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ABSTRACT

In  this  thesis  we describe an initial  exploration of  the Map-Hash-Repeat  pattern of  cloud
computation,  in  the  context  of  the  F#  programming  language  and  the  MBrace  cloud
framework.  Map-Hash-Repeat  can  be  viewed  as  a  generalization  of  the  well-known
MapReduce pattern, where a) the reduce phase is replaced by “hashing”, i.e., re-distribution
of results over the node topology; b) both the map and the reduce phases are repeatedly
iterated; and c) the final result is produced (possibly via a full reduce phase) upon reaching an
iteration fixpoint.

This pattern seems to capture a general mode of computation, e.g., easily simulating iterative
algorithms, in addition to traditional MapReduce functionality.

Our prototype is in a functional setting, using the F# programming language, and leverages
an  existing  framework  for  cloud  computation  to  encode  the  Map-Hash-Repeat  pattern
succinctly.

SUBJECT AREA: Cloud computations, iterative algorithms

KEYWORDS: MapReduce programming model, F#, MBrace cloud programming 

     pattern



ΠΕΡΙΛΗΨΗ

Στα  πλαίσια  αυτής  της  πτυχιακής  εργασίας  περιγράφουμε  μια  αρχική  εξερεύνηση  του
προτύπου  Map-Hash-Repeat  για  επαναληπτικούς  κατανεμημένους  υπολογισμούς,  με
χρήση  της  προγραμματιστικής  γλώσσας  F#  και  του  Mbrace  framework.  Το
Map-Hash-Repeat  αποτελεί  μια  γενίκευση  του  γνωστού  προγραμματιστικού  προτύπου
Map-Reduce,  όπου:  1)  το  reduce  στάδιο  αντικαθίσταται  με  διαμοιρασμό  των
αποτελεσμάτων  στην  τοπολογία  των  κόμβων,  2)  το  map  και  το  reduce  στάδιο
επαναλαμβάνονται  και  3)  το  τελικό  αποτέλεσμα  προκύπτει  (πιθανώς  από  ένα  reduce
στάδιο) όταν φτάσουμε σε κάποιο σταθερό σημείο.

Το πρότυπο φαίνεται να υποστηρίζει ένα γενικότερο τύπο υπολογισμών, για παράδειγμα
υλοποιεί  απλούς  επαναληπτικούς  αλγορίθμους  σε  συνδυασμό  με  την  κλασσική
λειτουργικότητα του MapReduce.

To  πρωτότυπο  αυτό  αποτελεί  ένα  λειτουργικό  περιβάλλον,  χρησιμοποιώντας  την
προγραμματιστική  γλώσσα  F#,  και  αξιοποιεί  ένα  ήδη  υπάρχον  framework  για
υπολογισμούς στο δίκτυο ώστε να υλοποιείται συνοπτικά το πρότυπο Map-Hash-Repeat
πρότυπο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογισμοί στο δίκτυο, επαναληπτικοί αλγόριθμοι

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: προγραμματιστικό μοντέλο MapReduce, F#, προγραμματιστικό 

μοντέλο MBrace 
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Athens at the department of Informatics and Telecommunications.



Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

1. Introduction

Map-Hash-Repeat is a cloud programming pattern for iterative computations. It evolves the
MapReduce programming model and it is used to simulate iterative algorithms in an easy way
where both map and reduce phases are iterated and the final result is obtained (via a reduce
phase) once we reach a fixpoint. To elaborate this, a map phase takes place at first and then
the reduce phase is replaced by a re-distribution of the previously computed results over the
node topology. The same procedure goes on until reaching an iteration fixpoint.

The MapReduce programming model is used for processing and generating large data sets in
a distributed way over several machines. A MapReduce program consists of a  map  phase
which processes some input data and generates (“maps”) it to intermediate  <key, value>
pairs according to the user's specifications and a  reduce phase that takes a collection of
intermediate  <key, value> pairs and “reduces” them according to the same intermediate
key, in order to produce the final result.

Our prototype implementation of the Map-Hash-Repeat programming pattern is based on the
F# programming language in combination with the MBrace cloud computing model. F# is an
open-source  programming  language.  Primarily,  F#  is  a  functional  language,  but  it  also
supports imperative, object-oriented and functional styles of programming. Some of the main
features of the F# language which are used in our Map-Hash-Repeat implementation are:
code  quotations,  asynchronous  workflows,  pattern  matching,  discriminated  unions  and
recursion.  We  also  used  some  of  the  basic  features  of  the  MBrace  cloud  computing
framework which are the cloud workflows and the cloud refs.

MBrace  is  a  cloud  programming  model/framework  which  introduces  an  expressive  and
integrated way of performing large-scale computations running in the cloud. With the help of
the F# programming language, MBrace offers a declarative style for describing distributed
computations using the F# computation expressions which specify parallelism patterns known
as  cloud workflows or  monads and as a result it express many different kind of algorithmic
patterns, such as MapReduce and other iterative algorithms.

A. Kalogeropoulos 14
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2. Background

2.1 MapReduce

MapReduce  [1] is  a  programming  model  for  processing  large  data  sets  in  a  distributed
manner over several machines (tasks). It is used to deal with problems that can be seperated
into smaller independent sub-problems and require operations on large data sets. Its concept
is very simple and the main idea is that the inital problem is divided into sub-problems, which
are being distributed over the topology into tasks. There is a boss who takes the initial input
and distributes it to the workers. So, each worker tries to solve a part of the inital problem.
When completed, the  boss node collects all the solutions from each  worker and combines
them in some way to form the output, which will be the final result of the initial problem. 

In more detail, the MapReduce framework consists of two user-specified basic procedures:
Map() and Reduce(). During the "Map" step, the Map() function takes as input a series of
<key_i,value_i> pairs  and  they  are  "mapped"  into  a  collection  of  intermediate
<ikey_j,ivalue_j> pairs  that are being distributed to worker nodes. Then, in the "Reduce"
step,  each worker  performs a  computation  ("reduce")  over  the  data  it  received and then
passes the result to the  boss in a form of  <okey_i,ovalue_i> pair. Finally, the  boss node
collects all data from the workers and produces the final output. 

1

1 WebMapReduce in Education, 

            http://webmapreduce.sourceforge.net/education.php

A. Kalogeropoulos 15
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Figure 1 shows the map and the reduce phase. In Step1, the input data is split into key-value
pairs and the Map() function takes these pairs as input.  The output can be one or more
intermediate key-value pairs, as  Step 2 shows. In Step3, all intermediate key-value pairs are
grouped by key and in the next step each unique key is being given to the reducer including
all its values. Then, the reducer performs a computation over its values and returns one or
more key-value pairs. In the end, all ouput pairs are collected by the framework. The most
important element is that the model is ideal for parallel programming because each key-value
pair can be computed independently.

