
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
GPCE'06, October 22-26, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-237-2/06/0010...$5.00.

Transparent Program Transformations
in the Presence of Opaque Code

Eli Tilevich
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061, USA

tilevich@cs.vt.edu

Yannis Smaragdakis
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403, USA
yannis@cs.uoregon.edu

Abstract
User-level indirection is the automatic rewriting of an application
to interpose code that gets executed upon program actions such as
object field access, method call, object construction, etc. The
approach is constrained by the presence of opaque (native) code
that cannot be indirected and can invalidate the assumptions of any
indirection transformation. In this paper, we demonstrate the
problem of employing user-level indirection in the presence of
native code. We then suggest reasonable assumptions on the
behavior of native code and a simple analysis to compute the
constraints they entail. We show that the type information at the
native code interface is often a surprisingly sufficient
approximation of native behavior for heuristically estimating when
user-level indirection can be applied safely. Furthermore, we
introduce a new user-level indirection approach that minimizes the
constraints imposed by interactions with native code.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic
Programming— program synthesis, program transformation,
program verification; D2.3 [Software Engineering]: Coding
Tools and Techniques— Object-oriented programming;

General Terms: Languages.

Keywords: Program transformation, aspect-oriented
programming, program enhancement.

1. Introduction and Motivation
User-level indirection is the automatic transformation of
application and system code so that its execution characteristics
are modified. Typical user-level indirection schemes instrument
the code to interpose extra functionality during specific program
events— mainly access to object fields, calls of specific methods
and object construction. For instance, we may want to add
indirection to all changes to the fields of an object for logging: we
may want a permanent log of all state updates in a running system.
This is possible by finding all field access instructions in the
application and modifying them to log their action before taking it.
The logging code is either included inline at the field access site, or
a separate method can be called.
Standard applications of the approach include transparent
distributed execution [3,5,12,14,15,16], persistence [2,9,11],
profiling [6], and logging [10]. Additionally, Aspect-Oriented
Programming (AOP) [7] has yielded general purpose program

enhancement mechanisms that often rely (behind the scenes) on
user-level indirection techniques. Compared to the straightforward
approach of modifying the runtime system (e.g., the Java VM or
the .NET CLR), user-level indirection has the advantage of
portability and ease of deployment on unmodified runtime
systems. Running applications on modified versions of a platform-
specific runtime system is hard and in some cases (e.g., embedded
systems) even impossible. Yet, if we achieve the same effect
through code transformation, the resulting code can run on many
platforms using standard-issue runtimes.
User-level indirection has to be transparent relative to the behavior
of the original code. Nevertheless, all user-level indirection
techniques have transparency limitations relating to the presence
of native code (a.k.a. platform-specific binary code) that an
application can access. Native code is opaque: it cannot be
analyzed or modified without negating the platform-independence
advantages of user-level indirection. Yet, native code has its own
state, can hold references to user objects, can remember (alias)
these references across invocations, and can use them for
destructive updates of user-level state. This renders the code
transformation incorrect (i.e., non-semantics-preserving) for all
user-level indirection techniques in the literature and for most
purposes of user-level indirection.
As background for presenting the problem, we first consider how
actual user-level indirection schemes deal with system classes. We
use the Java platform in our discussion, but the same ideas apply to
other high-level runtimes. Typically, one can apply the same user-
level indirection techniques to both user-level code and system
classes that are supplied in bytecode form. The standard approach
is to create a separate, instrumented version of the system classes
[4,15,16]. The instrumented version co-exists with the standard
system classes in the same application. In this way, an application
can access both the user-level indirected versions of system classes
and the original versions without any conflict. This is necessary,
since the system classes are often used inside the instrumentation
code itself. In original application code, however, all uses of
system classes are replaced with uses of their instrumented
counterparts. Factor, Schuster and Shagin [4] call this the “Twin
Class Hierarchy” approach (TCH) and we will use the name for
convenience, although the approach pre-existed. As an example,
imagine that the original Java application contains code such as:
class A
{ public java.lang.String meth(int i, B b) {...} }
The rewritten class would use the instrumented class types:
class UP.A
{ public UP.java.lang.String meth(int i, UP.B b) {...} }
(UP in the above code stands for “user package”.) Figure 1 shows
the effects on the class hierarchies pictorially.
System classes often contain native code, however. Some of the
most fundamental system classes (e.g., the ones dealing with
threading, file and network access, GUI, etc.) rely on native code,
mainly for reasons of low-level resource access, such as context-
switching or fast graphical operations. Changing native code

