
141

Precision-Guided Context Sensitivity for Pointer Analysis

YUE LI, Aarhus University, Denmark

TIAN TAN, Aarhus University, Denmark

ANDERS MéLLER, Aarhus University, Denmark

YANNIS SMARAGDAKIS, University of Athens, Greece

Context sensitivity is an essential technique for ensuring high precision in Java pointer analyses. It has been

observed that applying context sensitivity partially, only on a select subset of the methods, can improve the

balance between analysis precision and speed. However, existing techniques are based on heuristics that

do not provide much insight into what characterizes this method subset. In this work, we present a more

principled approach for identifying precision-critical methods, based on general patterns of value flows that

explain where most of the imprecision arises in context-insensitive pointer analysis. Accordingly, we provide

an efficient algorithm to recognize these flow patterns in a given program and exploit them to yield good

tradeoffs between analysis precision and speed.

Our experimental results on standard benchmark and real-world programs show that a pointer analysis that

applies context sensitivity partially, only on the identified precision-critical methods, preserves effectively all

(98.8%) of the precision of a highly-precise conventional context-sensitive pointer analysis (2-object-sensitive

with a context-sensitive heap), with a substantial speedup (on average 3.4X, and up to 9.2X).

CCS Concepts: • Theory of computation→ Program analysis;

Additional Key Words and Phrases: static analysis, points-to analysis, Java

ACM Reference Format:

Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis. 2018. Precision-Guided Context Sensitivity for

Pointer Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141 (November 2018), 29 pages. https://doi.

org/10.1145/3276511

1 INTRODUCTION

Pointer analysis is a fundamental family of static analyses that estimate the possible values of
pointer variables in a program. Such information is essential for reasoning about aliasing and
inter-procedural control flow in object-oriented programs, and it is used in a wide range of software
engineering tools, e.g., for bug detection [Chandra et al. 2009; Naik et al. 2006, 2009], security
analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshits and Lam 2005], program verifica-
tion [Fink et al. 2008; Pradel et al. 2012], and program debugging and understanding [Li et al. 2016;
Sridharan et al. 2007].

For decades, numerous analysis techniques have been developed to make pointer analysis more
precise and more efficient, especially for object-oriented languages [Hind 2001; Smaragdakis and
Balatsouras 2015; Sridharan et al. 2013]. One of the most successful ideas for producing high
precision is context sensitivity [Milanova et al. 2002, 2005; Sharir and Pnueli 1981; Shivers 1991;
Smaragdakis et al. 2011], which allows each programmethod to be analyzed under different contexts,
to separate the static abstractions of different dynamic instantiations of the method’s variables and

Authors’ email addresses: yueli@cs.au.dk, tiantan@cs.au.dk, amoeller@cs.au.dk, smaragd@di.uoa.gr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART141

https://doi.org/10.1145/3276511

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3276511

141:2 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

thereby reduce spurious object flows. However, despite great precision benefits, context sensitivity
comes with heavy efficiency costs [Kastrinis and Smaragdakis 2013; Lhoták and Hendren 2006;
Oh et al. 2014; Tan et al. 2016, 2017; Xu and Rountev 2008]. One reason is that, with conventional
context-sensitivity techniques, every method in a program is treated the same, meaning that many
methods that do not benefit from context sensitivity are analyzed for multiple contexts redundantly.
As a consequence, too much space and time is consumed [Smaragdakis et al. 2014].

This naturally raises the question of whether it is possible to apply context sensitivity selectively,
only for the methods where it is beneficial to the overall analysis precision. It is far from trivial to
determinewhen a context-sensitive analysis will yield precision benefits (or conversely, to determine
when omitting context sensitivity for a method would introduce imprecision). This challenge of
effectively identifying the precision-critical methods has been the focus of past work [Hassanshahi
et al. 2017; Jeong et al. 2017; Smaragdakis et al. 2014; Wei and Ryder 2015]. Those techniques are
based on heuristics that seem to correlate with imprecision, but they do not provide a comprehensive
understanding of how and where the imprecision is introduced in a context-insensitive pointer
analysis. For example, introspective analysis [Smaragdakis et al. 2014] requires tuning multiple
parameters involving sizes of various kinds of points-to sets, and data-driven analysis [Jeong et al.
2017] is parameterized by a collection of syntactic features and relies on machine learning for
selecting good heuristics.
In this paper, we provide a more principled approach, named Zipper, to efficiently identify

precision-critical methods, based on insights about how imprecision is introduced. The key observa-
tion is that most cases in which imprecision arises in a context-insensitive pointer analysis fit into
three general patterns of value flows, which we call direct, wrapped, and unwrapped flows. Moreover,
we show that these three kinds of value flows can be recognized efficiently. Based on information
obtained from a fast, context-insentive pointer analysis, Zipper constructs a precision flow graph
(PFG) that concisely models the relevant value flow. The identification of precision-critical methods
can then be formulated as a graph reachability problem on the PFG and solved in negligible time,
compared to the pointer analysis itself. By applying context sensitivity to the precision-critical
methods identified by Zipper, a pointer analysis runs significantly faster than conventional tech-
niques that apply context sensitivity indiscriminately to all methods, while retaining most of the
precision.
In summary, we make the following contributions.

