
Taming the Wildcards:
Combining Definition- and Use-Site Variance

John Altidor
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003, USA

jaltidor@cs.umass.edu

Shan Shan Huang
LogicBlox Inc.

Two Midtown Plaza
Atlanta, GA 30309, USA

ssh@logicblox.com

Yannis Smaragdakis
Department of Computer Science,

University of Massachusetts,
Amherst, MA 01003, USA

and Department of Informatics,
University of Athens, 15784, Greece

yannis@cs.umass.edu—smaragd@di.uoa.gr

Abstract
Variance allows the safe integration of parametric and subtype
polymorphism. Two flavors of variance, definition-site versus use-
site variance, have been studied and have had their merits hotly
debated. Definition-site variance (as in Scala and C#) offers simple
type-instantiation rules, but causes fractured definitions of naturally
invariant classes; Use-site variance (as in Java) offers simplicity
in class definitions, yet complex type-instantiation rules that elude
most programmers.

We present a unifying framework for reasoning about variance.
Our framework is quite simple and entirely denotational, that is, it
evokes directly the definition of variance with a small core calculus
that does not depend on specific type systems. This general frame-
work can have multiple applications to combine the best of both
worlds: for instance, it can be used to add use-site variance anno-
tations to the Scala type system. We show one such application in
detail: we extend the Java type system with a mechanism that mod-
ularly infers the definition-site variance of type parameters, while
allowing use-site variance annotations on any type-instantiation.

Applying our technique to six Java generic libraries (including
the Java core library) shows that 20-58% (depending on the library)
of generic definitions are inferred to have single-variance; 8-63% of
method signatures can be relaxed through this inference, and up to
91% of existing wildcard annotations are unnecessary and can be
elided.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3
[Programming Languages]: Language Constructs and Features—
Polymorphism,Data types and structures,Classes and objects

General Terms Design, Languages

Keywords variance, definition-site variance, use-site variance,
wildcards, language extensions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

1. Introduction
Genericity is one of the most significant programming language
advances of the past 40 years. Variance mechanisms are the key-
stone of safe genericity in modern programming languages, as they
attempt to reconcile the two fundamental forms of genericity: para-
metric and subtype polymorphism. Concretely, variance mecha-
nisms aim to answer the question “under what conditions for type
expressions Exp1 and Exp2 is C<Exp1> a subtype of C<Exp2>?”

The conventional answer to this question has been definition-
site variance: the definition of generic class C<X> determines its
variance [2, 9, 13]. Depending on how the type parameter X is used,
C can have one of four flavors of variance: it can be covariant,
meaning that C<S> is a subtype of C<T> if S is a subtype of T; it
can be contravariant, meaning that C<S> is a subtype of C<T> if T
is a subtype of S; it can be bivariant, meaning that C<S> is always a
subtype of C<T>; or it can be invariant, meaning that C<S> and C<T>
are never subtype-related for different types T and S.

An alternative approach has been introduced in the past decade:
Use-site variance [17, 22] interprets the definition of a generic class
C<X> as the introduction of 4 distinct types in the type system: the
covariant, contravariant, bivariant, and invariant part of C<X>. Each
of these types only supports the methods compatible with each
variance designation. For instance, the covariant part of C<T>would
only support methods that would be safe to call on an object of type
C<S> when S is a subtype of T. In this way, the use-site of a generic
class declares what it can accept, with a vocabulary such as “C-
of-any-subtype-of-T” (concretely written C<? extends T> in Java),
and the type system checks that the use is indeed valid.

Use-site variance is a truly elegant idea. Producing automati-
cally all different variance flavors from a single class definition is
an approach of hard-to-dispute flexibility. The idea was quickly in-
tegrated in Java in the form of wildcards and it is widely used in
standard Java libraries. Despite the conceptual elegance, however,
the practical deployment of wildcards has been less than entirely
successful. Among opponents, “wildcards” has become a virtual
synonym for a language design mess. (E.g., Josh Bloch’s presen-
tation at Javapolis 2008 emphasized “We simply cannot afford an-
other wildcards” [4].) The reason is that use-site variance results
in conceptual complexity, requires anticipation of generality at all
usage points, and postpones the detection of overly restrictive type
signatures until their use.

For these pragmatic reasons, newer languages, such as Scala
[20] and C# [15], have returned to and refined the tried-and-true ap-
proach of definition-site variance. Definition-site variance is hardly
free of usability problems, however. For a class that is not purely

covariant or contravariant, the only way to achieve full genericity is
by introducing specialized interfaces that correspond to the class’s
co-, contra-, and bivariant parts. Consequently, users have to re-
member the names of these interfaces, library designers must an-
ticipate genericity, and a combinatorial explosion in the number of
introduced interfaces is possible. (E.g., for a type Triple<X,Y,Z>,
we may need an interface for each of the 33 = 27 possible access
combinations, such as “covariant with respect to X, contravariant
with respect to Y and Z”. The number is 33 and not 43 only because
bivariance is not allowed as an explicit annotation.)

In this paper, we introduce an approach that mitigates the ten-
sion between use-site and definition-site variance. We present a
core calculus, VarLang, for reasoning about definition-site variance
in the presence of use-site variance annotations (wildcards). The
calculus is very general and its soundness is based directly on the
definition of variance, and not on any specific type system features.
This calculus can be used as the basis for variance reasoning in
any type system, for either inference or checking. For instance, our
approach can be directly employed for extending Scala with use-
site variance annotations, or for extending Java with definition-site
variance.

We explore one such application in detail: we define a type sys-
tem that adds inference of definition-site variance to Java. That
is, we infer variance automatically for classes that are purely co-
variant, purely contravariant, or purely bivariant with respect to
a type parameter. Our solution is fully compatible with existing
Java syntax and only changes the type system to make it more per-
missive in cases of purely variant types, so that exhaustive use-
site annotation is unnecessary. For instance, with our type sys-
tem, the Apache Commons-Collections programmer would not
need to write Iterator<? extends Map.Entry<? extends K,V>>
because Iterator and Map.Entry are inferred to be purely co-
variant with respect to their (first) parameter, hence the type
Iterator<Map.Entry<K,V>> is exactly as general.

Illustration of approach. The variance of a class with respect to
its type parameters is constrained by the variance of the positions
these type parameters occur in. For instance, an argument type posi-
tion is contravariant, while a return type position is covariant. How-
ever, in the presence of recursive type constraints and wildcards,
no past technique reasons in a general way about the variance of a
type expression in a certain position. For instance, past techniques
would not infer anything other than invariance for classes C and D:
class C<X> {
X foo (C<? super X> csx) { ... }
void bar (D<? extends X> dsx) { ... }

}
class D<Y> {
void baz (C<Y> cx) { ... }

}

Our approach is based on assigning a variance to every type
expression, and defining an operator, ⊗ (pronounced “transform”),
used to compose variances. In our calculus, inferring the most
general variance for the above type definitions reduces to finding
the maximal solution for a constraint system over the standard
variance lattice (∗ is top, o is bottom, + and − are unordered, with a
join of ∗ and a meet of o). If c stands for the (most general) variance
of the definition of C<X> with respect to type parameter X, and d
stands for the variance of D<Y> with respect to Y, the constraints
(simplified) are:

c v +

c v − ⊗ (− t c)
c v − ⊗ (+ t d)
d v − ⊗ c

Consider the first of these constraints. Its intuitive meaning is that
the variance of class C (with respect to X) has to be at most covari-
ance, +, (because X occurs as a return type of foo). Similarly, for the
third constraint, the variance of C has to be at most the variance of
type expression D<? extends X> transformed by the variance, −, of
the (contravariant) position where the type expression occurs. The
variance of type expression D<? extends X> itself is the variance
of type D joined with the variance of the type annotation, +.

We will see the full rules and definition of ⊗, as well as prove
their soundness, later, but for this example it suffices to know that
−⊗+ = −, −⊗− = +, −⊗∗ = ∗, and −⊗o = o. It is easy to see with
mere enumeration of the possibilities that the most general solution
has c = + and d = −. Thus, by formulating and solving these
constraints, we correctly infer the most general variance: class C
is covariant with respect to X, and class D is contravariant with
respect to Y. We note that the interaction of wildcards and type
recursion is non-trivial. For instance, removing the “? super” from
the type of argument csx would make both C and D be invariant.