requires platform-specific changes and the creation of special
versions of the runtime system (either the executable program or
its dynamic libraries). Similarly, analyzing native code and relying
on its implementation properties is a platform-specific task. Thus,
dealing with native code is incompatible with the main motivation
for user-level indirection: that of portability and platform
independence. Therefore, native code is opaque for the purpose of
user-level indirection: it cannot be modified or analyzed.
Opaque code presents some obvious limitations for user-level
indirection approaches: user-level indirection cannot be used to
intercept actions (e.g., field accesses) occurring entirely inside
native code. That is, changes to internal system state (e.g., the
contents of a low-level window, the scheduling structure of
threads, etc.) cannot be intercepted using user-level indirection.
E.g., distributed execution systems (such as J-Orchestra [16],
Pangaea [14], Addistant [15] or JavaSplit [3]) cannot hope to use
the same techniques as for user classes to transparently migrate
window or thread objects from one machine to another. Special
purpose replacements of this functionality are used instead.
More interestingly, however, the interactions of native code with
user-level indirection can be subtle and can affect the correctness
of indirection of non-native code. Consider the TCH approach
described earlier (Figure 1) for instrumenting standard Java
libraries. If a class A has a native method, an instrumented version
of A delegates calls to the native method of an internal A object.
This technique is used because a native method implementation in
Java is bound to a particular class name and cannot be reused for a
different class. For instance, consider original code as follows:
class File { ...

public native void write(byte b);
}
The instrumented version of this class would be:
class UP.File { ...

private File origImpl_;
// delegate to native method
public void write(byte b) {origImpl_.write(b);}

}
This UP.File class cannot use arbitrary user-level indirection
even for its non-native methods. Imagine that the File class also
has a non-native method newLine :

class File { ...
public native void write(byte b);
public void newLine() { ... }

}
It is not safe to indirect method newLine (e.g., to track its changes
to fields of a File object) yet simply delegate method write. To
see this, consider the re-written code:
class UP.File {

private File origImpl_;
...
// delegate to native method
public void write(byte b) { origImpl_.write(b); }
public void newLine() {...} // instrumented body

}
The problem is that any call to method write affects the
origImpl_ object, while any call to method newLine affects the
current object of type UP.File . The two objects have separate
copies of their data fields that get changed, but the two objects
were one in the original program. This destroys the transparency of
user-level indirection.
Further problems occur because object fields can be read and
written inside native code. For instance, consider user-level
indirection approaches that capture all updates to fields of an
object (e.g., to implement transparent persistence or distributed
execution). In this case, all objects that can ever be referenced by
native code cannot be fully indirected using user-level indirection
techniques. That is, even if an object’s class has no native
methods, if the object is ever referenced by some other class’s
native code, then we cannot indirect all access to the object’s
fields. (Although we can intercept the subset of the accesses
performed inside platform independent code.)
Furthermore, some restrictions on the use of user-level indirection
are caused by the structure of the user-level indirection scheme
itself. For instance, consider again the TCH rewrite. Without any
special provisions, the limitations on the use of indirection
propagate to all subclasses. A subclass ROFile of the original
File class may have no native methods, yet its methods cannot be
instrumented. If the instrumentation were performed, the
UP.ROFile class would be a subclass of UP.File and not of
File. Thus, UP.ROFile would not be able to access non-public
members of File . We later discuss how to remove this limitation.
This paper serves two purposes. First, it describes the limitations
of user-level indirection techniques in a general setting. Such
limitations often go unnoticed even by experts. For instance, the
authors of the TCH approach argue that “TCH can be used
automatically by any general instrumentation”; “[TCH has] the
ability [...] to instrument all system classes”; “TCH allows even
system classes with native dependencies to be rewritten for
distributed execution” [4]. Second, our work offers heuristic
techniques for recognizing these limitations with high accuracy in
practice. These techniques generalize, extend, and refine the ones
of our J-Orchestra system [16,17], which automatically rewrites
Java applications for distributed execution. The practical benefit of
such heuristics is that they give the user guidance on which classes
are safe to indirect. Without such guidance, the user would be
entirely responsible for the handling of native code. This is not a
scalable approach as Saff, Artzi, Perkins and Ernst observe [13]:

... [the TCH] approach does not scale. The most serious problem
is that wrappers must be written by hand for each native method,
of which there are a great many used by any realistic program.

With our approach, the user rarely needs to explicitly specify
special-case handling of native methods.

2. Assumptions and Analysis
To determine which program actions can be safely indirected, we
would need to analyze the implementation of native methods. It is

java.lang.Object

java.lang.String syspackage.A

Figure 1(a): Original system classes hierarchy

java.lang.Object

UP.java.lang.Object

UP.syspackage.AUP.java.lang.String

syspackage.A

Figure 1(b): Replicating system classes in user package (UP)

java.lang.String

highly complicated to obtain the source code for all platform-
specific runtimes, or to require VM implementors to export a
model of the behavior of their system just for the purpose of
enabling safe user-level indirection. Thus, we examine a more
pragmatic approach. We use the type information at the native
code interface to derive a “poor-man’s native code behavior
model”. This model is correct only under some (overall
reasonable) assumptions on native code behavior.
2.1 Type Analysis + Weak Assumptions
The majority (~97%) of Java system classes (all numbers given are
from Sun JDK 1.4.2 unless stated otherwise) have no native
methods. Such classes encode useful reusable libraries and not
system-level functionality. It is, thus, of broad importance to
automatically recognize system classes that do not interact with
native code and to support correct user-level indirection for them.
In general, this task is impossible without making assumptions
regarding native code behavior. For instance, all classes in Java are
subclasses of java.lang.Object , which has native code. In
theory, any native method can be receiving an Object-typed
argument, discovering its actual type using reflection and
performing on the object some action (e.g., reading fields) that
would be undetected by any user-level indirection mechanism.
As we discussed earlier, there is no way to detect events (e.g., field
writes) that occur entirely inside opaque code. The interesting
case, however, is that of events concerning user-level (i.e., non-
opaque) entities and the question of whether these can occur inside
opaque code. For instance, we may want to capture all updates to
an object field that is declared in a Java system class implemented
in plain bytecode. We need to ask if this field is ever accessed
inside native code. In this section we assume the full gamut of
user-level indirection events, including access and modification of
fields. For capturing method and constructor calls only, the
restrictions are typically far less severe. Nevertheless, most
interesting applications of user-level indirection (esp. distributed
execution and persistence) need to capture field accesses.
Our previous work on the J-Orchestra system used some weak
assumptions on the behavior of native code and a simple type-
based analysis to distinguish code that is likely to safely employ
user-level indirection. In this way, we can exploit the rich type
information of the Java system classes API. J-Orchestra uses user-
level indirection in order to execute monolithic Java applications
over a network of machines. Typically, the application is split in
parts (consisting of user code and system classes) so that each
machine handles a different hardware or software resource— e.g.,
the graphical input/output code may run on one machine, while the
processing is done on a second and database access on a third.
Here we abstract away the specifics of the J-Orchestra approach so
that it can be generalized to different domains. The approach
makes two main heuristic assumptions regarding system classes:
• Classes without native methods have no special semantics. (Native

code never treats their objects any differently from user-defined
objects.)

• Native methods do not use dynamic type discovery (reflection,
downcasting, or any low-level type information recovery) on
objects supplied through method arguments.