• We describe three fundamental patterns of value flows that help in explaining how and where
most of the imprecision is introduced in a context-insensitive pointer analysis (Section 2).
• We present the Zipper approach to effectively recognize the three value-flow patterns and
thereby identify the precision-critical methods that benefit from context sensitivity (Section 3).
Zipper can guide context-sensitive pointer analysis to run faster while keeping most of its
precision. In contrast to other techniques that apply context sensitivity selectively, the Zipper
approach is based on a tangible understanding of imprecision and not on heuristics that
require non-transparent machine learning or other tuning of analysis parameters.
• We provide an extensive experimental evaluation of our implementation of Zipper to evaluate
its effectiveness (Section 4). On average, Zipper reports that only 38% of the methods are
precision-critical, which preserves 98.8% of the precision (measured as average across a range
of popular analysis clients) for a 2-object-sensitive pointer analysis with a context-sensitive
heap, for a speedup of 3.4X and up to 9.2X. These results demonstrate that the three patterns of
value flows indeed capture the vast majority of methods that benefit from context sensitivity.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:3

2 CAUSES OF IMPRECISION IN CONTEXT-INSENSITIVE POINTER ANALYSIS

Our approach is based on the key insight that most of the precision loss in context-insensitive
pointer analysis for Java can be expressed in terms of three basic patterns of value flows, or as
combinations of these. We assume the reader is familiar with state-of-the-art context-sensitive
pointer analysis techniques, e.g., as covered in several surveys [Ryder 2003; Smaragdakis and
Balatsouras 2015; Sridharan et al. 2013], however, the precision loss patterns are independent of the
chosen variant of context sensitivity, such as call-site sensitivity [Sharir and Pnueli 1981; Shivers
1991], object sensitivity [Milanova et al. 2005], and type sensitivity [Smaragdakis et al. 2011]. In
this section, we introduce the three precision loss patterns and then describe three corresponding
concrete examples (Sections 2.1ś2.3). This characterization of precision loss provides the conceptual
foundation for Zipper to identify precision-critical methods as explained in Section 3.

A context-insensitive analysis does not distinguish between different calls to a method but merges

1

2

3

4

5

6

7

Object m(Object o){

 return o;

}

x1 = new A();

x2 = m(x1);

y1 = new B();

y2 = m(y1);

Fig. 1. Example of precision loss

in context-insensitive analysis.

the incoming abstract values (or points-to sets, in the case of pointer
analysis) [Sharir and Pnueli 1981]. Figure 1 shows a simple example.
If method m is analyzed context-insensitively, then the two objects
are mixed together, so the analysis conservatively concludes that
both x2 and y2 may point to both the A object and the B object.
In contrast, a context-sensitive analysis would analyze m twice,

corresponding to the two different call sites, and thereby conclude
that x2 can only point to an A object and y2 can only point to a B
object. The price of that extra precision is that the method needs to
be analyzed multiple times, so context sensitivity should ideally only be applied when the precision
gain outweighs the extra analysis time.
To characterize the relevant value flows, we first introduce some terminology.

Definition 2.1 (In and Out methods). Given a class C and a method M that is declared in C or
inherited from C’s super-classes, ifM contains one or more parameters thenM is an In method of
C , and ifM ’s return type is non-void thenM is an Out method of C . (In the example in Figure 1, m
is both an In and an Out method of the surrounding class.)

Definition 2.2 (Object wrapping and unwrapping). If an objectO is stored in a field of an objectW
(or in an array entry ofW , in caseW is an array), thenO is wrapped intoW . Conversely, if an object
O is loaded from a field of an objectW (or from an array entry ofW in caseW is an array), then O
is unwrapped fromW . (The simple example in Figure 1 contains no wrapping or unwrapping.)

With these definitions in place, we can describe the three precision-loss patterns as different
kinds of value flows, depicted in Figure 2.