One  of  the  most  common  examples  in  MapReduce  is  the  wordcount  example.  In  this
example, the goal  is to count  the number of  occurrences of each word in a large set of
documents.  This problem can be easily implemented using the MapReduce programming
model.  The  map function  would  split  the  input  lines  into  words  and  then  would  emit  a
<word,1> pair for each word. Then the pairs with the same key are grouped together and
are passed to the same worker for the reduce step. So, the reduce function takes a collection
of <key,value> pairs and sums the values of the pairs that have the same key. Finally, the
output pairs are in the form of <word,occurences> and are passed to the boss.

2.1.1 MapReduce-based Frameworks

There  are  many  implementations  of  the  MapReduce  framework.  One  of  them  is  the
well-known  Apache  Hadoop  [2] project.  Hadoop  is  an  open  source  MapReduce
implementation  written  in  Java.  It  is  designed  to  solve  big  problems  that  require
computationally  extensive operations.  These operations can be executed in  parallel  on  a
large number of independent machines. Hadoop uses its own distributed file-system called
Hadoop Distributed File System  (HDFS) to provide access to the data from all the servers.

2.1.2 Criticism of MapReduce

Despite the fact that many programmers support the idea of the MapReduce programming
model, many people, mainly from the database community, claim that MapReduce represent
a major step backwards. To support their view, they argue that MapReduce has a serious
performance problem when it  comes to access huge amount  of  data because it  uses no
indexes. Its techniques are nothing new and they are more than 20 years old. They also
assert  that  MapReduce is missing some main features that  are provided by any modern
DBMS and it is not compatible with many DBMS tools. However, MapReduce suits well for
processing huge amounts of unstructed data and enables data distribution over the network.

A. Kalogeropoulos 16
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2.2 Programming in F#

2.2.1 Quoted Expressions

In F#, many applications need to know not only the structure of a block of source code but
also the way it operates. In order to do that, F# provides a specially delimited expression
which is called  quoted expression  so that the expression is compiled into an object which
represents this expression. With this feature, the programmer can see the abstract syntaxt
tree of the code. These quoted expressions can be executed then by alternative means such
as  an  SQL query  or  as  JavaScript  in  a  client-side  Web  browser.  In  other  words,  this
mechanism lets the programmer convert a computational representation of the program to an
abstract syntax representation of the same language with which you can for instance analyse,
execute, print or compile those programs in other ways.

Quoted expressions come in two ways: typed or untyped. To add type information, one can
place the quotation markers <@ @> around an expression. 

For example, the following code shows a typed quotation:

Table 1: Quoting an expression – typed quotation

open Microsoft.Fsharp.Quotations

let expr1 : Expr<int> = <@ 1 + 1 @>

//val expr : Quotations.Expr<int> = Call (None, op_Addition, [Value (1), Value (1)])

As you see in the Table 1, the act of quoting an expression gives you back the expression as
data. The generic type parameter Expr<int> is the result of the expression <@ 1 + 1 @>
which in this example is an integer.

In order to obtain an untyped quotation, one can use the  <@@ @@> quotation markers
around an expression, as in the following example below:

Table 2: Quoting an expression – untyped quotation

open Microsoft.Fsharp.Quotations

let expr2: Expr = <@@ 1 + 1 @@>

//comment

//val expr : Quotations.Expr = Call (None, op_Addition, [Value (1), Value (1)])

A. Kalogeropoulos 17
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In Table 2,  the result Expr of the expression is not a generic type.

2.2.2 Asynchronous Workflows

Another important feature of the F# programming language are the asynchronous workflows
[5].  With  asynchronous  workflows  F#  provides  a  programming  model  which  enables  the
programmer to  indicate which computations are going to  be executed in  the background
threads in an asynchronous way as the execution continues on the current thread, without
blocking it.  For instance, background threads can perform different kinds of work such as
responding  to  I/O  requests,  sleeping  or  waiting  to  acquire  shared  data.  Asynchronous
workflows avoid the need of  explicit  callbacks and the  user  writes the  code as  if  it  was
executed sequentially. 

To create asynchronous workflows, the code is wrapped in the async computation expression
builder .  A computation expression builder is an F# feature which lets the user define the
characteristics of his own computation expression by creating a custom builder class and
defining its methods. The syntax for defining a computation expression of type builder-name
is builder-name { expression }. This type specifies code that controls the execution of the
expression.

The result of an async computation is an Async<'T> object which can be thought of as an
asynchronous  computation  that  will  compute  a  value  type  'T.  In  order  to  begin  an
asynchronous operation the keywords let! (let-bang) and do! (do-bang) are being used. Within
asynchronous workflow expressions, the language construct let! var= expr means “perform
the asynchronous operation  expr and bind the result to  var  when the operation completes.
Then continue by executing the rest of the computations”. The difference between let and let!
is that the first one just stores the result as an asynchronous operation, while the second
executes the asynchronous operation and returns the data.

To start an asynchronous workflow, the simplest way is to use the Async.Start method which
takes an Async<unit> as a parameter in order to begin the execution but in order for the
async operation to return a value, the Async.RunSynchronously method is called immediately
after the Async.Parallel method.

The  Async.Parallel  method  takes  a  seq<Async<'T>> and  starts  to  execute  all  the
asynchronous computations in  parallel,  and then the  Async.RunSynchronously  method is
called to initiate the execution of the asynchronous computations.

The following example  shows how to  use asynchronous workflows to  fetch  several  Web
pages in parallel.

Table 3: Fetching Web pages length asynchronously

open System.IO

A. Kalogeropoulos 18
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open System.Net

let webPages = ["google", "http://google.com"; "yahoo", "http://yahoo.com"]
let fetchAsync(name, url: string) = 
    async {
        printfn "Request for %s" name
        let req = WebRequest.Create(url)
        let! resp = req.AsyncGetResponse()
        printfn "Response for %s " name
        let stream = resp.GetResponseStream()
        printfn "Reading response for %s " name
        let reader = new StreamReader(stream)
        let html = reader.ReadToEndAsync().Result
        printfn "Read %d characters for %s " html.Length name
        return (name,html.Length)
    }

Async.Parallel [for name, url in webPages -> fetchAsync(name, url)]
|> Async.Ignore
|> Async.RunSynchronously

The types of these functions are:

Table 4: Function return types

val webPages : (string * string) list

val fetchAsync : name:string * url:string -> Async<string*int>

Running the code in F# interactive, the output is:

Table 5: Output fetchAsync method

Request for yahoo
Request for google
Response for google 
Reading response for google 
Read 46800 characters for google 
Response for yahoo 
Reading response for yahoo 
Read 91516 characters for yahoo

As one can see in Table 5, there are simultaneous web requests. The most important thing is
that the threads which are responsible for these requests are not blocked. 