Contributions. Our paper makes several contributions:

• We present a general approach for reasoning about variance.
The approach consists of a core calculus, whose soundness is
proved by direct appeal to the definition of variance, i.e., inde-
pendently of any specific type system. To our knowledge, this
is the first approach to allow general reasoning about definition-
site variance in the presence of either use-site variance annota-
tions or type recursion.
• We apply the approach in the context of Java to produce a (con-

servative) inference algorithm for computing the definition-site
variance of classes and interfaces. Unlike past work (e.g., [19]),
our inference technique is modular: the variance of a generic
class is purely determined by its own interface definition (and
that of the types it uses), not by the code that uses the class. Un-
der our updated type system, many uses of variance annotations
become redundant. All previously legal Java programs remain
legal, although some newly type-correct programs might have
been previously rejected.
• We conduct a large study to show how use-site and definition-

site variance coexist fruitfully, even in code that was written
with only use-site variance in mind. Past literature [12, 17] has
largely assumed that single-variant type parameters are seldom
used, thus promoting use-site variance for flexibility. We show
that this is not the case—over all libraries (including the stan-
dard library: all packages in java.*) we find that 32% of the
generic classes and interfaces have single-variance type param-
eters. This is strong evidence for the need to combine definition-
and use-site variance, since they both occur commonly. Addi-
tionally, 13% of all signatures of methods using generics are
found to use too-restricted types. (Importantly, this analysis
is without concern for what the method actually does—i.e.,
treating the body as a black box, which can change in the fu-
ture.) Furthermore, our inference algorithm obviates the need
for many uses of wildcards: 37% of existing wildcard uses in
these libraries are rendered unnecessary.

2. Type-Checking Variance
The study of variance has a long history [2, 6–9, 13, 16, 17, 23].
It aims to provide safe conditions for subtyping between different
instantiations of the same generic class or interface. Consider the
following example:
class List<X> {
void set(int i, X x) { ... }
X get(int i) { ... }

}

If we naively assume that List<S> <: List<T> for any S <:
T (where <: is the subtyping relation), the following ill-typed
code could pass compile-time type-checking, and result in runtime
errors:

List<Integer> intList = new List<Integer>();
List<Number> numList = intList;
numList.set(0, new Float(0.0f));

// Writing Float into intList!

The key to safe parametric subtyping lies with the concept of
the variance of type parameter X in the definition of C<X>. If X
only appears covariantly, then it is always safe to assume that
C<S> <: C<T> if S <: T. If X only appears contravariantly, it is always
safe to assume that C<S> <: C<T> if T <: S. If X appears both co-
and contravariantly, C is invariant: C<S> <: C<T> only if S = T. This
notion of variance is called definition-site variance.

2.1 Definition-site Variance.
Languages supporting definition-site variance [15, 20] typically re-
quire each type parameter to be declared with a variance annota-
tion. For instance, Scala [20] requires the annotation + for covari-
ant type parameters, - for contravariant type parameters, and in-
variance is the default. A well-established set of rules can then be
used to verify that the use of the type parameter in the generic1 is
consistent with the annotation. We provide an overview of these
rules here, as they form the basis of both use-site variance and our
inference.

Each typing position in a generic’s signature has an associated
variance. For instance, method return and exception types, super-
types, and upper bounds of type parameters are covariant positions;
method argument types and type parameter lower bounds are con-
travariant positions; field types are both co- and contravariant oc-
currences, inducing invariance. Type checking the declared vari-
ance annotation of a type parameter requires determining the vari-
ance of the positions the type parameter occurs in. The variance of
all such positions should be at most the declared variance of the
type parameter. Consider the following templates of Scala classes,
where vX , vY , and vZ stand for variance annotations.
class RList[vXX] { def get(i:Int):X }

class WList[vYY] { def set(i:Int, y:Y):Unit }

class IList[vZZ] { def setAndGet(i:Int, z:Z):Z }

The variance vX is the declared definition-site variance for type
variable X of the Scala class RList. If vX = +, the RList class
type checks because X does not occur in a contravariant position.
If vY = +, the WList class does not type check because Y occurs in
a contravariant position (second argument type in set method) but
vY = + implies Y should only occur in a covariant position. IList
type checks only if vZ = o because Z occurs in a covariant and a
contravariant position.

Intuitively, RList is a read-only list: it only supports retrieving
objects. Retrieving objects of type T can be safely thought of as re-
trieving objects of any supertype of T. Thus, a read-only list of Ts
(RList[T]) can always be safely thought of as a read-only list of
some supertype of Ts (RList[S], where T <: S). This is the exact
definition of covariant subtyping. Thus, RList is covariant in X.2
Similarly, WList is a write-only list, and is intuitively contravariant.
Its definition supports this intuition: Objects of type T can be writ-
ten to a write-only list of Ts and to a write-only list of WList[S],

1 We refer to all generic types (e.g., classes, traits, interfaces) uniformly as
“generics”.
2 We use interchangeably the wordings “C is v-variant in X”, “C is v-
variant/has variance v with respect to X”, and “X’s variance in C is v”.
For brevity, if it is clear from the context, we do not specify which type
parameter a definition-site variance is with respect to.

where T <: S, because objects of type T are also objects of type S.
Hence, a WList[S] can be safely thought of as a WList[T], if T <: S.

The variance of type variables is transformed by the variance
of the context the variables appear in. Covariant positions preserve
the variance of types that appear in them, whereas contravariant
positions reverse the variance of the types that appear in them. The
“reverse” of covariance is contravariance, and vice versa. The “re-
verse” of invariance is itself. Thus, we can consider the occurrence
of a type parameter to be initially covariant. For instance, consider
again the Scala classes above. In RList, X only appears as the re-
turn type of a method, which preserves the initial covariance of X,
so RList is covariant in X. In WList, Y appears in a contravariant po-
sition, which reverses its initial covariance, to contravariance. Thus,
WList is contravariant.

When a type parameter is used to instantiate a generic, its vari-
ance is further transformed by the declared definition-site variance
of that generic. For example:
class SourceList[+Z] { def copyTo(to:WList[Z]):Unit }

Suppose the declared definition-site variance of WList (with re-
spect to its single parameter) is contravariance. In WList[Z], the
initial covariance of Z is transformed by the definition-site variance
of WList (contravariance). It is then transformed again by the con-
travariant method argument position. As a result, Z appears covari-
antly in this context, and SourceList is covariant in Z, as declared.
Any variance transformed by invariance becomes invariance. Thus,
if Z was used to parameterize an invariant generic, its appearance
would have been invariant. In Section 3.1 we generalize and for-
malize this notion of transforming variance.

We have so far neglected to discuss bivariance: C<X> is bivariant
implies that C<S> <: C<T> for any types S and T. Declaring a bivari-
ant type parameter is not supported by the widely used definition-
site variant languages. At first this seems to not be entirely sur-
prising. For a type parameter to be bivariant, it must only appear
bivariantly in a generic. This means either it does not appear at all,
or it appears only as the type argument to instantiate other bivariant
generics. If a type parameter does not appear in a generic’s signa-
ture at all, then it is useless to parameterize over it; if it is only used
to instantiate other bivariant generics, it could just as well be re-
placed by any arbitrary type, since, by definition, a bivariant generic
does not care what type it is instantiated with. Nevertheless, this ar-
gument ignores type recursion. As we discuss in Section 3.3 and in
our experimental findings, several interesting interface definitions
are inherently bivariant.

Finally, instead of declaring the definition-site variance of a type
parameter and checking it for consistency, it is tempting to infer the
most general such variance from the definition of a generic. This
becomes hard in the presence of type recursion and supporting it in
full generality is one of the contributions of our work.

2.2 Use-site Variance.
An alternative approach to variance is use-site variance [7, 17, 23].
Instead of declaring the variance of X at its definition site, generics
are assumed to be invariant in their type parameters. However, a
type-instantiation of C<X> can be made co-, contra-, or bivariant
using variance annotations.

For instance, using the Java wildcard syntax, C<? extends
T> is a covariant instantiation of C, representing a type “C-of-
some-subtype-of-T”. C<? extends T> is a supertype of all type-
instantiations C<S>, or C<? extends S>, where S <: T. In exchange
for such liberal subtyping rules, type C<? extends T> can only ac-
cess those methods and fields of C in which X appears covariantly.
In determining this, use-site variance applies the same set of rules
used in definition-site variance, with the additional condition that
the upper bound of a wildcard is considered a covariant position,
and the lower bound of a wildcard a contravariant position.