Definition 2.3 (Direct flow). If, in some execution of the program, an object O is passed as
a parameter to an In method M1 of class C , and then flows (via a series of assignments, field

Direct
Flow

Wrapped
Flow

Unwrapped
Flow

IN Method

OUT Method

Value flow via assignments,
field load/store operations,
or method calls/returns

Objects

Fig. 2. Three basic patterns of value flow that cause precision loss in context-insensitive analysis.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:4 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

Direct Flow

name1

1 2 1 2

1class Person {

 String name; String id;

 void setName(String nm) {

 this.name = nm;

 updateID();

 }

 void updateID() {

 String newName = this.name;

 this.id = newName;

 }

 String getID() {

 String id = this.id;

 return id;

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

}

// Usage Code

void main() {

 Person p1 = new Person();

 String name1 = new String("A");

 p1.setName(name1);

 String id1 = p1.getID();

 Person p2 = new Person();

 String name2 = new String("B");

 p2.setName(name2);

 String id2 = p2.getID();

}

15

16

17

18

19

20

21

22

23

24

25

26

27

name2

nm

this.name

newName

this.id

id

id2id1

2

(24)

(3)

(4)

(8)

(9)

(12)

(26)(21)

(19)

Fig. 3. Example of direct flow. (The line number for each variable/field reference on the right-hand side is

shown in parentheses.)

load/store operations, method calls, or returns) to the return value of an Out method,M2, of the
same classC , then we say the program has direct flow fromM1 toM2. (The example in Figure 1 is a
simple instance of this pattern.)

Definition 2.4 (Wrapped flow). If, in some execution of the program, an object O is passed as a
parameter to an In method M1 of class C and then flows to a store operation that wraps O into
an objectW , whereW subsequently flows to the result of an Out method,M2, of the same class
C , then we say the program has wrapped flow fromM1 toM2. More generally, the wrapped flow
pattern also covers value flow through multiple object wrapping steps, for example whenW is
itself wrapped into another objectW ′, which flows to the return value ofM2.

Definition 2.5 (Unwrapped flow). If, in some execution of the program, an object O is passed as a
parameter to an In methodM1 of classC and then flows to a load operation that unwraps an object
U from O , where U subsequently flows to the return value of an Out method, M2, of the same
class C , then we say the program has unwrapped flow fromM1 toM2. As in the previous definition,
unwrapped flow also covers value flow through multiple object unwrapping steps.

2.1 Pattern 1: Direct Flow

The setter and getter example shown in Figure 3 demonstrates how direct flow is an indication of
precision loss for a context-insensitive analysis. The Person class provides methods setName and
getID to modify a person’s name and retrieve his or her ID. Whenever a person’s name is modified,
the ID is updated accordingly (line 5).

After executing this code, id1 in line 21 (resp. id2 in line 26) points to object 1 in line 19 (resp. 2

in line 24) only. However, if the three methods of Person are analyzed using a context-insensitive
pointer analysis, then id1 and id2 will both imprecisely point to objects 1 and 2 . Let us examine
how this imprecision is connected to the direct flow pattern.

The right-hand side of Figure 3 illustrates how two objects 1 and 2 , respectively pointed to by
name1 and name2, first flow from their creation sites in lines 19 and 24 to the parameter nm of the
In method setName in line 3, and then to id in line 12 through a series of store and load operations
(line 4→ line 8→ line 9→ line 12), and finally out of the Out method getID to id1 and id2 in
lines 21 and 26. Hence, by Definition 2.3, the red arrows in Figure 3 form a direct flow.

Notice that with a context-insensitive analysis, objects 1 and 2 are merged in the same points-to
set and further propagated according to this direct flow. In the analysis, the merged objects will

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:5

s1 s2

o2o1

itr

this.elem

el

Wrapped Flow

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

 Object next() {

 return this.next;

 }

}

//Usage Code

void main() {

 Collection c1 = new Collection();

 String s1 = new String("A");

 c1.add(s1);

 Iterator i1 = c1.iterator();

 Object o1 = i1.next();

 Collection c2 = new Collection();

 String s2 = new String("B");

 c2.add(s2);

 Iterator i2 = c2.iterator();

 Object o2 = i2.next();

}

class Collection {

 Object elem;

 void add(Object el) {

 this.elem = el;

 }

 Iterator iterator(){

 Object e = this.elem;

 Iterator itr =

 new Iterator(e);

 return itr;

 }

}

class Iterator {

 Object next;

 Iterator(Object obj) {

 this.next = obj;

 }

e

obj

this.next 1 2

i1 i2

1 21 2

1 2 1 2

21

(25) (31)

(3)

(4)

(7)

(14)

(15)

(33)

(34)

(8)

(27)

(28)

Fig. 4. Example of wrapped flow.

flow out of the Out method, causing id1 and id2 to point to spurious objects. Such imprecision
will only get worse when some operations are further applied on id1 and id2 (not shown in this
example), possibly polluting other parts of the program.