At the example in Table 3, we use the namespaces System.IO and System.Net provided by
the .NET framework for reading to data streams and using Internet resources easily.  The

A. Kalogeropoulos 19
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webPages function contains a list of tuples and the fetchAsync function takes as input two
strings, a name and a url. The output is an Async<string*int> type object. The next three
lines perform the execution of the program. The  pipeline operator |> is defined as shown in
Table 6. 

Table 6: Pipeline operator

let (|>) x f = f x

The above operator it applies the first operand (x) to the function given in the second operand
(f). 

The Async.Parallel method creates an asynchronous computation and executes all the given
fetchAsync  computations  in  a  fork/join  pattern.  This  computation  is  passed  to  the
Async.Ignore  metho,using  the  pipeline  operator,  to  run  and  ignore  its  result.  Finally,  the
RunSynchronously method executes in parallel all these sequence computations and awaits
the result.

2.2.3 Pattern matching

Pattern matching is a very powerful and flexible feature of the F# programming language that
is used to examine data structures and their values against one or more conditions. Instead of
using  series  of  if...then...else statements,  F#  offers  the  pattern  matching.  In  general,
patterns are used to compare data with a structure, or to decompose data into its parts or to
extract  information  from structures.  They are  used in  the  match expression  that  has the
following form:

Table 7: Match expression used for pattern matching

match test-expression with

| pattern1 [when condition] -> result-expression1

| pattern2 [when condition] -> result-expression2

| ...

In the form in Table 7,  test-expression  is the expression that will be matched. Most of F#'s
types  can  be  used  as  text-expressions.  The  pattern  specifies  how  to  deconstruct  the
text-expression. The when condition is optional. For a successful matching, the pattern must
satisfy  the  test-expression  and  the  when  condition  must  evaluate  to  true.  The
result-expression is returned in a successful match. The patterns are tested one by one and
the procedure stops once a match is found. 

A simple example for matching constants is described.

A. Kalogeropoulos 20
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Table 8: Pattern matching example

match 5 with

| 5 -> “Match!”

| 2 -> “This pattern will never be tested.”

In the above example, F# compares the test-expression 5 with the pattern 5 and considers
the match as valid. Then, it evaluates the result-expression and returns the string “Match!”. As
one can notice, the pattern 2 will never be tested. This means that the order of the patterns
matters.

2.2.4 Discriminated unions

Discriminated unions are data types with a finite number of different representations. They
can be though of as the union data type in C. The are defined using the keyword  type
followed by a name and then the union cases seperated by the pipe symbol | . Discriminated
unions have the following form: 

Table 9: Discriminated union type

type typeName =

    | Case1 [of datatype1] [* datatype2] ...

    | Case2 [of datatype3] [* datatype4] ...
    | ...

For instance, a type is described below, which can me either an integer or a boolean.

Table 10: Example of the discriminated union type intOrBool

type intOrBool = 

| Int of int

| Bool of bool

A. Kalogeropoulos 21
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2.2.5 Reference Cells

A ref cell is used to hold a mutable value, meaning that the user can change it anytime. The
ref operator is used before a value to allocate a new ref cell for the given value. To assign a
new value  to  a  reference cell  one can use  the  assignment  operator  := and to  read its
contents one can use the ! (bang) operator, as the following example shows.

Table 11: Reference cell example

let r = ref 3
printfn “%d” !r
r := 5
printfn “%d” !r

In the above example we create a ref cell that contains the value 3 and then we change its
value to 5.

To clarify this, reference cells point to a memory address. This means that if one has several
ref cells pointing to the same address, changes at that memory address will affect all the ref
cells pointing to it.

2.3 Programming in Mbrace

2.3.1 Concepts

The programming model of  MBrace [3] is very similar to the form of the F# asynchronous
workflows. Just as in asynchronous workflows one uses the syntax  async {expression} to
set up a computation expression that runs asynchronously, MBrace offers cloud workflows to
introduce distributed computations. Their execution can be performed only within a distributed
environment. The framework provides the MBrace runtime that provides an environment that
abstractly distributes the execution of cloud computations. The environment handles quite
good data distribution but when it comes to big data it is not so efficient. MBrace offers a
mechanism to  manage  global  data,  known  as  cloud  refs. In  the  following  section  these
concepts are described in details.

2.3.2 Cloud Workflows

MBrace provides cloud workflows in order one to define distributed computations. Their style
bears  a  strong  resemblance  to  F#  asynchronous  workflows.  In  the  same  way  that
asynchronous workflows are scoped by the  async  { } builder and are being executed in
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threads, cloud computations use the cloud { } expression builder known as cloud block and
are being executed in a distributed way. Their execution is postponed until they are being sent
to the MBrace runtime for evaluation. The type of a cloud computation is  ICloud<'T> and
once executed, the output is of type 'T. All cloud blocks must be declared with the [<Cloud>]
attribute. 

The following example declares a simple computation.

Table 12: Hello World example

[<Cloud>]
let HelloWorld() = 
    cloud {
        return "Hello world"
    }

In Table 12, one can see that this computation returns an ICloud<string> type.  This result
should  be dereferenced in  order  to  obtain  the  string type.  To instantiate  a  local  MBrace
runtime, the user has to execute the following command:

Table 13: A local MBrace runtime initialization

let runtime = Mbrace.InitLocal 4

The code in Table 13 initializes a cluster of 4 nodes locally on the current machine.

To execute a cloud computation, one can run the following code. The result is type of string 
with value “Hello world”.

Table 14: Execution of the HelloWorld cloud computation

Runtime.Run <@ HelloWorld() @>

We can now define the same example in Table 3 using cloud blocks as the following table 
shows.

Table 15: Fetching Web pages length in parallel

[<Cloud>]
let cloudFetchAsync() = 
    cloud   {
        let jobs = 
            Array.map (Cloud.OfAsync << fetchAsync) webPages
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        let! results = Cloud.Parallel jobs
        return results
    }   

The Array.map function applies the given function to each element of the array and returns a
new array.

This section explains some basic MBrace combinators that are used in the above example.

• Cloud.OfAsync

With this combinator, one can use asynchronous computation expressions inside cloud 
blocks. Its type signature is:

Table 16: Type signature of Cloud.OfAsync combinator

Async<'a> → ICloud<'a>

The combinator does not change the semantics of the async computation. It is useful when
one needs to adjust existing asynchronous workflows in cloud workflows. For instance, we
can use the  Cloud.OfAsync combinator  to  embed the  following asynchronous workflow,
which causes the execution to stop for x milliseconds, in a cloud block.