For example, List<? extends T>, only has access to method
“X get(int i)”, but not method “void set(int i, X x)”. (More
precisely, method set can only be called with null for its second
argument. We elide such fine distinctions in this section.)

Similarly, C<? super T> is the contravariant version of C, and is
a supertype of any C<S> and C<? super S>, where T <: S. Of course,
C<? super T> has access only to methods and fields in which X
appears contravariantly or not at all.

Use-site variance also allows the representation of the bivariant
version of a generic. In Java, this is accomplished through the
unbounded wildcard: C<?>. Using this notation, C<S> <: C<?>, for
any S. The bivariant type, however, only has access to methods
and fields in which the type parameter does not appear at all. In
definition-site variance, these methods and fields would have to be
factored out into a non-generic class.

2.3 A Comparison.
Both approaches to variance have their merits and shortcomings.
Definition-site variance enjoys a certain degree of conceptual sim-
plicity: the generic type instantiation rules and subtyping relation-
ships are clear. However, the class or interface designer must pay
for such simplicity by splitting the definitions of data types into
co-, contra, and bivariant versions. This can be an unnatural ex-
ercise. For example, the data structures library for Scala contains
immutable (covariant) and mutable (invariant) versions of almost
every data type—and this is not even a complete factoring of the
variants, since it does not include contravariant (write-only) ver-
sions of the data types.

The situation gets even more complex when a generic has more
than one type parameter. In general, a generic with n type param-
eters needs 3n (or 4n if bivariance is allowed as an explicit anno-
tation) interfaces to represent a complete variant factoring of its
methods. Arguably, in practice, this is often not necessary.

Use-site variance, on the other hand, allows users of a generic
to create co-, contra-, and bivariant versions of the generic on the
fly. This flexibility allows class or interface designers to implement
their data types in whatever way is natural. However, the users
of these generics must pay the price, by carefully considering
the correct use-site variance annotations, so that the type can be
as general as possible. This might not seem very difficult for a
simple instantiation such as List<? extends Number>. However,
type signatures can very quickly become complicated. For instance,
the following method signature is part of the Apache Commons-
Collections Library:
Iterator<? extends Map.Entry<? extends K,V>>
createEntrySetIterator(
Iterator<? extends Map.Entry<? extends K,V>>)

2.4 Generalizing the Design Space.
Our goal is to combine the positive aspects of use-site and
definition-site variance, while mitigating their shortcomings. The
key is to have a uniform and general treatment of definition and
use-site variance in the same type system. This creates opportuni-
ties for interesting language designs. For instance:

• A language can combine explicit definition- and use-site variance
annotations and perform type checking to ensure their soundness.
For instance, Scala or C# can integrate wildcards in their syntax
and type reasoning. This will give programmers the opportunity
to choose not to split the definition of a type just to allow more
general handling in clients. If, for instance, a List is supposed to
support both reading and writing of data, then its interface can be
defined to include both kinds of methods, and not split into two
types. The methods that use List can still be made fully general,
as long as they specify use-site annotations. Generally, allowing

both kinds of variance in a single language ensures modularity:
parts of the code can be made fully general regardless of how
other code is defined. This reduces the need for anticipation and
lowers the burden of up-front library design.

Similarly, Java can integrate explicit definition-site variance
annotations for purely variant types. This will reduce the need
for use-site annotation and the risk of too-restricted types.

• A language can combine use-site variance annotations with in-
ference of definition-site variance (for purely variant types). This
is the approach that we implement and explore in later sec-
tions. Consider the above example of the long signatures in the
two type-instantiations of Iterator. Our approach can infer that
Iterator is covariant, and Map.Entry is covariant in its first
type parameter—without having to change the definition of either
generic. Thus, the following signature in our system has exactly
the same generality without any wildcards:

Iterator<Map.Entry<K,V>>
createEntrySetIterator(Iterator<Map.Entry<K,V>>)

Furthermore, specifying the most general types proves to be
challenging for even the most seasoned Java programmers: (at
least) 8% of the types in method signatures of the Java core library
(java.*) are overly specific. We will discuss the details of our
findings in Section 5.2.

3. Reasoning about Variance
In order to meet our goal of a general, unified framework (for
both checking and inference of both use-site and definition-site
variance) we need to solve three different problems. The first is
that of composing variances, the second deals with the integration
of use-site annotations in definition-site reasoning, and the third
concerns the handling of recursive types.

3.1 Variance Composition
In earlier variance formalisms, reasoning about nested types, such
as A<B<X>>, has been hard. Igarashi and Viroli pioneered the treat-
ment of variant types as unions of sets of instances. Regarding
nested types, they note (Section 3.3 of [17]): “We could explain
more complicated cases that involve nested types but it would get
harder to think of the set of instances denoted by such types.”
The first observation of our work is that it is quite easy to rea-
son about nested types, not as sets of instances but as variance
composition. That is, given two generic types A<X> and B<X>, if
the (definition-site) variances of A and B (with respect to their
type parameters) are known, then we can compute the variance of
type A<B<X>>.3 This composition property generalizes to arbitrarily
complex-nested type expressions. The basis of the computation of
composed variances is the transform operator, ⊗, defined in Fig-
ure 1. The relation v1 ⊗ v2 = v3 intuitively denotes the following:
If the variance of a type variable X in type expression E is v2 and
the definition-site variance of the type parameter of a class C is v1,4
then the variance of X in type expression C<E> is v3.

The behavior of the transform operator is simple: invariance
transforms everything into invariance, bivariance transforms every-
thing into bivariance, covariance transforming a variance leaves it

3 This relies on a natural extension of the definition of variance, to include
the concept of a variance of an arbitrary type expression with respect to a
type variable. E.g., type expression E is covariant in X iff T1 <: T2 =⇒
E[T1/X] <: E[T2/X]. (These brackets denote substitution of a type for a
type variable and should not be confused with the Scala bracket notation for
generics, which we shall avoid except in pure-Scala examples.)
4 For simplicity, we often refer to generics with a single type parameter. For
multiple type parameters the same reasoning applies to the parameter in the
appropriate position.

Definition of variance transformation: ⊗
+ ⊗ + = + − ⊗ + = − ∗ ⊗ + = ∗ o ⊗ + = o
+ ⊗ − = − − ⊗ − = + ∗ ⊗ − = ∗ o ⊗ − = o
+ ⊗ ∗ = ∗ − ⊗ ∗ = ∗ ∗ ⊗ ∗ = ∗ o ⊗ ∗ = o
+ ⊗ o = o − ⊗ o = o ∗ ⊗ o = ∗ o ⊗ o = o

Figure 1. Variance transform operator.

the same, and contravariance reverses it. (The reverse of bivari-
ance is itself, the reverse of invariance is itself.) To sample why
the definition of the transform operator makes sense, let us con-
sider some of its cases. (The rest are covered exhaustively in our
proof of soundness.)

• Case + ⊗ − = −: This means that type expression C<E> is con-
travariant with respect to type variable Xwhen generic C is covari-
ant in its type parameter and type expression E is contravariant in
X. This is true because, for any T1, T2:

T1 <: T2 =⇒ (by contravariance of E)
E[T2/X] <: E[T1/X] =⇒ (by covariance of C)

C<E[T2/X]> <: C<E[T1/X]> =⇒

C<E>[T2/X] <: C<E>[T1/X]

Hence, C<E> is contravariant with respect to X.

• Case ∗⊗v = ∗: This means that type expression C<E> is bivariant
with respect to type variable X when generic C is bivariant in its
type parameter, regardless of the variance of type expression E
(even invariance). This is true because:

for any types S and T =⇒ (by bivariance of C)
C<E[S/X]> <: C<E[T/X]> =⇒

C<E>[S/X] <: C<E>[T/X]

Hence, C<E> is bivariant with respect to X.