One way to avoid the imprecision is to apply context sensitivity to the methods that participate
in the direct flow. We consider these to be precision-critical methods, since analyzing just one of
them context-insensitively will likely introduce imprecision. With a context-sensitive analysis (for
most variants of context sensitivity), in Figure 3, all variables and field references along the direct
flow will be analyzed separately. For example, object sensitivity will use the two allocation sites at
lines 18 and 23 as contexts. Accordingly, the merged paths along this direct flow are separated by
the two contexts, like unzipping a zipperÐhence the name of our technique. A similar strategy of
separating merged paths also applies to wrapped and unwrapped flows, as shown next.

2.2 Pattern 2: Wrapped Flow

The collection and iterator example shown in Figure 4 demonstrates how the wrapped flow pattern
yields precision loss for a context-insensitive analysis. To keep the example simple, the collection
only stores one element, however the code pattern is directly analogous to realistic code, for
arbitrarily-sized collections. Class Collection provides an add method to add an element to the
collection and an iterator method to return an iterator that has a pointer, next, pointing to the
collection element (as set in line 15). The element is passed as an argument to the newly created
iterator (line 8), which establishes a connection between the collection and its iterator. Two objects
1 (line 25) and 2 (line 31) are stored in two different collections, c1 (line 26) and c2 (line 32). The
two objects are then accessed by the iterators of the collections (lines 28 and 34).

After executing the code, o1 in line 28 (resp. o2 in line 34) points to object 1 (resp. 2) only. How-
ever, if any of the four methods of Collection and Iterator are analyzed context-insensitively, o1
and o2 will both imprecisely point to both objects 1 and 2 . Let us examine how this imprecision
is connected to the wrapped flow pattern.
As shown on the right-hand side of Figure 4, similarly to the direct flow example in Figure 3,

objects 1 and 2 flow into the In method add of class Collection, and then further to lines 7,
8, and 14. Unlike a direct flow, the objects 1 and 2 do not directly flow out of the Out method

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:6 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

iterator of class Collection; instead, a wrapper Iterator object, , (created on line 8) in which
object 1 or 2 is stored, flows out of this Out method.
Object wrapping (Definition 2.2) occurs in line 15: objects 1 and 2 (pointed to by obj) are

stored into the next field of the object pointed to by this, and this points to the receiver object
of the constructor call in line 8, which is also pointed to by itr in line 8. As a wrapper object (that
stores object 1 or 2) flows out of an Out method of the same class, by Definition 2.4, the solid
blue arrows in Figure 4 form a wrapped flow.
With a context-insensitive analysis, objects 1 and 2 are merged in the same points-to set and

further propagated according to this wrapped flow. However, unlike a direct flow, imprecision is
not introduced until the access operation (e.g., the next calls in lines 28 and 34) is applied on the
flowing-out wrapper object, causing variables o1 and o2 to point to spurious objects. The wrapper
objects carry the flowing-in objects, which originate from outside the class, so context sensitivity
can separate the merged objects all along their flow through the Collection class.

The example also helps illustrate some subtleties of the flow definitions. Note that the precision
loss patterns are expressed relative to a class: for each of the three patterns, the In method and
the Out method must be in the same class, although the value flow may involve other classes, as
described in Definitions 2.3Ð2.5. Intuitively, if the precision loss flows introduced in each class
(through method calls on the objects of the class) could be identified and then avoided by use
of context sensitivity, the imprecision of the whole program could be accordingly controlled via
such a divide-and-conquer scheme. In addition, this design choice enables an efficient and elegant
algorithm for identifying occurrences of the patterns in a given program, by considering each class
one by one, as explained in Section 3.
Therefore, the dashed arrows (bottom right of Figure 4) formed by calling the next method in

lines 28 and 34, do not belong to the wrapped flow, because the calls happen after the wrapper
objects flow out from the Out method of class Collection. Thus, as explained in Section 2.1,
only methods add and iterator (in Collection) and the constructor Iterator (in Iterator) are
included in the wrapped flow and thus considered precision-critical. However, if we consider In and
Out methods from the point of view of class Iterator, then method next is also precision-critical,
since it is involved in a direct flow together with the Iterator constructor, much like the setter
and getter methods in Section 2.1.

2.3 Pattern 3: Unwrapped Flow

We use a synchronized box example (based on classes SynchronizedSet and Set in the JDK but
heavily simplified) to illustrate an unwrapped flow, as shown in Figure 5. Class SyncBox encapsulates
class Box by providing synchronization in the encapsulating method getItem (lines 6ś12). Two
objects 1 and 2 are stored into two Box objects (represented by and pointed to by b1 and b2 in
lines 27 and 32), which are further stored into two SyncBox objects (lines 28 and 33).
After executing the code, o1 in line 29 (resp. o2 in line 34) points to object 1 (resp. 2) only.