These assumptions generally hold true with only few exceptions.
The first assumption does not hold, for instance, for classes in the
java.lang.ref package. The second assumption does not hold
in the implementation of reflection classes themselves. In
Section 3 we discuss a study of the Sun implementation of Java
system classes and how it supports our assumptions.
The first assumption essentially states that the JVM is not allowed
to handle different types of objects specially when the objects just

use plain bytecode instructions. For instance, the JVM is not
allowed to detect the construction of an object of a “special” type
and keep a reference to this object that native code can later use for
destructive state updates. This is a reasonable assumption,
conforming to good software design practices. The second
assumption states that native code is strongly typed: if a reference
is declared to be of type T, it can never be used to access fields
(method calls are fine) of a subclass of T. For instance, the
assumption prohibits native methods from taking an Object-typed
argument, checking if it is actually of a more specific type (e.g.,
Thread or Window), casting the object to that type and directly
accessing fields or methods defined by the more specific type. This
assumption also encodes a good design practice: code exploits the
static type system as much as possible for correctness checking.
Although the assumption may be violated locally, the hope is that
it is rarely violated over the bytecode-native code boundary.
With the above two assumptions, we can perform a classification
of Java system classes with respect to whether they can employ
user-level indirection transparently or not, based on their usage of
native code. We will use the term NUI (for non-user-indirectible)
to describe classes that cannot employ user-level indirection
transparently. The base J-Orchestra rules for inferring the classes
that have user-level indirection limitations are as follows:
1) A system class with native methods is NUI.
2) A system class used as a parameter or return type for a

method or static method in a NUI class is NUI.
3) If a system class is NUI, then all class types of its fields or

static fields are NUI.
4) If a system class, other than java.lang.Object , is NUI,

then its subclasses and superclasses are NUI.
(The above rules represent the essence of the analysis but not its
entirety. For instance, we do not discuss arrays or exceptions—
these are handled similarly to regular classes holding references to
the array element type and method return types, respectively. The
numbers we later report are for the full version of the rules,
however. Note that interface access does not impose restrictions
since an interface cannot be used to directly access state.)
Rule 1 above is justified because no user-indirection technique can
guarantee to capture all field updates of an instance of a class with
a native method. The native method can always perform updates
without any indirection.
Rule 2 is justified with a similar argument: if an object can be
passed to native code, native code can alias it and (either during
the native method execution or during a later invocation) change
its state. Furthermore, the rule can be applied transitively: if a class
is NUI then we cannot replace all its uses with uses of an
instrumented version in a user package UP. Then all objects used as
arguments of any method (even non-native) may have their fields
accessed directly.
Rule 3 is like Rule 2 but for fields: native code can access objects
transitively reachable from an object that leaks to native code.
Rule 4 is justified by the specifics of the aforementioned user-level
indirection scheme. We saw an instance of this restriction earlier:
if a class cannot be indirected, its uses in the application cannot
instead employ a modified copy of the class in a user-level
package. Thus, all subclasses and superclasses also cannot be
copied to a user level package, as they may need to access non-
public fields of their superclass.
These rules enable user-level indirection to be used safely for
many Java system classes. Specifically, 37% of the Java system
classes are classified as having no dependencies to native code
and, thus, being able to employ user-level indirection safely. Still,
however, these rules are too conservative, as 63% of the system

classes are deemed non-indirectible. Nevertheless, the rules are a
good starting point and can be weakened to be made practical for
specific applications of user-level indirection. For instance, in the
context of J-Orchestra, one more assumption is made relating to
the way native code in different libraries can share state. The extra
assumption allows placing different pieces of native code on
separate machines [16].
Next, we show one important general-purpose weakening of the
rules. Rules 2 and 4 can be weakened significantly if we are
allowed to modify system packages (still without touching native
code) and we employ a more sophisticated user-level indirection
scheme than that of J-Orchestra or TCH.
2.2 More Sophisticated User-Level Indirection
The rules of the previous section are conservative because they
assume that all code in system packages (be it native or not) is
opaque. See, for instance, Rule 2: although any object that is used
as a parameter of a native method can have its fields accessed with
no indirection, there is no need to recursively propagate this
constraint to the non-native methods of this object as well. If the
object class is in pure bytecode, we can edit it and introduce
indirection for accesses to its parameters. This, however, relies on
a low-level assumption: we assume that the user-level indirection
technique can modify system packages in order to edit the
bytecode of existing system classes or add a new class in a system
package. This is undesirable in some settings because it requires
control over the startup environment of the JVM. Such control is
not always possible, e.g., for deploying applets that random users
will download and use inside a browser, or in systems in which the
user cannot modify or extend the system package for security.
Under this assumption, we can weaken Rules 2 and 4.
1) A system class with native methods is NUI.
2’) A system class used as a parameter or return type for a native