As can be seen by inspection of all cases in Figure 1, operator
⊗ is associative. The operator would also be commutative, except
for the case ∗ ⊗ o = ∗ , o = o ⊗ ∗. This is a design choice,
however. With the types-as-sets approach that we follow in our
formalization, operator ⊗ would be safe to define as a commutative
operator, by changing the case o⊗∗ to return ∗. To see this, consider
the meaning of o ⊗ ∗. When generic C is invariant with respect to
its type parameter X and type expression E is bivariant in X, should
type expression C<E> be bivariant or invariant with respect to X?
The answer depends on what we mean by “invariance”. We defined
invariance earlier as “C<S > <: C<T> only if S = T”. Is the type
equality “S = T” syntactic or semantic? (I.e., does type equality
signify type identity or equivalence, as can be established in the
type system?) If type equality is taken to be syntactic, then the only
sound choice is o ⊗ ∗ = o:

C<E>[S/X] <: C<E>[T/X] =⇒

C<E[S/X]> <: C<E[T/X]> =⇒ (by invariance of C)
E[S/X] = E[T/X] =⇒ (assuming X occurs in E)

S = T

Hence, C<E> is invariant with respect to X. If, however, the defini-
tion of invariance allows for type equivalence instead of syntactic
equality, then it is safe to have o ⊗ ∗ = ∗: By the bivariance of E,
E[S/X] <: E[T/X] and E[T/X] <: E[S/X]. Hence, E[S/X] is
equivalent to E[T/X] and consequently C<E>[S / X] can be shown
equivalent to C<E>[T / X] (assuming a natural extensionality axiom
in the type system).

We chose the conservative definition, o ⊗ ∗ = o, in Figure 1 to
match that used in our implementation of a definition-site variance
inference algorithm for Java, discussed later. Since, in our appli-
cation, bivariance is often inferred (not stated by the programmer)
and since Java does not naturally have a notion of semantic type
equivalence, we opted to avoid the possible complications both for
the user and for interfacing with other parts of the language.

Similar reasoning to the transform operator is performed in
Scala to check definition-site variance annotations. Section 4.5
of [20] defines the variance position of a type parameter in a
type or template and states “Let the opposite of covariance be
contravariance, and the opposite of invariance be itself.” It also
states a number of rules defining the variance of the various type
positions such as “The variance position of a method parameter
is the opposite of the variance position of the enclosing parameter
clause.” The ⊗ operator is a generalization of the reasoning stated
in that section; it adds the notion of bivariance and how the variance
of a context transforms the variance of a type actual in general
instead of defining the variance of a position for language specific
constructs.

3.2 Integration of Use-Site Variance
The second new element of our work is the integration of use-site
annotations in the reasoning about definition-site variance. Earlier
work such as [17] showed how to reason about use-site variance for
Java. Emir et al [13] formalized definition-site variance as it occurs
in of C#.5 However, no earlier work explained how to formally
reason about variance in a context including both definition-site
and use-site variance. For example, suppose Scala is extended with
support for use-site variance, v is a variance annotation (+, −, or
o), and the following are syntactically legal Scala classes.
abstract class C[vX] {
def set(arg1:X):Unit
}
abstract class D[+X] {
def compare(arg2:C[+X]):Unit
}

Section 2.1 gave an overview of how declared definition-site
variance annotations are type checked in Scala. Since class C only
contains the set method, it type checks with v = - because X only
appears contravariantly in the type signature of the set method.
However, type checking class D with the compare method requires
reasoning about the variance of X in the argument type expression
C[+X].

In our unified framework, a use-site annotation corresponds to a
join operation in the standard variance lattice (Figure 2). That is, if
generic C<X> has definition-site variance v1 with respect to X, then
the type expression C[v2X] has variance v1 t v2 with respect to X.

*

o

+

Figure 2. Usual variance lattice.

Intuitively, this rule makes sense: When applying use-site vari-
ance annotations, it is as if we are removing from the definition
of the generic the elements that are incompatible with the use-site
variance. For instance, when taking the covariant version, C[+X],
of our Scala class C, above, we can only access the members that

5 Their calculus is an extension of C# minor [18].

use type parameter X covariantly—e.g., method set would be inac-
cessible. Hence, if class C is naturally contravariant in X (meaning
that X only occurs contravariantly in the body of C), then C[+X] is a
type that cannot access any member of C that uses X. Thus, C[+X]
is bivariant in X: the value of the type parameter cannot be used.
This is precisely what our lattice join approach yields: + t − = ∗.
As a result, any declared definition-site variance for class D would
be legal.

To see more rigorously why the lattice-join approach is correct,
let us consider the above case formally. (Other cases are covered
exhaustively in our proof of soundness.) Given a contravariant
generic C, why is it safe to infer that C<+X> (C[+X] in Scala syntax)
is bivariant in X? We start from the Igarashi and Viroli approach to
variance: All types are in a lattice with subtyping as its partial order
and the meaning of C<+T> is

⊔
T′ <: T C<T’>. This definition yields

the standard variance theorems T <: T′ ⇒ C<+T> <: C<+T’>
and C<T> <: C<+T>. Consider then the bottom element of the type
lattice. (This lattice depends on the type system of the language and
is not to be confused with the simple variance lattice of Figure 2.)
We have:

⊥ <: T⇒ (by first theorem above)
C<+⊥> <: C<+T> (1)

But also, for any type T’:

⊥ <: T′ ⇒ (C contravariant)
C<T’> <: C<⊥> (2)

Therefore:

C<+T> = (by variance def)⊔
T′ <: T

C<T’> <: (by (2), above)

C<⊥> <: (by second theorem above)
C<+⊥> (3)

Hence, from (1) and (3), all C<+T> are always subtype-related, i.e.,
have type C<*>.

A Note on Scala: To enable interoperability between Scala and
Java, Scala represents Java wildcard types as existential types. For
example, a Java Iterator<?> could be written as Iterator[T]
forSome { type T } or more compactly as Iterator[]. Sim-
ilarly, the type Java Iterator<? extends Comparator> maps
to the Scala type Iterator[<: Comparator>], and the type
Java Iterator<? super Comparator> maps to the Scala type
Iterator[>: Comparator>]. However, Scala variance reasoning
with existential types is too conservative because it just assumes
that the use-site variance annotation overrides the definition-site
variance instead of reasoning about how they both interact. For ex-
ample, consider the Scala traits below.
trait GenType[+Y] { def get(i:Int):Y }
trait Wild[-X] {
def add(elem:X):Unit
// flagged as error but actually safe
def compare(w:GenType[_ >: X]):Unit

}

The Scala compiler flags an error because it assumes the vari-
ance of X in GenType[>: X] is contravariance. This contravari-
ance occurrence is then negated (transformed by contravariance) to
covariance because it occurs in an argument (contravariant) posi-
tion. Because the Scala compiler assumes X occurs in a covariant
position in compare’s argument type but the definition-site of X in
trait Wild is contravariance, Scala flags this occurrence as an error.
However, it is safe to assume that the variance of X in GenType[>:

X] is bivariance. Because GenType is covariant in its type parameter,
the contravariant version of GenType essentially provides no mem-
bers GenType that contain GenType’s type parameter in their type
signature. Our joining of the definition-site and use-site variances
takes advantage of this reasoning enabling more safe code to type
check.

3.3 Recursive Variances
The third novel element of our approach consists of reasoning about
recursive type definitions. This is particularly important for infer-
ring (instead of just checking) definition-site variance. With type
recursion, the unknown variance becomes recursively defined and it
is not easy to compute the most general solution. Furthermore, type
recursion makes the case of bivariance quite interesting. In con-
trast to non-recursive types, recursive types can be bivariant even
when their type parameter is used. For instance the following type
is safely bivariant:
interface I<X> { I<X> foo (I<X> i); }

To appreciate the interesting complexities of reasoning about
type recursion, we discuss some cases next.

Recursive Variance Type 1: The following interface demon-
strates a most simple form of recursive variance:
interface C1<X> { C1<X> foo1 (); }

The variance of C1 depends on how X appears in its signature.
The only appearance of X is in the return type of foo1, a covariant
position, as the argument to C1. Thus, the variance of X in this
appearance is its initial covariance, transformed by the variance of
C1—the very variance we are trying to infer! This type of recursive
variance essentially says that the variance of C1 is the variance
of C1, and thus can be satisfied by any of the four variances:
covariance, contravariance, invariance, or bivariance. Without any
more appearances of X, the most liberal form of variance for C1 is
bivariance.

If X does appear in other typing positions, however, the variance
of its declaring generic is completely determined by the variance of
these appearances:
interface C2<X> extends C1<X> { void bar2 (X x); }
interface C3<X> extends C1<X> { X bar3 (); }

The definition-site variance of C2 is constrained by the variance
of C1, as well as X’s appearance as a method argument type—a
contravariant appearance. Since C1’s variance is completely un-
constrained, C2 is simply contravariant. Similarly, C3 is only con-
strained by X’s appearance as a method return type—a covariant
appearance—and is thus covariant, as well.