Table 17: Asynchonous workflow example

let sleep x = 
    async  {        
        do! Async.Sleep x
    } 

Then, the cloud computation is declared in Table 18.

Table 18: Cloud computation expression with an embeded asynchronous workflow

[<Cloud>]
let cloudSleep()= 
    cloud {
        do! Cloud.OfAsync (sleep 3000)
    }
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• Cloud.Parallel

The  Cloud.Parallel  combinator  is  used  to  execute  cloud  computations  in  parallel.  The
signature of the type is:

Table 19: Type signature of Cloud.Parallel combinator

Cloud<'T> [] → Cloud<'T []>

As one can see from the above table, the combinator takes as input an array of cloud 
computations and executes them in parallel. The result is an array containing the result
of  each computation.  It  is  worth mentioning that  each computation is  allocated in  
different worker and is executed in a fork/join pattern. In other words, the boss waits 
until all the workers terminate and then joins the results to return the final result.

The following example shows the use of the Cloud.Parallel combinator.

Table 20:  Cloud.Parallel combinator example

[<Cloud>]
let parallelExample() = 
    cloud {
        let func x y = cloud {return x + y}
        let jobs = [|for i in 1 .. 1000 -> func i (i*i) |]
        let! results = Cloud.Parallel jobs
        return results
    }

The parallelExample cloud workflow creates 1000 cloud computations that are being 
executed in parallel using the Cloud.Parallel combinator and finally the results are  
being collected.

 

2.3.3 Cloud Refs

Cloud refs are very similar to F#'s reference cells but they are distributed and immutable by
design. Once they are being declared, they require a real-time decision by the runtime  as far
as  the  locality  and  the  load  mechanism  is  concerned.  The  MBrace  runtime  uses  some
techniques, such as caching local copies to workers, to manage the values of the cloud refs
and  lessening  duplicate  copies  of  repeating  data.  The  type  of  the  cloud  refs  is
ICloudRef<'T>, where 'T is the type of the contained value.
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Using the fetchAsync function we defined in Table 3, one can create a cloud workflow to get
the length of a web page, but this time a reference to the result will  be returned that will
contain the value instead of the actual value. 

Table 21: Using cloud refs to fetch the length of a web page

[<Cloud>]
let getRef() = 
    cloud   {
        let! jobs = Cloud.OfAsync <| fetchAsync ("google", "http://google.com")   
        let! ref = CloudRef.New jobs
        return ref
    }  

The CloudRef.New method creates a new cloud ref that contains the given value. The result
of the getRef function is of type ICloudRef<string*int>, which is a reference to the result.
To get the cloud ref, one can run:

Table 22: Receive a cloud ref

let cloudRef = runtime.Run <@ getRef() @>

In  order  to  get  the  actual  value  of  the  above cloud ref,  the  programmer  has to  run  the
following line:

Table 23: Dereferencing a cloud ref

let data = cloudRef.Value

In the context of a cloud computation, the user can get the value of a cloud ref using the
CloudRef.Read  method.  This  method  takes  a  cloud  ref  ICloudRef<'a> and  returns  a
workflow ICloud<'a> that contains the enclosed value.

However, there is a mutable version of cloud refs; the MutableCloudRef type. The difference
between the immutable and the mutable version is that a mutable cloud ref  can update its
contained value and it can be deallocated manually by the user. These imply that the values
can  not  be  cached.  Mutable  cloud  refs  usually  are  used  to  define  user-specified  data
structures  or  to  create  synchronization  mechanisms  like  semaphores.  The  type  of  the
MutableCloudRef is IMutableCloudRef<'T>, where 'T is the type of the contained value.

The following describes some useful functions that are used to manage the mutable cloud
refs.

Table 24: Functions that manage mutable cloud refs

Name Type Description

MutableCloudRef.New 'a → ICloud<ICloudRef<'a>> Takes a value and creates a
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new MutableCloudRef.

MutableCloudRef.Read IMutableCloudRef<'a> → 
ICloud<'a>

Returns  the  value  of  the
given MutableCloudRef.

MutableCloudRef.Force IMutableCloudRef<'a>*'a → 
ICloud<unit>

It tries to update the value of
the  given  MutableCloudRef
with  the  given  value  without
checking if it was updated by
someone else.

MutableCloudRef.Set IMutableCloudRef<'a>*'a → 
ICloud<bool>

It  tries  to  update  the  given
MutableCloudRef  with  the
given value and returns true if
on  success.  If  its  value  has
been modified since the last
time that it was read it returns
false.

MutableCloudRef.SpinSet IMutableCloudRef<'a>*('a → 'a) → 
ICloud<unit>

It  updates  a
MutableCloudRef  using  the
function given in the second
argument.

2.3.4 MapReduce in Mbrace

The MBrace framework provides a library that one can define and execute MapReduce tasks.
The recursive mapReduce method is very simple. It takes a user-specified map and reduce
function, an identity value to be used as a termination condition and a list  with the input
values. The algorithm splits, if needed, the input into halves and passes each half in two
mapReduce calls and executes them in parallel.

Table 25: mapReduce library in MBrace

[<Cloud>]
let rec mapReduce (map : 'T -> ICloud<'R>)
                  (reduce : 'R -> 'R -> ICloud<'R>)
                  (identity : 'R)
                  (input : 'T list)   =
    cloud  {
        match input with
            | [] -> return identity
            | [value] -> return! map value
            | _ ->
                let left,right = List.split input
                let! r1,r2 = 
                    (mapReduce map reduce identity left)
                        <||>
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                    (mapReduce map reduce identity right)
                return! reduce r1 r2                                
    }

 

In the above code, the List.split method is an Mbrace function that takes a list and splits it in
half, returning the two new lists in a tuple. The  parallel decomposition operator  <||> is an
abbreviation of the Cloud.Parallel combinator but only for a 2-dimensional array as input.

A. Kalogeropoulos 28



Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

3. Map-Hash-Repeat

3.1 Overview

Map-Hash-Repeat  is  a  programming  pattern  for  supporting  iterative  computations  in  the
cloud.  Its  main  idea  is  based  on  the  MapReduce  programming  model  but  there  are
differences in how the  reduce  phase is defined as well  as in the computation of the final
output. Map-Hash-Repeat requires an initial node topology in memory to apply the pattern.
This limitation is necessary because the algorithm needs an initial input to generate the final
solution in the next iterations. Once this has been done, the algorithm executes iteratively two
main steps: the first being a map step that is similar to MapReduce's map and a second being
the reduce step defined in a different manner. During the map phase,  intermediate values are
computed in one step. The reduce phase that follows is different from that in MapReduce:
instead of reducing these values, these are being distributed over the topology. The concept
is that during the nth iteration the algorithm uses the values computed during the previous
iteration to compare them with the new ones. The algorithm terminates once in all nodes the
previous computed value and the new one are the same.