However, if any of the four methods of classes SyncBox and Box are analyzed context-insensitively,
o1 and o2will both imprecisely point to both objects 1 and 2 . Let us examine how this imprecision
is connected to the unwrapped flow pattern.

As shown on the right-hand side of Figure 5, similar to the direct flow in Figure 3, two Box objects
1 and 2 (pointed to by b1 and b2, respectively) flow into the body of class SyncBox through its
constructor, which acts as an In method, and then further to b in line 8. Unlike in a direct flow,
the flowing-in objects 1 and 2 do not flow out of the Out method getItem of class SyncBox;
instead, the two unwrapped objects 1 and 2 (respectively stored in 1 and 2) are the ones that
flow out of this Out method.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:7

(34)o2o1

b1

s1 s2

b

this.box

box

Unwrapped Flow

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

this.item

class SyncBox {

 Object box;

 SyncBox(Box box) {

 this.box = box;

 }

 Object getItem() {

 synchronized(this) {

 Box b = this.box;

 Object o = b.getItem();

 return o;

 }

 }

}

class Box {

 Object item;

 Box(Object item) {

 this.item = item;

 }

//Usage Code

void main() {

 String s1 = new String("A");

 Box b1 = new Box(s1);

 SyncBox sb1 = new SyncBox(b1);

 Object o1 = sb1.getItem();

 String s2 = new String("B");

 Box b2 = new Box(s2);

 SyncBox sb2 = new SyncBox(b2);

 Object o2 = sb2.getItem();

}

 Object getItem() {

 Object it = this.item;

 return it;

 }

}

b2

it

o

(31)(26)

(32)(27)

(3)

(4)

(8)

(20)

(20)

(9)

(29)

21

1 2

21

21 21

Fig. 5. Example of unwrapped flow.

Object unwrapping (Definition 2.2) occurs in line 20, as a result of the call in line 9: the Box
objects (1 and 2 pointed to by b) are the receiver objects of this virtual call, and this in line 20
will also point to them during pointer analysis. The load operation in line 20 lets the unwrapped
objects (1 and 2) flow to it (line 20), and finally to o1 and o2 (lines 29 and 34) through consecutive
method return values (line 21→ line 9 and then line 10→ lines 29 and 34). As the unwrapped
objects (retrieved from the flowing-in objects) flow out of an Out method of the same class, by
Definition 2.5, the green arrows (in Figure 5) form an unwrapped flow.

We can observe that objects 1 and 2 (and hence the unwrapped objects 1 and 2 they contain)
are merged in the same points-to set and further propagated according to this unwrapped flow.
Although the flowing-in objects do not flow out of an Out method of the same class to introduce
imprecision, the unwrapped objects do, causing the receiving variables, in this case o1 and o2 (lines
29 and 34), to point to spurious objects.

Note that the program points where the unwrapped objects are stored in the flowing-in objects
(lines 26ś27 and 31ś32) do not belong in the unwrapped flow, as the objects have not yet entered
the In method of class SyncBox. Thus, only constructor SyncBox, method getItem (in SyncBox),
and method getItem (in Box) belong in the unwrapped flow and are considered precision-critical.
However, as in the explanation of the wrapped flow example in Section 2.2, if we consider In
and Out methods from the point of view of class Box, its constructor, Box, will still be analyzed
context-sensitively as it is part of a direct flow (together with the getItem method in Box).

Finally, some imprecision cannot be described by one pattern alone but only by combinations.
Consider the example of an objectW that flows into an Inmethod, where an objectO is unwrapped
fromW . ThenO is wrapped into another wrapper object,W ′, which flows out from an Outmethod
of the same class. Imprecision may arise in this case, and although none of the three basic flow
patterns in isolation match this flow, it is captured by a combination of unwrapped and wrapped
flows. Zipper identifies not only occurrences of the three patterns but also such combinations. Our
experiments (Section 4) show that the patterns and their combinations account for essentially all
the imprecision that may appear in context-insensitive analysis.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:8 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

Object Flow Graph
 (OFG)

Construction

Precision Flow Graph
(PFG)

Construction

Graph
Reachability

on PFG

OFG PFG

ZIPPER

Context-Insensitive
Pointer Analysis

Context-Sensitive
Pointer Analysis

which methods

need contexts

Fig. 6. Overview of Zipper.

3 ZIPPER

This section introduces Zipper: our approach to identifying precision-critical methods based on the
precision loss patterns of Section 2. Even if the patterns successfully characterize the main causes
of precision loss in context-insensitive analysis, two challenges remain. First, the precision loss
patterns are defined in dynamic execution terms, while Zipper has to capture the potential for these
patterns using static information. Second, useful static information has to be computable from a
mere context-insensitive analysis, in order to guide a context-sensitive one. That is, the potential
for precision loss has to be detected from an analysis that already exhibits this loss. The Zipper
approach is defined with these goals in mind, and manages to make context-sensitive pointer
analysis run faster while preserving most of its precision.
We present the overview of Zipper in Section 3.1 and the concepts of object flow graphs and

precision flow graphs in Sections 3.2 and 3.3, respectively.