The above pattern will be common in all our recursive variances.
Without any constraints other than the recursive one, a generic is
most generally bivariant. When other constraints are factored in,
however, the real variance of C1 can be understood informally as
“can be either co- or contravariant”.

Recursive Variance Type 2: The next example shows a similar,
but much more restrictive form of recursive variance:
interface D1<X> { void foo1 (D1<X> dx); }

The variance of D1 is again recursively dependent on itself, only
this time X appears in D1<X> which is a method argument. If a
recursive variance did not impose any restrictions in a covariant
position, why would it be any different in a contravariant position?
Interestingly, the contravariance means that the variance of D1 is
the variance of D1 transformed by the contravariance. This means
the variance of D1 must be the reverse of itself!

The only two variances that can satisfy such a condition are bi-
and invariance. Again, without any other uses of X, D1<X> is most
generally bivariant.

However, if X does appear either co- or contravariantly in com-
bination with this type of recursive variance, the resulting variance
can only be invariance:
interface D2<X> extends D1<X> { void bar2 (X x); }
interface D3<X> extends D1<X> { X bar3 (); }

In the above example, X appears contravariantly in D2, as the
argument of bar2. At the same time, the variance of X must be
the opposite of itself, as constrained by the recursive variance in
supertype D1. This is equivalent to X appearing covariantly, as well.
Thus, the only reasonable variance for D2 is invariance. A similar
reasoning results in the invariance of D3.

Thus, recursive variance of this type can be understood infor-
mally as “cannot be either co- or contravariant” when other con-
straints are taken into account.

Recursive Variance Type 3: The following example shows yet a
third kind of recursive variance:
interface E1<X> { E1<E1<X>> foo1 (); }

The variance of E1 is the same as X’s variance in E1<E1<X>>.
That is, the initial covariance of X, transformed by the variance
of E1—twice. This type of recursive variance can, again, like the
previous two, be satisfied by either in- or bivariance. However, the
key insight is that, no matter whether E1 is contra- or covariant,
any variance transformed by E1 twice (or any even number of
times, for that matter) is always preserved. This is obvious if E1
is covariant. If E1 is contravariant, being transformed by E1 twice
means a variance is reversed, and then reversed again, which still
yields a preserved variance. Thus, unless E1 is bi- or invariant, X in
E1<E1<X>> is always a covariant appearance.

Thus, when other appearances of X interact with this form of
recursive variance, its informal meaning becomes “cannot be con-
travariant”. In other words, when this recursive variance is part of
the constraints of a type, the type can be bivariant, covariant, or
invariant. The following examples demonstrate this:
interface E2<X> extends E1<X> { void bar2 (X x); }
interface E3<X> extends E1<X> { X bar3 (); }

X appears contravariantly in E2, eliminating bivariance and co-
variance as an option for E2. However, X also appears in E1<E1<X>>
through subtyping, which means it cannot be contravariant. Thus,
E2 is invariant.

In E3, X appears covariantly, and X in E1<E1<X>> can still be
covariant. Thus, E3 can safely be covariant.

Recursive Variance Type 4: Our last example of recursive vari-
ance is also twice constrained by itself. But this time, it is further
transformed by a contravariance:
interface F1<X> { int foo1(F1<F1<X>> x); }

The variance of F1 is the same as X’s variance in F1<F1<X>>,
then transformed by the contravariant position of the method ar-
gument type. That is, X’s initial covariance, transformed twice by
the variance of F1, then reversed. Like all the other recursive vari-
ances, bi- and invariance are options. However, since the twice-
transformation by any variance preserves the initial covariance of
X in F1<F1<X>>, the transformation by the contravariance produces
a contravariance. Thus, if F1 cannot be bivariant, it must be con-
travariant (or invariant).

In other words, along with other constraints, F1 has the informal
meaning: “cannot be covariant”. For instance:
interface F2<X> extends F1<X> { void bar2 (X x); }
interface F3<X> extends F1<X> { X bar3 (); }

In F2, X appears contravariantly as a method argument. Com-
bined with the recursive variance through subtyping F1<X>, F2 can
be contravariant. In F3, however, X appears covariantly. With bi-
variance and contravariance no longer an option, the only variance

satisfying both this covariant appearance and the recursive variance
of F1<F1<X>> is invariance. Thus, F3 is invariant in X.

Handling Recursive Variance. The above list of recursive vari-
ances is not exhaustive, although it is representative of most obvi-
ous cases. It should be clear that handling recursive variances in
their full generality is hard and requires some form of search. The
reason our approach can handle recursive variance well is that all
reasoning is based on constraint solving over the standard variance
lattice. Constraints are simple inequalities (“below” on the lattice)
and can capture type recursion by having the same constant or vari-
able (in the case of type inference) multiple times, both on the left
and the right hand side of an inequality.

A Note on Scala: Scala’s reasoning about recursive variances is
limited because it does not have the notion of bivariance; it does
not allow the most general types to be specified. Consider the three
following traits.
trait C1[vXX] { def foo:C1[X] }

trait C2[vYY] extends C1[Y] { def bar(arg:Y):Unit }

trait C3[vZZ] extends C1[Z] { def baz:Z }

Because trait C1 has type 1 recursive variance, if Scala supported
bivariant annotations, it would be safe to set the definition-site vari-
ances as follows: vX = ∗, vY = −, and vZ = +. Since Scala does not
support bivariant annotations, no assignments allow both trait C2 to
be contravariant and trait C3 to be covariant. For example, setting
vX = + implies attempting to compile trait C2 will generate an error
because Scala infers Y occurs covariantly in the base type expres-
sion occurring in “C2[-Y] extends C1[Y]”; since Y is declared to
be contravariant, Y should not occur in a covariant position in the
definition of C2. Below are the only three assignments allowed by
the Scala compiler.

vX = − vY = − vZ = o

vX = + vY = o vZ = +

vX = o vY = o vZ = o

4. Putting It All Together: A Core Language and
Calculus

We combine all the techniques of the previous section into a unified
framework for reasoning about variance. We introduce a core lan-
guage, VarLang, for describing the various components of a class
that affect its variance. Reasoning is then performed at the level of
this core language, by translating it to a set of constraints.

4.1 Syntax
A sentence S in VarLang is a sequence (treated as a set) of modules,
the syntax of which is given in Figure 3.

M ∈ Module ::= module C<X> { Tv }

T ∈ Type ::= X | C<vT>

v ∈ Variance ::= + | − | ∗ | o

C ∈ ModuleNames is a set of module names

X ∈ VariableNames is a set of variable names

Figure 3. Syntax of VarLang

Note that variance annotations, v, (+/-/*/o) can appear in two
places: at the top level of a module, as a suffix, and at the type
level, as a prefix. Informally, a v at the top level means that the
corresponding type appears covariantly/contravariantly/invariantly
(i.e., in a covariant/contravariant/invariant position). A v on a type

means that the type parameter is qualified with the corresponding
use-site variance annotation, or no annotation (for invariance). For
instance, consider the VarLang sentence:
module C<X> { X+, C<-X>-, void+, D<+X>- }
module D<Y> { void+, C<oY>- }

This corresponds to the example from the Introduction. That is,
the informal meaning of the VarLang sentence is that:

• In the definition of class C<X>, X appears covariantly; C<?
super X> appears contravariantly; void appears covariantly; D<?
extends X> appears contravariantly.

• In the definition of class D<Y>, void appears covariantly; C<Y>
appears contravariantly.

4.2 VarLang Translation
Our reasoning approach consists of translating a VarLang sentence
S into a set of constraints over the standard variance lattice (Fig-
ure 2). The constraints are “below”-inequalities and contain vari-
ables of the form var(X, T) and var(X, C), pronounced “variance of
type variable X in type expression T” and “(definition-site) vari-
ance of type variable X in generic C”. The constraints are then
solved to compute variances, depending on the typing problem at
hand (checking or inference). The following rules produce the con-
straints. (Note that some of the constraints are vacuous, since they
establish an upper bound of ∗, but they are included so that the rules
cover all syntactic elements of VarLang and the translation from a
VarLang sentence to a set of constraints is obvious.)

var(X, C) v vi ⊗ var(X, Ti),∀i,

where module C<X> { Tv } ∈ S
(1)

var(X, C<>) v ∗ (2)

var(X, Y) v ∗, where X , Y (3)

var(X, X) v + (4)

var(X, C<vT>) v (vi t var(Y, C)) ⊗ var(X, Ti),∀i,

where Y is the i-th type variable in the definition of C.
(5)

Rule 1 specifies that for each type Ti in module C, the variance
of the type variable X in C must be below the variance of X in Ti
transformed by vi, the variance of the position that Ti appears in.
This corresponds to the traditional reasoning about definition site
variance from Section 2.1.

