>> [])
 (centers : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) = cloud {

 let newVals (center : IMutableCloudRef<Node<'Id,'newV,'oldV>>) = cloud {
 //get the refs of the nodes who belong to the center
 let getNeighbors (center : IMutableCloudRef<Node<'Id,'newV,'oldV>>) = cloud {
 let! cloudNode = MutableCloudRef.Read(center)
 match cloudNode with
 | N(_,_,_,setN) ->
 let neighborIds = Set.toList setN
 return [for n in neighborIds -> nodes.[n-1]]
 }
 //get the coordinates (2nd element) of the given node
 let getCoords (node : IMutableCloudRef<Node<'Id,'newV,'oldV>>) = cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(_,coords,_,_) ->
 return coords
 }
 //get neighbors REFS from the given center
 let! neighborRefs = getNeighbors center

 //concatenate given center's coordinates with the neighbors' coordinates and return a list with tuples:
(nodeId,coordinates)
 let! cloudNode = MutableCloudRef.Read(center)
 match cloudNode with
 | N(id,_,_,_) ->
 let! clusterCoords = seqMap getCoords neighborRefs
 return (id, clusterCoords)
 }

 //for each cluster, returns a list with the coordinates which will calculate the new center
 let! allCoords =
 [|for center in centers -> newVals center|]
 |> Cloud.Parallel

 //calculates the x coordinate for each new center
 let xs =
 Array.map (fun (id,coords) -> let xSum = List.fold (fun acc (x,y) -> acc + x) 0.0 coords
 xSum/(coords.Length |> float)) allCoords
 //calculates the y coordinate for each new center
 let ys =
 Array.map (fun (id,coords) -> let ySum = List.fold (fun acc (x,y) -> acc + y) 0.0 coords
 ySum/(coords.Length |> float)) allCoords

A. Kalogeropoulos 42

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

 let newCenters =
 Array.mapi2 (fun i x y -> (-(i+1),(x,y))) xs ys
 |> Map.ofArray

 return newCenters
}

[<Cloud>]
let computeNeighbors (dataNodes : IMutableCloudRef<Node<'Id,'newV,'oldV>> [])
 (centers : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) = cloud {

 let dist (x1, y1) (x2, y2) : float =
 let xDistance = x1 - x2
 let yDistance = y1 - y2
 xDistance * xDistance + yDistance * yDistance

 //get the coordinates of the centers
 let! centerCoords =
 [|for center in centers -> cloud {
 let! cloudNode = MutableCloudRef.Read(center)
 match cloudNode with
 | N(id,coords,_,_) ->
 return (id,coords)
 } |]
 |> Cloud.Parallel

 //calculate distances between each node and each center and returns (centerId,minDistance) pairs
 //first pair is for node with id = 1, second pair for node with id = 2 etc.
 let! minPairs =
 [| for node in dataNodes -> cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(_,coord,_,_) ->
 return (Array.map (fun (id,c) -> (id,dist c coord)) centerCoords) |> Array.minBy snd
 }
 |]
 |> Cloud.Parallel

 //returns a list with (cId,nId) which means that
 //node with id nId belongs to cluster with id cId
 return
 minPairs
 |> Array.mapi (fun i (cId,minDist) -> (i+1,cId))
 |> Seq.groupBy snd |> Seq.map (fun (cId,seqnIds) -> (cId, (Seq.map (fun (nid,cid) -> nid) seqnIds) |>
Set.ofSeq))
 |> Seq.toArray
 |> Map.ofArray
}

[<Cloud>]
let rec mapHashRepeat (dataNodes : IMutableCloudRef<Node<'Id,'newV,'oldV>> [])
 (centers : IMutableCloudRef<Node<'Id,'newV,'oldV>> [])
 (calcCenters : (IMutableCloudRef<Node<'Id,'newV,'oldV>> [] ->
 IMutableCloudRef<Node<'Id,'newV,'oldV>> [] ->
 ICloud<Map<'I,'C>>))
 computeNeighbors
 isDone = cloud {

A. Kalogeropoulos 43

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

 //change the old set of ids(neighbors) with the new one (comp)
 let changeV (node : IMutableCloudRef<Node<'Id,'newV,'oldV>>) comp = cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(id,coords,oldSet,currentV) ->
 let newData = (id,coords,currentV,comp)
 do! MutableCloudRef.Force(node,N(newData))
 }

 let! newCenters = calcCenters dataNodes centers

 let distribute =
 [|for center in centers -> cloud {
 let! cloudNode = MutableCloudRef.Read(center)
 match cloudNode with
 | N(id,coords,oldSet,newSet) ->
 do! MutableCloudRef.Force(center,N(id,newCenters.[id],oldSet,newSet))
 }
 |]
 |> Cloud.Parallel

 let! neighborPairs = computeNeighbors dataNodes centers

 let checkAll =
 [|
 for node in centers -> cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(id,_,_,_) when Map.containsKey (id) neighborPairs ->
 let comp = neighborPairs.[id]
 let! ok = isDone node comp
 do! changeV node comp
 return ok
 }
 |]

 let! check = Cloud.Parallel checkAll
 let ok = check |> Seq.fold (fun acc item -> acc && item) true
 match ok with
 | true -> return (dataNodes,centers)
 | false ->
 return! mapHashRepeat dataNodes centers calcCenters computeNeighbors isDone //(ref true)

}

[<Cloud>]
let isDone (node : IMutableCloudRef<Node<'Id,'newV,'oldV>>) comp = cloud {
 let! cloudNode = MutableCloudRef.Read(node)
 match cloudNode with
 | N(id, coords, setN,currentSet) -> return currentSet = comp
}

let runtime = MBrace.InitLocal 4
//number of data points, number of clusters
let allNodes = runtime.Run <@ createNodes 7 2 @>
let (nodes,centers) = runtime.Run <@ createNeighbors allNodes @>

let (finalNodes,finalCenters) = runtime.Run <@ mapHashRepeat nodes centers compute computeNeighbors
isDone @>

A. Kalogeropoulos 44

Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

 References

[1] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters."

Communications of the ACM 51.1 (2008): 107-113].

[2] Apache Hadoop. http://hadoop.apache.org/

[3] Dzik, Jan, et al. "MBrace: cloud computing with monads." Proceedings of the Seventh Workshop on
Programming Languages and Operating Systems. ACM, 2013.

[4] Ekanayake, Jaliya, et al. "Twister: a runtime for iterative mapreduce." Proceedings of the 19th ACM
#International Symposium on High Performance Distributed Computing. ACM, 2010.

[5] Syme, Don, Tomas Petricek, and Dmitry Lomov. "The F# asynchronous programming model." Practical
Aspects of Declarative Languages. Springer Berlin Heidelberg, 2011. 175-189.

[6] http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html (accessed
18/1/2014)

[7] F# Language Reference, http://msdn.microsoft.com/en-us/library/dd233181.aspx (accessed
18/1/2014)

A. Kalogeropoulos 45

http://hadoop.apache.org/
http://msdn.microsoft.com/en-us/library/dd233181.aspx
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html

	WebMapReduce in Education,
	Abbreviations