3.1 Overview of Zipper

The goal of Zipper is to efficiently recognize the precision-critical methods in a given program. The
central part of Zipper is the notion of precision flow graphs (PFGs) that allow us to express all three
precision loss patterns in a uniform way, in the sense that each kind of flow can be represented
by a path in a PFG. Intuitively, a PFG is much like the right-hand side graphs of Figures 3ś5, but
replacing the field expressions by the abstract objects and their fields. Via the PFGs, we can convert
the problem of identifying precision-critical methods to an abstract graph computation. All methods
that are involved in one of the three kinds of flows can be efficiently extracted by solving a simple
graph reachability problem on the PFGs.

Constructing the PFGs requires information about how objects flow in the program. We leverage
the concept of object flow graphs (OFGs) [Tonella and Potrich 2005] as explained in Section 3.2.
The OFG for a program allows tracing the flow of objects through local assignments, calls and
returns, and field load and store operations in the program. Therefore, it can naturally express the
direct flow pattern, in a static analysis that approximates the dynamic flows of objects. However,
the original OFG formulation does not represent wrapped and unwrapped flows, thus we cannot
directly use it to identify precision-critical methods. For this reason, we build the PFGs on top of
the OFG to uniformly express all three precision loss patterns.
Figure 6 shows the overall structure of Zipper, which itself contains three components: the

object flow graph construction, the precision flow graph construction, and the graph reachability
computation. First, a fast but imprecise context-insensitive pointer analysis is performed as a
pre-analysis for Zipper. To simplify the discussion, we assume that the pre-analysis abstracts
objects by their allocation-sites [Chase et al. 1990], but our technique also works for other object
abstractions [Kanvar and Khedker 2016]. This pre-analysis provides the information for the OFG
construction, in the form of a relation pt (v) that captures the points-to set for each variable v. Based
on the OFG, a PFG is constructed for each class. Afterwards, Zipper computes graph reachability on
each PFG to determine which methods are precision-critical. Finally, a selective context-sensitive

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:9

Local assignment

Assignments in
method calls/returns

Field load

Field store

b = a;

b = c.m(a);

m(p){ return r;}…

b = a.f;

a.f = b;

p

a b

r

a

b

b

b

v Variable node Object field nodeo f.
Program Object Flow Graph

a = b;

c.f = a;

d = c;

c.f = d;

e = d.f;

a
1

2

3

4

5

b

d

e

c

1

2

3

4

5

c mthis

where o pt (a)∈

o f.

o f.

o f.

where o pt (a)∈

assuming o pt (c) and o pt (d)∈ ∈

Fig. 7. Object flow graph construction, with an example.

pointer analysis is performed, guided by Zipper’s results, so that the pointer analysis applies context
sensitivity to only the precision-critical methods reported by Zipper.

3.2 Object Flow Graphs

The object flow graph (OFG) of a program, as in its original form by Tonella and Potrich [2005], is a
directed graph that expresses how objects flow in the program. The nodes in the OFG represent
program pointers, which can point to objects, and the edges represent basic object flow among
the pointers. More precisely, the OFG contains a node for each variable in the program and for
each field of each abstract object. Objects are abstracted in the same way as in the pre-analysis,
as described in Section 3.1: we here assume allocation-site abstraction is being used, which is the
most common choice, but the technique also works for other choices. An edge a→b in the OFG
means that the objects pointed by pointer a may flow to (and also be pointed to by) pointer b.
Another way to view the OFG is that it is the subset constraint graph in an Andersen-style points-to
analysis [Andersen 1994; Sridharan et al. 2013].

Tonella and Potrich [2005] propose to build the OFGwith more precision by cloning the variables
of a method for each of its receiver objects (conceptually like object sensitivity [Milanova et al.
2002, 2005]), so that the flow involved in different receiver objects of the same method can be
distinguished. However, this is unnecessary for Zipper, since it builds the OFG based on the results
of a context-insensitive analysis, and all flow queries are done at the class level instead of the object
level, as explained in Section 2. Therefore, we perform no such cloning.

Due to the close connection between OFGs and Andersen-style analysis, constructing the OFG
is trivial, based on the points-to relation pt (v) provided by the context-insensitive pre-analysis.
Figure 7 illustrates this construction. The left-hand side of Figure 7 lists (from left to right) the four
basic object flows, the related Java statements that induce the flows, and the corresponding graph
edges in the OFG.