Rules 2 and 3 specify that the X can have any variance in a type
expression for which it does not occur in. Rule 4 constrains the
initial variance of a type variable to be at most covariance.

Rule 5 is the most interesting. It integrates our reasoning about
how to compose variances for complex expressions (using the
transform operator, as described in Section 3.1) and how to factor
in use-site variance annotations (using a join in the variance lattice,
as described in Section 3.2).

Note that the rules use our transform operator in two different
ways: to combine the variance of a position with the variance of a
type, and to compose variances.

We prove the soundness of the above rules denotationally—that
is, by direct appeal to the original definition and axioms of use-site
variance [17]. The proof can be found in the extended version of
this paper [1, Appendix I].

Example. We can now revisit in more detail the example from the
Introduction, containing both recursive variance and wildcards:
class C<X> {
X foo (C<? super X> csx) { ... }
void bar (D<? extends X> dsx) { ... }

}
class D<Y> { void baz (C<Y> cx) { ... } }

As we saw, the corresponding VarLang sentence is:

module C<X> { X+, C<-X>-, void+, D<+X>- }
module D<Y> { void+, C<oY>- }

The generated constraints (without duplicates) are:

var(X, C) v + ⊗ var(X, X) (rule 1)
var(X, X) v + (rule 4)
var(X, C) v − ⊗ var(X, C<-X>) (rule 1)

var(X, C<-X>) v (− t var(X, C)) ⊗ var(X, X) (rule 5)
var(X, C) v + ⊗ var(X, void) (rule 1)

var(X, void) v ∗ (rule 2)
var(X, C) v − ⊗ var(X, D<+X>) (rule 1)

var(X, D<+X>) v (+ t var(Y, D)) ⊗ var(X, X) (rule 5)
var(Y, D) v + ⊗ var(Y, void) (rule 1)

var(Y, void) v ∗ (rule 2)
var(Y, D) v − ⊗ var(Y, C<oY>) (rule 1)

var(Y, C<oY>) v (o t var(X, C)) ⊗ var(Y, Y) (rule 5)
var(Y, Y) v + (rule 3)

4.3 Revisiting Recursive Type Variances
Armed with our understanding of variance requirements as sym-
bolic constraints on a lattice, it is quite easy to revisit practical ex-
amples and understand them quickly. For instance, what we called
type 2 recursive variance in Section 3.3 is just an instance of a re-
cursive constraint c v − ⊗ c, where c is some variable of the form
var(X, C). This is a case of a type that recursively (i.e., inside its
own definition) occurs in a contravariant position. (Of course, the
recursion will not always be that obvious: it may only become ap-
parent after other constraints are simplified and merged.) It is easy
to see from the properties of the transform operator that the only
solutions of this constraint are o and ∗; i.e., “cannot be either co-
or contravariant” as we described in Section 3.3. If c = +, then
the constraint generated by type 2 recursive variance would be vio-
lated, since c = + 6v − ⊗ c = − ⊗ + = −. Similar reasoning shows c
cannot be − and satisfy the constraint.

4.4 Constraint Solving
Checking if a variance satisfies a constraint system (i.e., the con-
straints generated for a VarLang module) corresponds to checking
definition-site variance annotations in type definitions that can con-
tain use-site variance annotations. Analogously, inferring the most
general definition-site variances allowed by a type definition cor-
responds to computing the most general variances that satisfy the
constraint system representing the type definition. The trivial and
least general solution that satisfies a constraint system is assigning
the definition-site variance of all type parameters to be invariance.
Assigning invariance to all type parameters is guaranteed to be a so-
lution, since invariance is the bottom element, which must be below
every upper bound imposed by the constraints. Stopping with this
solution would not take advantage of the subtyping relationships al-
lowed by type definitions. Fortunately, the most general solution is
always unique and can be computed efficiently by fixed-point com-
putation running in polynomial time of the program size (number
of constraints generated).

The only operators in constraint systems are the binary opera-
tors t and ⊗. Both of these are monotone, as can be seen with the
variance lattice and Figure 1.

Every constraint system has a unique maximal solution because
there is guaranteed to be at least one solution (assign every type pa-
rameter invariance) and solutions to constraint systems are closed

under point-wise t; we get a maximal solution by joining all of
the greatest variances that satisfy each constraint. Because opera-
tors t and ⊗ are monotone, we can compute the maximal solution
efficiently with fixed point iteration halting when the greatest fixed
point of the equations has been reached. We demonstrate this al-
gorithm below by applying it to the example Java classes C and D
from Section 4.2.

First, because we are only interested in inferring definition-site
variance, we only care about computing the most general variances
for terms of the form var(X, C) but not var(X, T). We can expand
var(X, T) terms with their upper bounds containing only unknowns
of the form var(X, C) Consider the constraint generated from
foo’s argument type: var(X, C) v − ⊗ var(X, C<-X>). Because we
are computing a maximal solution and because of the monotonicity
of t and ⊗, we can replace var(X, C<-X>) and var(X, X) by their
upper bounds, rewriting the constraint as:

var(X, C) v − ⊗ (− t var(X, C)) ⊗
var(X, X)︷︸︸︷

+︸ ︷︷ ︸
var(X, C<-X>)

Lastly, we can ignore type expressions that do not mention a type
parameter because they impose no real upper bound; their upper
bound is the top element (e.g. var(X, void) v ∗). This leads to the
following constraints generated for the example two Java classes:

foo return type =⇒ var(X, C) v + ⊗ +︸︷︷︸
var(X, X)

foo arg type =⇒ var(X, C) v − ⊗ (var(X, C) t −)︸ ︷︷ ︸
var(X, C<-X>)

bar arg type =⇒ var(X, C) v − ⊗ (var(Y, D) t +)︸ ︷︷ ︸
var(X, D<+X>)

baz arg type =⇒ var(Y, D) v − ⊗ (var(X, C) t o)︸ ︷︷ ︸
var(Y, C<oY>)

Letting c denote var(X, C) and d denote var(Y, D), the above
constraints correspond to the four constraints presented in the In-
troduction.

For each expanded constraint r v l in a constraint system, r is a
var(X, C) term and l is an expression where the only unknowns are
var(X, C) terms. The greatest fixed-point of a constraint system is
solved for by, first, assigning every var(X, C) term to be ∗ (top).
Each constraint r v l is then transformed to r ← l u r, since
r need not increase from the value it was lowered to by other
assignments. The last step is to iterate through the assignments for
each constraint until the var(X, C) terms no longer change, which
results in computing the greatest fixed-point. Finally, computing
the greatest fixed-point runs in at most O(2n) iterations, where n is
the number of constraint inequalities, since for each r ← l u r, r
can decrease at most 2 times to invariance (bottom) from initially
being bivariance (top).

5. An Application: Definition-Site Variance
Inference for Java

To showcase the potential of our unified treatment of use-site and
definition-site variance, we implemented a mapping from Java to
VarLang, used it to produce a (definition-site) variance inference
algorithm, and evaluated its impact on large Java libraries with
generics (including the standard library).

5.1 Applications
Our mapping from Java to VarLang is straightforward: We produce
a VarLang module definition for each Java class or interface, and

all Java type expressions are mapped one-to-one on VarLang type
expressions with the same name. The module definitions contain
variance constraints that correspond to the well-understood vari-
ance of different positions (as discussed in Section 2): return types
are a covariant position, argument types are a contravariant posi-
tion, types of non-final fields are both covariant and contravariant
positions, supertypes are a covariant position.

Our mapping is conservative: although we handle the entire Java
language, we translate some “tricky” aspects of the language into
an invariance constraint, potentially making our algorithm infer less
general variances than is occasionally possible. For instance, we do
not try to infer the most general variance induced by polymorphic
methods: if a class type parameter appears at all in the upper bound
of a type parameter of a polymorphic method, we consider this to be
an instance of an invariant position. Another source of conservatism
is that we ignore the potential for more general typing through
reasoning about member visibility (i.e., private/protected access
control). Member visibility, in combination with conditions on self-
reference in type signatures, can be used to establish that some
fields or methods cannot be accessed from outside a class/package.
Nevertheless, our mapping does not try to reason about such cases
to produce less restrictive variance constraints.