method is NUI.
3) If a system class is NUI, then all class types of its fields or

static fields are NUI.
4’) If a system class is NUI, then its superclasses are NUI.
The weaker rules push the limits of user-level indirection further:
fewer than 8% of the Java system classes are classified as unable to
employ user-level indirection (i.e., NUI). This means that a
general-purpose user-level indirection technique can apply to more
than 92% of the Java system classes with no special handling.
We already discussed how the new version of Rule 2 is a result of
instrumenting the bytecode of bytecode-only NUI classes. The
weakening of Rule 4 is more interesting. In the new Rule 4, a class
does not impose any restrictions on its subclasses. This also
eliminates any special handling of the java.lang.Object class,
which is a common singularity in user-level indirection schemes.
To use the weaker version of Rule 4, we need to make sure that
every system class C that cannot employ user-level indirection
transparently is replicated in a user-level package. The replica
class will just delegate all method calls to the original. Subclasses
of C that have no native dependencies will employ full user-level
indirection: an instrumented copy will be created in a user package
and all references to the original class will become references to
the instrumented version. The problem is that the instrumented
class will not be able to access non-public members of C, as it is
not in the same package as C. One solution is to make public all
non-public members of class C by editing the class bytecode. (Or,
equivalently, to create a subclass of C that exports the non-public
members of C— see later.) A safer approach would be to emulate
the Java access control at run-time using a technique such as that
proposed by Bhowmik and Pugh [1] for the Java inner classes
rewrite. At load time, class C creates a secret key and passes it to

the instrumented version of its subclass. When objects of the
instrumented class need to access C members, they call a public
method that also receives and checks the secret key. This is a safe
emulation of the Java access protection, yet it avoids the need to
place classes in the same package.
An example application of this technique is shown in Figure 2. The
example class File of Section 1 is now shown with a non-public
field field1 . File has a subclass TXFile with no native
dependencies. Figure 2(b) shows the transformed classes so that
UP.File and UP.TXFile can correctly replace all uses of File
and TXFile , respectively, yet UP.TXFile can employ fully
transparent user-level indirection. (As a low-level note, this
transformation means that the instrumented system package, UP,
needs to be loaded by the bootstrap class loader, since there is a
call to method UP.File.setKey inside the File system class.)
The effects of the transformation on the example class hierarchy
are shown pictorially in Figure 3.

3. Validation
We validate the assumptions and analysis of the previous section
in three ways: first we measure how many of the system classes
used in actual Java applications are classified as safely indirectible

class File {
SomeT field1;
...
public native void write(byte b);
public void newLine() {...}

}

class TXFile extends File {
...
public void writeString(String s) {...foo(field1)...}

}

Figure 2(a): Original system class File (with a native method)
and subclass TXFile (without native dependencies).

class File {
SomeT field1;
// Allow free access to field1 only

 // to class UP.File (and children)
private static final Object key_ = new Object();
static { UP.File.setKey (key_); }
public SomeT get_field1(Object key) {

if (key!= key_) throw new IllegalAccessException();
return field1;

}
...
public native void write(byte b);
public void newLine() {...}

}

//Just delegates to File.
//Only used for correct subtype hierarchy.
class UP.File {
protected File origImpl_;
protected static Object key_;
public static void setKey(Object key) { key_ = key; }
...
// delegate to native method
public void write(byte b) { origImpl_.write(b); }
public void newLine() { origImpl_.newLine(); }

}

class UP.TXFile extends UP.File {
...
// methods of this class can employ any
// user-level indirection scheme
public void writeString(String s)
{ ...foo(origImpl_.get_field1(key_))... }

}

Figure 2(b). Result of the indirection transformation, with
safe access to non-public fields of class File.

under our analysis. Next we examine by code inspection an actual
native code implementation of system methods and check whether
it satisfies our assumptions. Finally, we perform a dynamic
analysis of the applications and show that they do not violate the
results of our type-based analysis during their execution.