This implies that each node has to keep the value it computed in the previous iteration. Once
all nodes terminate, the iteration stops and the output is produced. In the meantime, the node
topology can change appropriately according to the newly computed values. The importance
of this redistribution is the fact that the new topology is based on the newly computed values,
which helps the algorithm to converge faster.
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3.1.1 Description of the algorithm

The following algorithm describes the Map-Hash-Repeat programming pattern.

Table 26: MapHashRepeat pseudocode

computeValues := computes the new values that will be used for the next iterations
createNewTopology:= creates a new topology according to the already computed values
keepPrevState := swap the prevValue with the newValue

function recursive mapHashRepeat(input1, input2) : 
newValues := computeValues(input1,input2);
for each node n in input2:

n.Values := add(newValues[n]);

newTopology := createNewTopology(input1,input2);

//returns an array of boolean values, one from each node, on whether                               
//the previous value equals the new one or not

states :=
[| 

for each node n in input2:
prevValue := n.getPrev;
newValue := newTopology[n];
keepPrevState(prevValue,newValue,n);
if newValue == prevValue: 

return true;
else:

return false;
|]

finalState := true;
for each state s in states:

finalState := state && true;

if finalState == true:
return (input1,input2);

else:
mapHashRepeat(input1,input2);

3.1.2 Programming Interface

To simulate an iterative algorithm in the Map-Hash-Repeat programming model one should 
define some user specified functions that are used during the execution of the main algorithm.
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The following table describes these functions.

Table 27: Map-Hash-Repeat user specified functions

Name Type Description

1. createNodes int->int → 
ICloud<IMutableCloudRe
f<Node<int,(float * 
float),Set<int>>> []> 

This function is used  to create and distribute
the  initial  data  to  the  MBrace  workers.  The
user needs to pass as arguments the number
of  the  initial  data  and  the  number  of  the
clusters.  With  the  help  of  the  cloud  refs,
offered  by  the  MBrace  programming  model,
this function returns a cloud computation of an
array that contains references of the data and
the  center  nodes.  Dereferencing  these
computations, one can get the values of the
data and the center nodes.  Each node is  of
type Node. 

2. createNeighbors IMutableCloudRef<Node
<int,
(float*float),'oldV>>[]  
-> 
ICloud<IMutableCloudRe
f<Node<int,(float 
*float),'oldV>> [] 
*IMutableCloudRef<Nod
e<int,(float * 
float),'oldV>> []>

This  function  takes  as  an  input  the  cloud
references of  two arrays  of  type  Node.  The
goal is to create an initial topology. The output
is  a  tuple  in  a  cloud  computation  which
contains the cloud references of both inputs.

3. compute IMutableCloudRef<Node
<int,(float * 
float),'oldV>> [] → 
IMutableCloudRef<Node
<int,(float 
*float),'oldV>> [] → 
ICloud<unit []>

This  function  is  used  to  calculate  the
computation  that  will  be  used  in  the  future
iterations  of  the  algorithm.  It  takes  as
parameters  the  cloud  references  of  t  two
arrays of type Node.

4. computeNeighbo
rs

IMutableCloudRef<Node
<'Id,(float*float),'oldV>>
[] → 
IMutableCloudRef<Node
<'Id,(float * 
float),'oldV>> [] → 
ICloud<Map<'Id,Set<int
>>>

This function takes as input two arrays of type
Node  and calculates the new topology in the
future  iterations.  It  returns  a  mapping
specifying how the new topology is defined.
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5. isDone IMutableCloudRef<Node
<'Id,'newV,'oldV>> → 
Set<'Id> → 
ICloud<bool>

This  function  is  used  to  check  whether  we
reach  a  fixpoint  or  not.  It  takes  as  input  a
cloud  reference  of  type  Node  and  a  set  of
values and checks if  the previous computed
values are  the same with  the old  ones and
returns a boolean value.

3.2 Examples

3.2.1 K-means

K-means is an algorithm which is used to identify the best way to partition a specific dataset
into  k clusters in which the distance between each member of the cluster and the cluster's
centroid is the minimum. The user specifies a set of input data and the number  k  of the
clusters to be created. Each element in the input data can be a d-dimensional array. The main
idea is that k initial centroids are randomly defined and then k clusters are being created.
Then, each element in the dataset is assigned to the cluster with the closest centroid. For
each cluster, the algorithm recalculates the centroids and all the elements are reassigned to
the clusters depending on the new centroid values. The same procedure is repeated until the
elements can no longer change clusters. 

K-means always converges in polynomial time but it is important to mention that it does not
always find the optimal solution. Also, despite the fact that K-means clustering is an NP-hard
problem, there are heuristic methods which can be used in order for the algorithm to converge
in polynomial time.

3.2.2 Map-Hash-Repeat implementation of K-means

The Map-Hash-Repeat cloud programming pattern can simulate easily iterative algorithms,
one  of  them  is  K-means,  which  was  described  above.  In  our  example,  for  the  sake  of
simplicity, 2-dimensional  points are used for the implementation of the K-means algorithm
using the Map-Hash-Repeat pattern. The basic idea is to distribute the elements from the
dataset to MBrace workers and then execute the K-means algorithm in order to define the
final  clusters.  In  this  section  the  K-means  algorithm  is  described  in  terms  of
Map-Hash-Repeat terminology:

The dataset is a generic data type and is defined as a discriminated union Node which can
have the value N with the following set of fields: 

• a node identifier 'Id

• a type parameter 'value1 which will keep the coordinates of the points

• another type parameter 'value2 which keeps the set of nodes that were in the cluster in
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the previous iteration in order to be checked with the new one and determine if it has

been changed

• a set of identifiers Set<'Id> which keeps the identifiers of the nodes that are closest

to the center node

As  mentioned,  In  order  to  enable  execution  specific  to  K-means,  one  should  define  the
functions in the Table 27. These functions are described in Table 28.

Table 28: Map-Hash-Repeat user specified functions specially for K-means

Name Type Description

1. createNodes int->int → 
ICloud<IMutableCloudRe
f<Node<int,(float * 
float),Set<int>>> []> 

The  user  needs  to  pass  as  arguments  the
number of the initial data and the number of
the  clusters.  This  function  returns  a  cloud
computation  of  an  array  that  contains
references of the data and the center nodes.
Dereferencing  these  computations,  one  can
get  the  values  of  the  data  and  the  center
nodes.  Each node is of type Node. The first
field  is  a  unique  identifier.  In  order  to
distinguish the data nodes from the centers,
the  identifiers  of  the  latter  are  negative
numbers.  The second field is  a tuple of  two
floats  that  specify  the  coordinates  of  the
corresponding  node.  The  last  two  fields  are
both empty sets. 