The reason for our conservatism is that we do not want to
reason about language specific constructs that are orthogonal to the
denotational meaning of variance and would make our soundness
proof be of the same complexity as in e.g., TameFJ [7]. We prefer
to use only positions of unquestionable variance at the expense of
slightly worse numbers (which still fully validate the potential of
our approach).

We used this mapping to implement a definition-site variance in-
ference algorithm. That is, we took regular Java code, written with
no concept of definition-site variance in mind, and inferred how
many generics are purely covariant/contravariant/bivariant. Infer-
ring pure variance for a generic has several practical implications:

• One can use our algorithm to replace the Java type system with
a more liberal one that infers definition-site variance and allows
subtyping based on the inferred variances. Such a type system
would accept all current legal Java programs, yet allow programs
that are currently not allowed to type-check, without violating
soundness. This would mean that wildcards can be omitted in
many cases, freeing the programmer from the burden of always
specifying tedious types in order to get generality. For instance,
if a generic C is found to be covariant, then any occurrence
of C<? extends T> is unnecessary. (We report such instances
as “unnecessary wildcards” in our measurements.) Furthermore,
any occurrence of C<T> or C<? super T> will be immediately
considered equivalent to C<? extends T> or C<?>, respectively,
by the type system, resulting in more general code. (We report
such instances as “over-specified methods” in our measurements.)

• One can use our algorithm as a programmer’s assistant in the
context of an IDE or as an off-line tool, to offer suggestions for
more general types that are, however, still sound. For instance,
for a covariant generic, C, every occurrence of type C<T> can be
replaced by C<? extends T> to gain more generality without any
potential for more errors. Just running our algorithm once over a
code body will reveal multiple points where a programmer missed
an opportunity to specify a more general type. The programmer
can then determine whether the specificity was intentional (e.g.,
in anticipation that the referenced generic will later be augmented
with more methods) or accidental.

In practice, our implementation (in Scala) of the optimized
constraint solving algorithm described in Section 4.4 takes less than
3 minutes (on a 3.2GHz Intel Core i3 machine w/ 4GB RAM) to
analyze the generics of the entire Java standard library. Almost all

Library # Type # Generic Type Definitions Recursive Unnecess. Over-specif.
defs defs invar. variant cov. contrav. biv. variances wildcards methods

java.*
classes 5550 99 69% 31% 20% 17% 4% 10% 12% 7%
interfaces 1710 44 43% 57% 41% 25% 0% 22% 12% 16%
total 7260 143 61% 39% 27% 20% 3% 14% 12% 8%

JScience
classes 70 25 76% 24% 0% 0% 24% 76% 90% 19%
interfaces 51 11 55% 45% 0% 9% 36% 7% 100% 11%
total 121 36 69% 31% 0% 3% 28% 53% 91% 19%
classes 226 187 66% 34% 14% 21% 2% 4% 63% 17%

Apache interfaces 23 22 55% 45% 32% 18% 0% 24% 20% 0%
Collec. total 249 209 65% 35% 16% 21% 1% 6% 62% 17%

Guava
classes 204 101 90% 10% 9% 1% 0% 8% 51% 18%
interfaces 35 26 46% 54% 38% 19% 4% 18% 38% 5%
total 239 127 81% 19% 15% 5% 1% 10% 50% 17%
classes 25 8 62% 38% 12% 25% 0% 33% 0% 62%

GNU interfaces 8 4 0% 100% 25% 100% 0% 0% 0% 0%
Trove total 33 12 42% 58% 17% 50% 0% 20% 0% 62%

JPaul
classes 77 65 75% 25% 12% 12% 5% 18% 86% 23%
interfaces 9 9 67% 33% 11% 33% 0% 9% 0% 0%
total 86 74 74% 26% 12% 15% 4% 17% 86% 23%

Total
classes 6152 485 73% 27% 13% 14% 3% 11% 42% 13%
interfaces 1836 116 47% 53% 32% 24% 4% 18% 19% 15%
total 7988 601 68% 32% 17% 16% 3% 13% 39% 13%

Figure 4. Class/Interface Inference Results

Library # Type Type Parameters
Parameters inv. variant total cov. contrav. biv.

java.*
classes 128 67% 33% 16% 14% 3%
interfaces 54 46% 54% 33% 20% 0%
total 182 61% 39% 21% 16% 2%

JScience
classes 29 79% 21% 0% 0% 21%
interfaces 14 64% 36% 0% 7% 29%
total 43 74% 26% 0% 2% 23%

Apache Collec.
classes 254 72% 28% 11% 16% 1%
interfaces 33 64% 36% 24% 12% 0%
total 287 71% 29% 13% 15% 1%

Guava
classes 150 93% 7% 7% 1% 0%
interfaces 39 54% 46% 26% 18% 3%
total 189 85% 15% 11% 4% 1%

GNU Trove
classes 9 67% 33% 11% 22% 0%
interfaces 6 0% 100% 17% 83% 0%
total 15 40% 60% 13% 47% 0%

JPaul
classes 93 76% 24% 10% 9% 5%
interfaces 11 64% 36% 9% 27% 0%
total 104 75% 25% 10% 11% 5%

Total
classes 663 77% 23% 10% 10% 3%
interfaces 157 53% 47% 24% 20% 3%
total 820 72% 28% 13% 12% 3%

Figure 5. Type Parameter Inference Results

of the time is spent on loading, parsing, and processing files, with
under 30sec constraint solving time.

Finally, we need to emphasize that our inference algorithm is
modular. Not only does it reason entirely at the interface level (does
not inspect method bodies), but also the variance of a generic de-
pends only on its own definition and the definition of types it (tran-
sitively) references, and not on types that reference it. This is the
same modularity guarantee as with standard separate compilation.
If we were to allow our algorithm to generate constraints after in-
specting method bodies, we would get improved numbers (since,

for instance, an invariant type may be passed as a parameter, but
only its covariance-safe methods may be used—e.g., a list argu-
ment may only be used for reading). Nevertheless, analyzing the
bodies of methods would have a cost in modularity: the analysis
would still not depend on clients of a method, but it would need to
examine subtypes, to analyze all the possible overriding methods.
This is yet another way in which our numbers are conservative and
only compute a lower bound of the possible impact of integrating
definition-site variance inference in Java.

5.2 Analysis of Impact
To measure the impact of our approach, we ran our inference al-
gorithm over 6 Java libraries, the largest of which is the core Java
library from Sun’s JDK 1.6, i.e., classes and interfaces in the pack-
ages of java.*. The other libraries are JScience [10], a Java library
for scientific computing; Guava [5], a superset of the Google collec-
tions library; GNU Trove [14]; Apache Commons-Collection [3];
and JPaul [21], a library supporting program analysis.

The results of our experiment appear in Figure 4. Together, these
libraries define 7,988 classes and interfaces, out of which 601 are
generics. The five “invar./variant/cov./contrav./biv/” columns show
the percentage of classes and interfaces that are inferred by our
algorithm to be invariant versus variant, for all three flavors of
variance. The statistics are collapsed per-class: An invariant class
is invariant in all of its type parameters, whereas a variant class is
variant in at least one of its type parameters. Hence, a class can be
counted as, e.g., both covariant and contravariant, if it is covariant
in one type parameter and contravariant in another. The “variant”
column, however, counts the class only once. Statistics per type
parameter are in included in Figure 5.

As can be seen, 32% of classes or interfaces are variant in at
least one type parameter. (Our “Total” row treats all libraries as
if they were one, i.e., sums individual numbers before averaging.
This means that the “Total” is influenced more by larger libraries,
especially for metrics that apply to all uses of generics, which
may also occur in non-generic code.) This means that about 1/3
of the generics defined should be allowed to enjoy general variant
subtyping without users having to annotate them with wildcards.

The next column shows how many generics have a recursive
variance constraint. One can see that these numbers are usually low,
especially considering that they include direct self-recursion (e.g.,
a trivial constraint var(X, C) v + ⊗ var(X, C)).

The last two columns illustrate the burden of default invariant
subtyping in Java, and the benefits of our approach. “Unnecessary
Wildcards” shows the percentage of wildcards in method signa-
tures that are unnecessary in our system, based on the inferred
definition-site variance their generics. For instance, given that our
technique infers interface java.util.Iterator<E> to be covariant,
all instantiations of Iterator<? extends T>, for any T, are unnec-
essary. This number shows that, using our technique, 37% of the
current wildcard annotations can be eliminated without sacrificing
either type safety or the generality of types!