3.1 Impact on Real Applications
Table 1 shows how many of the system classes actually used by
different Java applications are classified as NUI under our analysis
of Section 2.2. The table also shows how many of the used system
classes have native methods themselves— this is a lower bound on
the number of NUI classes under any analysis. (We find the used
classes by dynamically observing the loaded classes, minus JVM
bootstrap classes. We then run our type-based analysis with the set
of used classes as a universe set— any NUI dependencies
introduced by classes that were not loaded are ignored.)

Three of the applications (javac, jess, mpegaudio) are standard
benchmarks from SPEC JVM’98. (The rest of the SPEC JVM’98
programs yield practically identical numbers.) Unsurprisingly,
these benchmarks are old and exercise few of the Java system
classes. Nevertheless, we still see that more than 62% of the
system classes used can employ user-level indirection. The next
seven applications (antlr, bloat, chart, hsqldb, jython, ps, xalan) are
from the more modern DaCapo benchmark suite (version
beta050224). These applications are more realistic, yet they still do
not exercise a large part of the Java system libraries. We see that
our analysis enables 66-85% of the system classes used in the
DaCapo benchmark programs to be safely indirected. (The
DaCapo suite has 3 more applications that we did not manage to
run by paper submission time due to setup issues, such as library
dependencies or unclear input files.) For applications that exercise
more of the Java system classes, we examined the Sun demo
application SwingSet2 and the JBits FPGA simulator by Xilinx.
The inputs used for these two applications were interactive and
consisted of navigating extensively through the application’s GUI
and performing standard program actions (e.g., loading a simulator
and an FPGA configuration and performing simulation steps).
Both of these applications exercise over 1400 Java system classes.
Only 21 and 16% (for JBits and SwingSet2, respectively) of these
classes were found to be NUI under our analysis: the rest can
employ user-level indirection without any special treatment.
Finally, we include in our suite the RMIServer sample application
from Sun, in order to exercise networking system classes.

Thus, Table 1 confirms that native code is not a negligible part of
real applications. Additionally, although the type analysis assumes
the most general native code behavior that respects its
assumptions, it is still sufficient for enabling safe indirection for
the large majority of Java system classes used in actual programs.

3.2 Accuracy of Type Information
Recall that one of the heuristic assumptions of our type-based
analysis is that the APIs to system functionality offer accurate type
information. That is, if a native method signature refers to type A,
then it does not attempt to dynamically discover which particular
subtype of A is the actual type of the object and to use fields or
methods specific to that subtype. It is certainly common to pass
instances of subtypes of A to the native method, but these should
only be accessed using the general interface defined by the
supertype A. This assumption is in line with good OO design.
Although the assumption is soundly motivated, there are certainly
exceptions in real code. To validate the assumption, we examined
part of the implementation of native methods in Sun’s JDK 1.4.2.
We searched for the use of specific idioms throughout native
method implementations and we examined in detail all native
methods (109 of them) accepting as argument or returning as result
an object with declared type java.lang.Object (the root of the
Java inheritance hierarchy). In our study, we observed few
violations of our assumptions. The most important ones are:
• reflection functionality routinely circumvents the type system, as

expected. Reflection requires special handling.
• passing primitive arrays to native code is typically invisible to the

type system. Several native methods accept an Object reference
but implicitly assume that they are really passed a Java array of
bytes or integers. This does not affect our analysis, as we consider
primitive types and their arrays to be non-indirectible.