2. createNeighbors IMutableCloudRef<Node
<int,
(float*float),'oldV>>[]  
-> 
ICloud<IMutableCloudRe
f<Node<int,(float 
*float),'oldV>> [] 
*IMutableCloudRef<Nod
e<int,(float * 
float),'oldV>> []>

This  function  takes  as  input  the  cloud
references of the data nodes and the center
nodes. Firstly,  it  seperates the data from the
centers of the first input parameter and then it
calculates  the  euclidean  distance  between
each  data  element  and  each  center.  After
finding the closest center node for each data
node, the function updates the  values of the
centroids by adding the identifier of the closest
data node in the set of  the identifiers of  the
corresponding center. The output is a tuple in
a cloud computation which contains the cloud
references  of  both  data  nodes  and  the
updated centers.

3. compute IMutableCloudRef<Node
<int,(float * 
float),'oldV>> [] → 
IMutableCloudRef<Node
<int,(float 

This function  takes as parameters the cloud
references of the data nodes and the centers.
Then, for every center, it takes the coordinates
of  the  nodes  who  are  closerst  to  it  and
calculates the new centroids which will be the
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*float),'oldV>> [] → 
ICloud<unit []>

coordinates of the centers of the new clusters.
Afterwards,  it  replaces  the  previous
coordinates of the centers with the new ones.

4. computeNeighbo
rs

IMutableCloudRef<Node
<'Id,(float*float),'oldV>>
[] → 
IMutableCloudRef<Node
<'Id,(float * 
float),'oldV>> [] → 
ICloud<Map<'Id,Set<int
>>>

This  function  takes  as  input  parameters  the
cloud references  of  the  data  nodes and the
centers and calculates the euclidean distance
between each data node from all the centers.
From all these calculations, the function gets
the  one  with  the  minimum  value  and
associates the data node to the closest center.
Finally,  it  returns  a  mapping  of  each  center
identifier as a key and a set of identifiers of the
closest data nodes to this specific center as a
value.

5. isDone IMutableCloudRef<Node
<'Id,'newV,'oldV>> → 
Set<'Id> → 
ICloud<bool>

This function checks whether the cluster has
been changed or not. It takes as input a center
node and a set of identifiers. These identifiers
belong to the data nodes which are closest to
the  given  center.  If  the  current  set  of  the
identifiers  of  the  center  is  the  same  as  the
given  set,  then  the  function  returns  true,
otherwise false.

Once one has defined the previous functions,  the recursive “mapHashRepeat”  function is
invoked by the Map-Hash-Repeat framework which takes cloud references of the data nodes
and the centers alongside with the functions 3,4,5 from Table 28 as input parameters in order
to execute the internal algorithm. In every iteration the algorithm calculates the new centroids
using  the  “compute”  function  and  then  assigns  each  node  the  closest  center  using  the
“computeNeighbors” function. In the next step for each center the algorithm checks whether
the new set of the identifiers of the closest nodes which it calculated before is the same as the
old one or not. If the two sets are the same then a boolean value “true” is stored in an array,
otherwise a boolean value “false” is stored. Finally, the array contains as many boolean value
as the number of the center nodes and if all these values are true it means that the clusters
no longer  change and the  algorithm terminates  returning  the  data  nodes and the  center
nodes. On the other hand, if even one of the values is false the “mapHashRepeat” function is
called with the new computations and the same procedure is followed.

In  Appendix  I,  one  can  see  the  full  implementation  of  the  K-means  algorithm  in  the
Map-Hash-Repeat pattern.

3.3 Implementation

Our  implementation  of  the  Map-Hash-Repeat  programming  model  is  based  on  the  F#
programming language and the Mbrace cloud framework. The main reason why we chose
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this  programming language is  because the Mbrace framework is  written in F# and takes
advantage of many of the language features. Also, many common programming tasks, like list
processing, are much more simpler in F#. The following table shows the implementation of
the Map-Hash-Repeat programming model in F#.

Table 29: Map-Hash-Repeat programming model

[<Cloud>]
let rec mapHashRepeat (input1 : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) 
                      (input2 : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) 
                      (computeValues : (IMutableCloudRef<Node<'Id,'newV,'oldV>> [] ->
                                     IMutableCloudRef<Node<'Id,'newV,'oldV>> [] ->
                                     ICloud<Map<'I,'C>>))
                      createNewTopology
                      isDone  = cloud {              
   
    let keepPrevState (node : IMutableCloudRef<Node<'Id,'newV,'oldV>> ) newV = cloud {
        let! cloudNode = MutableCloudRef.Read(node)
        match cloudNode with        
            | N(v1,v2,oldSet,currentV)  ->                
                let newData = (v1,v2,currentV,newV)                 
                do! MutableCloudRef.Force(node,N(newData))                
    }    
    
    let! newValues = computeValues input1 input2
    
    
    let distribute =         
        Array.map (fun input -> cloud {
            let! cloudInput = MutableCloudRef.Read(input)
            match cloudInput with
                | N(v1,v2,oldV,newV)  ->                 
                    do! MutableCloudRef.Force(input,N(v1,newValues.[v1],oldV,newV))
        }) input2

    let! _ = distribute |> Cloud.Parallel 

    let! newTopology = createNewTopology input1 input2    
    let checkAll = 
        [|
            for input in input2 -> cloud {                   
                let! cloudInput = MutableCloudRef.Read(input)
                match cloudInput with   
                    | N(v,_,_,_) when Map.containsKey (v) newTopology ->
                        let comp = newTopology.[v]
                        let! ok = isDone input comp
                        do! keepPrevState input comp  
                        return ok  
            }
        |]  
             
    let! check = Cloud.Parallel checkAll 
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    let fixpoint = check |> Seq.fold (fun acc item -> acc && item) true
    match fixpoint with  
        | true -> return (input1,input2)
        | false -> 
            return! mapHashRepeat input1 input2 computeValues createNewTopology isDone    
}

The programming model requires an initial node topology to apply the above function. The
algorithm applies  the  user-specified  computeValues function  to  the  input  lists  and then
distributes in parallel the new values to the second input list each time to the appropriate
element.  A new  node  topology  is  created  using  the  user-specified  createNewTopology
function according to these new values. Afterwards, each element from the second input is
checked in parallel to determine whether its value computed in the n th-1 iteration is the same
as the new value, or not. An array of boolean values is created that contains one value for
each element from the input2. This value is true if the previous value equals the new one,
otherwise  is  false.  At  the  same time,  the  new  value  is  stored  in  the  element  for  future
iterations.  Finally,  the  array  is  “reduced”  by  applying  the  boolean  and operation to  each
element and returns an accumulator of the results. If the value of the accumulator is true, it
means that we reached a fixpoint. Otherwise, the next iteration begins by calling the again the
mapHashRepeat function. 