Consider the code fragment and its corresponding OFG on the right-hand side of Figure 7. There
are five statements labeled 1 ś 5 , and each statement causes an edge (with the same label) to be
added to the OFG. With the OFG, the object flow information can be directly obtained simply by
checking graph reachability without the need to explicitly track alias information among variables
or field accesses. For example, variable e is reachable from b in the OFG, which means that the
objects pointed to by b may flow to (and also be pointed to by) e.

As a result, direct flows can be expressed naturally by the paths in the OFG, however, that is not
the case for wrapped and unwrapped flows. In the next section, we describe how to augment the
OFG to express all three kinds of flows.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:10 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

Algorithm 1: PfgBuilder

Input :

OFG (Object Flow Graph)

c (Input class)

S (Set of statements in the program)

Output : PFGc (Precision Flow Graph for class c)

1 PFGc ← { }, VisitedNodes← { },WUEdges← { }

2 foreach m ∈ Inc do

3 foreach parameter p of m do

4 Dfs(Np) where Np is the OFG node for p

5 return PFGc

6 Function Dfs(N)

7 if N ∈ VisitedNodes then

8 return

9 add N to VisitedNodes

10 if N is a variable node Na then

11 foreach b = a.f ∈ S do // Handling unwrapped flow

12 add N a→ N b to WUEdges

13 foreach b.f = a ∈ S do // Handling wrapped flow

14 foreach o ∈ pt (b) do

15 add N a→ N [o] to WUEdges

16 foreach N→ N ′ ∈ OFG ∪WUEdges do

17 add N → N ′ to PFGc

18 Dfs(N ′)

3.3 Precision Flow Graphs and Graph Reachability

We first explain how to construct precision flow graphs (PFGs) and then how to identify precision-
critical methods by performing graph reachability on each PFG.

Precision Flow Graph Construction. As explained in Section 3.2, one OFG is built for the entire
program. Since the PFGs serve to express the three kinds of precision loss patterns, which are
all defined relative to a class, as explained in Section 2, we construct one PFG for each class in
the program. As the OFG can already describe direct flow (Section 3.2), the task of building the
PFG is to add edges that can express the other two kinds of flows: wrapped and unwrapped flows.
Algorithm 1 (PfgBuilder) shows how to build PFGc for a given class c . For simplicity, we represent
the PFG and the OFG by their sets of graph edges, and the graph nodes are implicitly those that
appear in the edge sets.
Three sets are initialized to empty sets in line 1: the PFG edges, the set of visited nodes, and

WUEdges, which denotes a set of extra edges for wrapped and unwrapped flows. As all three kinds
of flows begin from the parameters of an Inmethod (see Section 2), the algorithm starts by iterating
through those methods (lines 2ś3, where Inc denotes the set of In methods of the input class c).
Function Dfs (line 6) traverses the input OFG and adds the edges for wrapped and unwrapped

flows. As a result, the returned PFGc (line 5) includes all the nodes that can be reached from each
parameter of In methods of c , through direct, wrapped, and unwrapped flows, or combinations
of these. Specifically, unwrapped and wrapped flows are handled in lines 11ś12 and lines 13ś15,
respectively, by adding the corresponding edges toWUEdges. Finally, the generated PFG includes

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:11

item
C1.elem

C2.elem

e obj Itr.next itr

OFG
PFG

added for
wrapped flow

Fig. 8. A partial PFG for class Collection in Figure 4 (wrapped flow). C1, C2, and Itr denote the objects of

classes Collection and Iterator allocated in lines 24, 30, and 8 in Figure 4, respectively.

direct flows (from the OFG) and wrapped/unwrapped flows (from WUEdges) via the statements in
lines 16ś17. Now let us see the details of handling wrapped and unwrapped flows.

Recall that each OFG node represents either a variable or a field of an abstract object. If node N
in line 10 is a variable node Na, then for every load operation (b = a.f in line 11) that may load
the (unwrapped) objects (which are stored in a field of an object pointed to by a) to variable b,
we add an edge from node Na to node Nb. This allows us to model unwrapped flow, as defined in
Definition 2.5 and illustrated in Section 2.3.

The most intricate part of the algorithm is lines 13ś15, which handle wrapped flows. If node N
in line 10 is a variable node Na, then for every store operation (b.f = a in line 13) that can store
the objects (pointed to by a) in wrapper objects o pointed to by b (line 14), we add an edge from
node Na to N[o]. Here we use the notation [o] to denote the variable that the abstract object o was
originally assigned to when created: for example, if o is created at a statement v = new . . . then
[o] is the variable v. These added edges enable tracking wrapped flow as defined in Definition 2.4
and illustrated in Section 2.2. As an example, for the object wrapping this.next = obj of line 15
in Figure 4, pt(this) contains an abstract object created at itr = new Iterator(e) in line 8, so
we add an edge from obj to itr.