• a handful of methods have poor type information and violate our
type accuracy assumptions. For instance, socketGetOption in
class java.net.PlainSocketImpl takes an Object as
argument, casts it into a java.net.InetAddress and then sets
one of its fields. (The addr field is set when the method returns the
bind address for its socket implementation.) Similarly, native
method getPrivateKey in class sun.awt.SunToolkit
assumes that its Object argument is really a
java.awt.Component or a java.awt.MenuComponent and
dynamically discovers its actual type.
Nevertheless, overall, native code rarely uses dynamic type dis-
covery. A quick search of all native code in Java system librar-
ies (for all platforms together) reveals just 69 uses of the JNI
function IsInstanceOf , which is the main way to do dynamic
type discovery in native code. For comparison, there are about
5900 uses of the Java counterpart, instanceof , in plain Java

java.lang.Object

somesyspackage.File

somesyspackage.TXFile

Figure 3(a): A File class hierarchy

java.lang.Object

somesyspackage.File

UP.TXFile

UP.File

Uses
(safely)

somesyspackage.TXFile

Figure 3(b): Removing subclassing restrictions

Table 1. Type-based analysis of used system classes

Application #classes #native %native #NUI %NUI
javac 167 21 13 62 37
jess 165 21 13 61 37

Mpeg audio 158 21 13 60 38
Antlr 209 21 10 67 32
Bloat 275 25 9 80 29
Chart 601 69 11 194 32

Hsqldb 295 26 9 83 28
Jython 263 20 8 76 29

Ps 175 18 10 60 34
Xalan 505 21 4 74 15

SwingSet2 1887 120 6 303 16
JBits 1442 124 9 306 21

RMI Server 415 37 9 109 26

code in the system libraries. (The total size of Java code in sys-
tem libraries is roughly twice the size of C/C++ native code, so
the discrepancy is not justified by the code size.)

3.3 Testing Correctness
Our type-based analysis attempts a heuristic solution to an
unsolvable problem, as mentioned in Section 2.1. If we treat native
code as an adversary, there are no safe assumptions we can make,
other than “all native code can directly access and modify all
objects”. Nevertheless, in practice our heuristic, type-based
approach works well, as our past experience with J-Orchestra
suggested. To see this in a controlled experiment, we dynamically
analyzed the applications of Section 3.1. We instrumented a Java
VM to observe all reads and writes to object fields performed
inside native code. Then we checked whether fields of a class that
we did not consider NUI are ever read or written inside native
code. Of course, this experiment is just a test under specific inputs.
Our analysis results could still be violated by different program
inputs. Nevertheless, given the amount and variety of tested code
and inputs, we have confidence in our observations.
Almost all applications listed in Table 1 exhibit accesses to Java
object fields from inside native code. Some applications
(especially the more graphics-intensive ones) have native code
access the fields of objects of more than 50 different classes.
Throughout all executions of the applications, we observed only
two instances of access inside native code to objects of types that
were not classified as NUI.
Specifically, in class sun.awt.font.NativeFontWrapper,
method populateGlyphVector (not a user-accessible class)
accepts a java.awt.font.GlyphVector parameter but
implicitly assumes that the actual type of the parameter is
sun.awt.font.StandardGlyphVector and proceeds to set
specific fields of that class. We could not discern a good reason for
obscuring this type information from the method’s type signatures.
(Upon inspection, a couple of more methods in the same class also
circumvent the type system for GlyphVector arguments.)
The second case was that of the constructor of class
sun.java2d.loops.MaskFill . The constructor accepts a
java.awt.Composite parameter but assumes its real type is
java.awt.AlphaComposite . Although this is again a bad
practice of obscuring type information, in this case there is a code
economy benefit from doing so: the constructor is only called in
native code using dynamic method discovery (i.e., reflection at the
native level). Eliding the specific type information allows the
constructor to be called by the same code as some other similar
constructors.
In summary, our experience confirms that a type-based analysis is
quite safe in practice. In the absence of complete information on
the behavior of native code, our analysis is a clear win. The only
general-purpose alternatives are to either not support indirection
for any system classes, or to leave the user with no assistance in
determining the correctness of applying indirection.