The “Over-specified Method” column lists the percentage of
method arguments that are overly specific in the Java type sys-
tem, based on the inferred definition-site variance of their gener-
ics. For instance, given that the inferred definition-site variance of
Iterator<E> is covariant, specifying a method argument with type
Iterator<T>, instead of Iterator<? extends T>, is overly spe-
cific, since the Java type system would preclude safe invocations
of this method with arguments of type Iterator-of-some-subtype-
of-T. Note again that this percentage is purely based on the inferred
definition-site variance of the arguments’ types, not on analysis of
the arguments’ uses in the bodies of methods. We find that 13% of
methods are over-specified. This means that 13% of the methods
could be used in a much more liberal, yet still type-safe fashion.
It is also interesting that this number is derived from libraries and
not from client code. We expect that the number of over-specified
methods would be much higher in client code, since programmers
would be less familiar with wildcards and less confident about the
operations supported by variant versions of a type.

Backward Compatibility and Discussion. As discussed earlier,
our variance inference algorithm can be used to replace the Java
type system with a more liberal one, or can be used to offer sugges-
tions to programmers in the context of an IDE. Replacing the Java

type system with a type system that infers definition-site variance is
tempting, but would require a pragmatic language design decision,
since there is a cost in backward compatibility: in some cases the
programmer may have relied on types being rejected by Java, even
though these types can never cause a dynamic type error.

We found one such instance in our experiments. In the reference
implementation for JSR 275 (Measures and Units) [11], included
with the JScience library [10], a group of 11 classes and interfaces
are collectively bivariant in a type parameter, Q extends Quantity.
In the definition of Unit<Q extends Quantity>, for example, the
type parameter Q appears nowhere other than as the type argument
to Unit<Q>. Closer inspection of the code shows that Quantity
is extended by 43 different subinterfaces, such as Acceleration,
Mass, Torque, Volume, etc. It appears that the authors of the library
are actually relying on the invariant subtyping of Java generics, to
ensure, e.g., that Unit<Acceleration> is never used as Unit<Mass>.

Of course, full variance inference is only one option in the
design space. Any combination of inference and explicitly stated
variance annotations, or just adding explicit definition-site variance
to Java, are strictly easier applications from a typing standpoint.
The ultimate choice is left with the language designer, yet the
potential revealed by our experiments is significant.

6. Conclusions
In this work we showed that the need for the flexibility of use-site
variance is somewhat overrated, and the rigidity of definition-site
variance is unwarranted. We introduce the first unified framework
for reasoning about variance, allowing type system designs that
combine the benefits of both definition- and use-site variance. Thus,
our approach resolves questions that are central in the design of any
language involving parametric polymorphism and subtyping. Our
work is the first to fully study how definition-site variance interacts
with use-site variance annotations and type recursion. Our calcu-
lus allows to reason about complex constraints independently of
specific type systems on variances involved in recursive class def-
initions. As a specific application, we introduce a type system for
Java that modularly infers definition-site variance, while allowing
use-site variance annotations where necessary. We show that com-
bining definition-site and use-site variance allows us to infer more
general types than either approach alone. Our Java implementation
demonstrates the benefits and practicality of our approach, and our
algorithm can also be used in other contexts, such as to aid a pro-
grammer via an IDE plugin to choose types that generalize method
signatures as much as possible.

Acknowledgments
We would like to thank Jens Palsberg (especially for valuable in-
sights on the constraint solving algorithm) as well as Christoph
Reichenbach and several anonymous reviewers for their sugges-
tions that helped improve the paper. This work was funded by
the National Science Foundation under grants CCF-0917774, CCF-
0934631, and IIP-0838747 to the University of Massachusetts.

References
[1] J. Altidor, S. S. Huang, and Y. Smaragdakis. Taming the

wildcards: Combining definition- and use-site variance (ex-
tended version). http://www.cs.umass.edu/˜yannis/
variance-extended2011.pdf.

[2] P. America and F. van der Linden. A parallel object-oriented language
with inheritance and subtyping. In OOPSLA/ECOOP ’90: Proc. of the
European Conf. on object-oriented programming on Object-oriented
programming systems, languages, and applications, 1990.

[3] Apache Software Foundation. Apache commons-collections library.
http://larvalabs.com/collections/. Version 4.01.

http://www.cs.umass.edu/~yannis/variance-extended2011.pdf
http://www.cs.umass.edu/~yannis/variance-extended2011.pdf
http://larvalabs.com/collections/

[4] J. Bloch. The closures controversy. http://www.javac.info/
bloch-closures-controversy.ppt. Accessed Nov. 2010.

[5] K. Boumillion and J. Levy. Guava: Google core libraries for Java
1.5+. http://code.google.com/p/guava-libraries/. Ac-
cessed Nov. 2010.

[6] G. Bracha and D. Griswold. Strongtalk: typechecking smalltalk in
a production environment. In OOPSLA ’93: Proc. of the Conf. on
Object-oriented programming systems, languages, and applications,
1993.

[7] N. Cameron, S. Drossopoulou, and E. Ernst. A model for Java with
wildcards. In ECOOP ’08: Proc. of the 22nd European Conf. on
Object-Oriented Programming, 2008.

[8] R. Cartwright and J. Guy L. Steele. Compatible genericity with run-
time types for the Java programming language. In OOPSLA ’98: Proc.
of the 13th ACM SIGPLAN Conf. on Object-oriented programming,
systems, languages, and applications, 1998.

[9] W. Cook. A proposal for making eiffel type-safe. In ECOOP ’89:
Proc. of the 3rd European Conf. on Object-Oriented Programming,
1989.

[10] J.-M. Dautelle et al. Jscience. http://jscience.org/. Accessed
Nov. 2010.

[11] J.-M. Dautelle and W. Keil. Jsr-275: Measures and units. http:
//www.jcp.org/en/jsr/detail?id=275. Accessed Nov. 2010.

[12] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs. where
clauses: constraining parametric polymorphism. In OOPSLA ’95:
Proc. of the tenth annual Conf. on Object-oriented programming sys-
tems, languages, and applications, 1995.

[13] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and generalized
constraints for C# generics. In ECOOP ’06: Proc. of the European
Conf. on Object-Oriented Programming, 2006.

[14] E. Friedman and R. Eden. Gnu Trove: High-performance collections
library for Java. http://trove4j.sourceforge.net/. Version
2.1.0.

[15] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2003.

[16] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhancing Java with
safe type conditions. In Proc. of the 6th Intl. Conf. on Aspect-Oriented
Software Development, 2007.

[17] A. Igarashi and M. Viroli. Variant parametric types: A flexible
subtyping scheme for generics. ACM Trans. Program. Lang. Syst.,
28(5):795–847, 2006.

[18] A. Kennedy and D. Syme. Transposing f to c#: expressivity of para-
metric polymorphism in an object-oriented language: Research arti-
cles. Concurr. Comput. : Pract. Exper., 16:707–733, 2004.

[19] A. Kiezun, M. Ernst, F. Tip, and R. Fuhrer. Refactoring for param-
eterizing Java classes. In ICSE ’07: Proc. of the 29th Intl. Conf. on
Software Engineering, 2007.

[20] M. Odersky. The Scala Language Specification v 2.8. 2010.
[21] A. Salcianu. Java program analysis utilities library. http://jpaul.

sourceforge.net/. Version 2.5.1.
[22] K. K. Thorup and M. Torgersen. Unifying genericity: Combining the

benefits of virtual types and parameterized classes. In ECOOP ’99:
Proc. of the European Conf. on Object-Oriented Programming, 1999.

[23] M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahe, G. Bracha, and
N. Gafter. Adding wildcards to the Java programming language. In
SAC ’04: Proc. of the 2004 Symposium on Applied Computing, 2004.

http://www.javac.info/bloch-closures-controversy.ppt
http://www.javac.info/bloch-closures-controversy.ppt
http://code.google.com/p/guava-libraries/
http://jscience.org/
http://www.jcp.org/en/jsr/detail?id=275
http://www.jcp.org/en/jsr/detail?id=275
http://trove4j.sourceforge.net/
http://jpaul.sourceforge.net/
http://jpaul.sourceforge.net/