The seq.fold function is used to determine whether we reached a fixpoint or not. It takes a
function, an accumulator and a sequence of elements and applies the given function to each
element while keeping each time the result in an accumulator. Its type is declared below.

Table 30: Seq.fold method

Seq.fold : ('State -> 'T -> 'State) -> 'State -> seq<'T> -> 'State

3.4 Related Work

There  are  many  improved  implementations  based  on  the  well-known  MapReduce
programming model but not many of them support iterative computations in the cloud. Twister
[4] is  a  MapReduce  runtime,  implementing  a  programming  model  that  supports  iterative
MapReduce computations in an efficient way. Twister separates the data into two types: static
and dynamic. Static data is used in every iteration and remains the same in each computation
while the dynamic data are the output of every iteration and in many algorithms are used in
the next iteration. Instead of reloading the static data in each iteration, Twister introduces a
new “configure”  step  to  load the  static  data  to  the  map/reduce tasks  using  long running
(cacheable) map/reduce tasks that exist during each computation. There is also an optional
reduction phase known as “combine”, which one can use to combine the results from all the
reduce tasks in a single value. 
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4. Conclusion and Future Work

In this thesis we introduced the Map-Hash-Repeat cloud programming pattern for iterative
computations, which is relevant to the well-known MapReduce pattern. Our implementation is
based on the  F# programming language and the MBrace programming model.  We have
discussed the basic concepts of the MapReduce programming model and the main features
of the F# programming language that were used in our prototype in combination with some of
the  features  of  the  Mbrace  framework.  We  have  also  presented  in  details  the
Map-Hash-Repeat algorithm and its concepts and then we discussed the K-means algorithm
and its implementation using the Map-Hash-Repeat programming pattern.

In the future, we plan to create a library that will provide the support to develop more iterative
algorithms using the Map-Hash-Repeat programming model.
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Abbreviations

HDFS Hadoop Distributed File System 

SQL Structured Query Language 

DBMS Database Management System
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Appendix I

Here  we  implement  the  K-means  algorithm  using  the  Map-Hash-Repeat  programming
pattern.

 

type Node<'Id,'newV,'oldV 
            when 'Id : comparison and 'oldV : comparison> = 
                                        | N of 'Id*'newV*'oldV* Set<'Id>

[<Cloud>]
let rec seqMap (f : 'T -> ICloud<'S>) (inputs : 'T list) : ICloud<'S list> =
    cloud {
        match inputs with
        | [] -> return []
        | x :: xs ->
            let! v = f x
            let! vs = seqMap f xs
            return v :: vs
    }

[<Cloud>]
let createNodes (numData : int) (k : int) = cloud {    
    let rnd = System.Random() 
    let! initVals = [| 
                        for i in 1..numData ->
                            MutableCloudRef.New(N((1,(rnd.Next(0,11) |> float,rnd.Next(0,11) |> float),(Set.empty : int
Set),Set.empty)))
                    |]
                    |> Cloud.Parallel
    let! initCenters = 
        [|for i in 1..k -> 
            MutableCloudRef.New(N((-i,(rnd.Next(0,11) |> float,rnd.Next(0,11) |> float),(Set.empty : int 
Set),Set.empty)))
        |] 
        |> Cloud.Parallel                                       
    return Array.append initVals initCenters
} 

[<Cloud>]
let createNeighbors (nodes : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) = cloud   {    
    
    //find the centers (nodes with id < 0)
    let! getCenters = 
        [|for node in nodes -> cloud {
            let! cloudNode = MutableCloudRef.Read(node)
            match cloudNode with      
                | N(id,_,_,_) when id < 0->
                    return Some node
                | N(id,_,_,_) ->
                    return None
        }|]     
        |> Cloud.Parallel  
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    //centers
    let centers = 
        getCenters 
        |> Array.choose (fun x -> match x with 
                                    |Some(ref) -> Some ref
    
                                    | None -> None) 
    let! getNodes = 
        [|for node in nodes -> cloud {
            let! cloudNode = MutableCloudRef.Read(node)
            match cloudNode with      
                | N(id,_,_,_) when id > 0->
                    return Some node
                | N(id,_,_,_) ->
                    return None
        }|]     
        |> Cloud.Parallel  
        
    
    let dataNodes = 
        getNodes 
        |> Array.choose (fun x -> match x with 
                                    |Some(ref) -> Some ref
                                    | None -> None)             
    //distance
    let dist (x1, y1) (x2, y2) : float =
        let xDistance = x1 - x2
        let yDistance = y1 - y2
        xDistance * xDistance + yDistance * yDistance
    
    //get the coordinates of the centers
    let! centerCoords = 
        [|for center in centers -> cloud {
                let! cloudNode = MutableCloudRef.Read(center)
                match cloudNode with      
                    | N(id,coords,_,_) ->
                        return (id,coords)
        } |]
        |> Cloud.Parallel    

    //calculate distances between each node and each center and return (centerId,minDistance) pairs
    let! minPairs = 
        [| for node in dataNodes -> cloud {
            let! cloudNode = MutableCloudRef.Read(node)
            match cloudNode with      
                | N(_,coord,_,_) -> 
                    return (Array.map (fun (id,c) -> (id,dist c coord)) centerCoords) |> Array.minBy snd                     
        }
        |]                          
        |> Cloud.Parallel
    
    //create clusters
    let addN pairMap = cloud {  
        match pairMap with 
            | (nodeId,clusterId) ->
                for center in centers do
                    let! cloudNode = MutableCloudRef.Read(center)
                    match cloudNode with                                                           
                        | N(id,newv,oldSet,newSet) when id = clusterId ->                                    