4. Further Topics
There are several interesting issues that we have not discussed
above due to lack of space. These include:
• How the analysis information can be reported to the user in

practice. The J-Orchestra GUI environment is an example.
• What features (e.g., reflection, multithreading) typically cannot be

handled transparently using a general-purpose technique and
require a domain-specific treatment.

• How our work applies to a general aspect language like AspectJ.
• How native code is treated differently in the .NET CLR, compared

to the Java VM, which we assumed in our discussion.

• How we can get fully accurate analysis by using a model of the
behavior of native code supplied by VM vendors.

The extended version of our paper discusses these topics more.
Acknowledgments
Yannis Smaragdakis performed this work while at the Georgia
Institute of Technology. The work is supported by the NSF
under Grants No. CCR-0220248 and CCR-0238289.

References
[1] Anasua Bhowmik and William Pugh, “A Secure Implementation of Java

Inner Classes”, PLDI 99 poster session.
[2] Kumar Brahnmath, Nathaniel Nystrom, Antony Hosking and Quintin

Cutts, “Swizzle Barrier Optimizations for Orthogonal Persistence in
Java”, proc. 8th International Workshop on Persistent Object Systems
(POS8) and 3rd International Workshop on Persistence and Java
(PJW3), 1998.

[3] Michael Factor, Assaf Schuster and Konstantin Shagin, “JavaSplit: A
Runtime for Execution of Monolithic Java Programs on Heterogeneous
Collections of Commodity Workstations”, 2003 International
Conference on Cluster Computing (CLUSTER’03).

[4] Michael Factor, Assaf Schuster and Konstantin Shagin, “Instrumentation
of Standard Libraries in Object-Oriented Languages: the Twin Class
Hierarchy Approach”, Object-Oriented Programming Systems
Languages and Applications (OOPSLA), 2004.

[5] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen, “JavaParty: A
distributed companion to Java”,
http://wwwipd.ira.uka.de/JavaParty/

[6] Jarle Hulaas and Walter Binder, “Program Transformations for Portable
CPU Accounting and Control in Java”, Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), 2004.

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier and John Irwin, “Aspect-
Oriented Programming”, European Conference on Object-Oriented
Programming (ECOOP), 1997.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm
and William G. Griswold, “An Overview of AspectJ”, European
Conference on Object-Oriented Programming (ECOOP), 2001.

[9] Gordon Landis, Charles Lamb, Tim Blackman, Sam Haradhvala, Mark
Noyes, and Dan Weinreb, “ObjectStore/PSE: a Persistent Storage Engine
for Java”, proc. 2nd International Workshop on Persistence and Java
(PJW2), p. 129-137, 1997.

[10] Han B. Lee and Benjamin G. Zorn, “Bytecode Instrumentation as an Aid
in Understanding the Behavior of Java Persistent Stores”, OOPSLA 1997
Workshop on Garbage Collection and Memory Management.

[11] ObjectDesign Inc., ObjectStore PSE/PSE Pro for Java API Guide, 1999.
[12] Michael Philippsen and Matthias Zenger, “JavaParty - Transparent

Remote Objects in Java”, Concurrency: Practice and Experience,
9(11):1125-1242, 1997.

[13] David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst,
“Automatic Test Factoring for Java”, International Conference on
Automated Software Engineering (ASE), 2005.

[14] Andre Spiegel, “Pangaea: An Automatic Distribution Front-End for
Java”, 4th IEEE Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS '99), April 1999.

[15] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano,
“A Bytecode Translator for Distributed Execution of ‘Legacy’ Java
Software”, European Conference on Object-Oriented Programming
(ECOOP), 2001.

[16] Eli Tilevich and Yannis Smaragdakis, “J-Orchestra: Automatic Java
Application Partitioning”, European Conference on Object-Oriented
Programming (ECOOP), 2002.

[17] Eli Tilevich and Yannis Smaragdakis, “Portable and Efficient Distributed
Threads for Java”, 5th International Middleware Conference
(Middleware’04).