A. Kalogeropoulos 41



Map-Hash-Repeat: A Cloud Programming Pattern for Iterative Computation

                            do! MutableCloudRef.Force(center,N(id,newv,oldSet,newSet.Add(nodeId)))
                        | N(id,newv,oldSet,newSet) -> 
                            do! MutableCloudRef.Force(center,N(id,newv,oldSet,newSet))                     
    }                   
    let! _ = 
        minPairs 
        |> Array.mapi (fun i (clusterId,minDist) -> (i+1,clusterId))    //node i will be added to cluster with id x 
        |> Array.toList                    
        |> seqMap addN 
    
    return (dataNodes,centers)                                        
}

//compute the new centers
[<Cloud>]
let compute (nodes : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) 
            (centers : IMutableCloudRef<Node<'Id,'newV,'oldV>> [])  = cloud {
    
    let newVals (center : IMutableCloudRef<Node<'Id,'newV,'oldV>> ) = cloud {        
        //get the refs of the nodes who belong to the center
        let getNeighbors (center : IMutableCloudRef<Node<'Id,'newV,'oldV>> ) = cloud {
            let! cloudNode = MutableCloudRef.Read(center)
            match cloudNode with
                | N(_,_,_,setN) ->    
                    let neighborIds = Set.toList setN
                    return [for n in neighborIds -> nodes.[n-1]]   
        }                 
        //get the coordinates (2nd element) of the given node
        let getCoords (node : IMutableCloudRef<Node<'Id,'newV,'oldV>> ) = cloud {
                let! cloudNode = MutableCloudRef.Read(node)
                match cloudNode with
                    | N(_,coords,_,_)  ->                 
                        return coords    
        }
        //get neighbors REFS from the given center
        let! neighborRefs = getNeighbors center   

        //concatenate given center's coordinates with the neighbors' coordinates and return a list with tuples: 
(nodeId,coordinates)
        let! cloudNode = MutableCloudRef.Read(center)
        match cloudNode with   
            | N(id,_,_,_) ->
                let! clusterCoords = seqMap getCoords neighborRefs                 
                return (id, clusterCoords)  
    }

    //for each cluster, returns a list with the coordinates which will calculate the new center
    let! allCoords = 
        [|for center in centers -> newVals center|] 
        |> Cloud.Parallel                      
    
    //calculates the x coordinate for each new center
    let xs = 
        Array.map (fun (id,coords) -> let xSum = List.fold (fun acc (x,y) -> acc + x) 0.0 coords
                                      xSum/(coords.Length |> float)) allCoords        
    //calculates the y coordinate for each new center
    let ys = 
        Array.map (fun (id,coords) -> let ySum =  List.fold (fun acc (x,y) -> acc + y) 0.0 coords 
                                      ySum/(coords.Length |> float)) allCoords            
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    let newCenters = 
        Array.mapi2 (fun i x y  -> (-(i+1),(x,y))) xs ys
        |> Map.ofArray
   
   return newCenters
}

[<Cloud>]
let computeNeighbors (dataNodes : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) 
                      (centers : IMutableCloudRef<Node<'Id,'newV,'oldV>> [])    = cloud {

    let dist (x1, y1) (x2, y2) : float =
            let xDistance = x1 - x2
            let yDistance = y1 - y2
            xDistance * xDistance + yDistance * yDistance
    
    //get the coordinates of the centers
    let! centerCoords = 
        [|for center in centers -> cloud {
                let! cloudNode = MutableCloudRef.Read(center)
                match cloudNode with      
                    | N(id,coords,_,_) ->
                        return (id,coords)
        } |]
        |> Cloud.Parallel    

    //calculate distances between each node and each center and returns (centerId,minDistance) pairs
    //first pair is for node with id = 1, second pair for node with id = 2 etc.
    let! minPairs = 
        [| for node in dataNodes -> cloud {
            let! cloudNode = MutableCloudRef.Read(node)
            match cloudNode with      
                | N(_,coord,_,_) -> 
                    return (Array.map (fun (id,c) -> (id,dist c coord)) centerCoords) |> Array.minBy snd                     
        }
        |]                          
        |> Cloud.Parallel
  
    //returns a list with (cId,nId) which means that 
    //node with id nId belongs to cluster with id cId
    return 
        minPairs
        |> Array.mapi (fun i (cId,minDist) -> (i+1,cId) )
        |> Seq.groupBy snd |> Seq.map (fun (cId,seqnIds) -> (cId, (Seq.map (fun (nid,cid) -> nid) seqnIds) |> 
Set.ofSeq ))
        |> Seq.toArray 
        |> Map.ofArray
}

[<Cloud>]
let rec mapHashRepeat (dataNodes : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) 
                      (centers : IMutableCloudRef<Node<'Id,'newV,'oldV>> []) 
                      (calcCenters : (IMutableCloudRef<Node<'Id,'newV,'oldV>> [] ->
                                     IMutableCloudRef<Node<'Id,'newV,'oldV>> [] ->
                                     ICloud<Map<'I,'C>>))
                      computeNeighbors
                      isDone  = cloud {              
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    //change the old set of ids(neighbors) with the new one (comp)
    let changeV (node : IMutableCloudRef<Node<'Id,'newV,'oldV>> ) comp = cloud {
        let! cloudNode = MutableCloudRef.Read(node)
        match cloudNode with        
            | N(id,coords,oldSet,currentV)  ->                
                let newData = (id,coords,currentV,comp)                 
                do! MutableCloudRef.Force(node,N(newData))                
    }    
    
    let! newCenters = calcCenters dataNodes centers

    let distribute =         
        [|for center in centers -> cloud {
            let! cloudNode = MutableCloudRef.Read(center)
            match cloudNode with
                | N(id,coords,oldSet,newSet)  ->                 
                    do! MutableCloudRef.Force(center,N(id,newCenters.[id],oldSet,newSet))
        }
        |]
        |> Cloud.Parallel
    
    let! neighborPairs = computeNeighbors dataNodes centers    
    
    let checkAll = 
        [|
            for node in centers -> cloud {                   
                let! cloudNode = MutableCloudRef.Read(node)
                match cloudNode with   
                    | N(id,_,_,_) when Map.containsKey (id) neighborPairs ->
                        let comp = neighborPairs.[id]
                        let! ok = isDone node comp
                        do! changeV node comp  
                        return ok  
            }
        |]
       
    let! check = Cloud.Parallel checkAll 
    let ok = check |> Seq.fold (fun acc item -> acc && item) true
    match ok with  
        | true -> return (dataNodes,centers)
        | false -> 
            return! mapHashRepeat dataNodes centers calcCenters computeNeighbors isDone //(ref true)  
    
}

[<Cloud>]
let isDone (node : IMutableCloudRef<Node<'Id,'newV,'oldV>> ) comp = cloud    {
    let! cloudNode = MutableCloudRef.Read(node)
    match cloudNode with 
        | N(id, coords, setN,currentSet) -> return currentSet = comp   
}

let runtime = MBrace.InitLocal 4
//number of data points, number of clusters
let allNodes = runtime.Run <@ createNodes 7 2 @>
let (nodes,centers) = runtime.Run <@ createNeighbors allNodes @>

let (finalNodes,finalCenters) = runtime.Run <@ mapHashRepeat nodes centers compute computeNeighbors 
isDone  @>
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