Note that if (in line 15) instead of adding an edge from Na to N[o] we had added an edge from
Na to Nb (mirroring the handling of unwrapped flows), we would miss some flows. Conceptually,
according to Definition 2.4, modeling wrapped flow requires tracking the wrapper objects (from
where they are created) rather than the variable b in the store operation b.f = a (line 13). For
example, in the case of Figure 4, consider the store operation this.next = obj (line 15) where
this (line 15) and itr (line 8) both point to the Iterator object created in line 8. If we added an
edge from node Nobj to node Nthis (rather than Nobj to Nitr), the flow tracking from Nthis would
not lead to the return statement (line 9) in the Out method, because the wrapped flow flows out
through node Nitr in this case. However, it is safe to add an edge to node Nitr instead (as we do in
line 15 in Algorithm 1) since the wrapper object is originally assigned to itr, so that the flow of
the wrapper object is taken into account as required by Definition 2.4.

Through Algorithm 1, we can see that wrapped and unwrapped flows can be naturally expressed
in the PFG by handling the store/load operations (lines 10ś15) recursively during the graph traversal.
In addition, the newly added edges for wrapped and unwrapped flows build new connections with
existing OFG edges that model direct flows. As a result, the generated PFG also naturally expresses
combinations of all three kinds of flows.
Figure 8 shows a partial PFG example for class Collection from Figure 4. The existing OFG is

constructed following the rules in Figure 7. In Figure 8, in the three object field nodes (C1.elem,
C2.elem, and Itr.next), the abstract objects respectively denoted by C1, C2, and Itr represent the
objects of classes Collection and Iterator. Node obj corresponds to Na in line 15 in Algorithm 1;
the edge from node obj to node Itr.next corresponds to the store operation this.next = obj

in line 15 in Figure 4, and also the store operation b.f = a in line 13 in Algorithm 1. According to

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:12 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

Algorithm 2: PcmCollector

Input :
c (Input class)

PFGc (Precision Flow Graph for class c)

Output : PCMc (Precision-Critical Methods for class c)

1 FlowNodes← { }, PCMc ← { }

2 foreach m ∈ Outc do

3 foreach return variable r ofm do

4 FlowNodes
⋃
= NodesCanReach(N r , PFGc) // Backward graph reachability

5 foreach N ∈ FlowNodes do

6 if N is a variable node Na and a is declared inm then

7 add m to PCMc

8 if N is an object field node No .f and o is allocated inm then

9 add m to PCMc

10 return PCMc

line 15 in Algorithm 1, an edge that enables tracking the wrapped flow is added in Figure 8 from
node obj to node itr, since [Itr] is the variable itr.

Graph Reachability on Precision Flow Graphs. We now explain how Zipper extracts the precision-
critical methods based on the PFGs. Generally, Zipper first computes all the nodes that are involved
in the three kinds of flows by solving a simple graph reachability problem on the PFG, and then
collects the methods that contain the nodes as the precision-critical methods.

Given a class c , each flow in the precision loss patterns corresponds to a path from a parameter
node of an In method of c to a return variable node of an Out method of c in PFGc . Therefore,
obtaining the statements that are involved in the flows is equivalent to computing which nodes
are reachable from a parameter of an In method and can also reach a return variable of an Out

method in PFGc . Since Zipper builds PFGc starting from the parameters of the In methods (lines
2ś3 in Algorithm 1), all nodes in PFGc are reachable from the In methods. Therefore, we only need
to find out which nodes in PFGc can reach the return variables of Out methods of class c .
Algorithm 2 (PcmCollector) defines the collection of precision-critical methods for an input

class c based on PFGc . In line 1, two sets are initialized to empty: FlowNodes denotes the set of nodes
that are involved in the flows from In methods to Out methods of class c , and PCMc denotes the
set of precision-critical methods for class c , i.e., the methods that contain the nodes in FlowNodes.

In lines 2ś4, PcmCollector fills FlowNodes by iterating through the return variables of all Out
methods of c (denoted by Outc) and collecting all nodes that can reach the return variables in PFGc .
The function NodesCanReach used in line 4 is a standard backward graph reachability algorithm
which traverses the PFGc starting from Nr and returns all nodes that can reach Nr on PFGc .

In lines 5ś9, PcmCollector fills PCMc . There are two kinds of nodes in PFGc that are handled
differently. For a variable node Na , PcmCollector adds the method where the variable a is declared
to PCMc (lines 6ś7). For an object field node No .f , PcmCollector adds the method where the
abstract object o is allocated to PCMc (lines 8ś9).
As a result, the algorithm collects the precision-critical methods for each class in a given pro-

gram. With this information, Zipper can guide context-sensitive pointer analyses to apply context
sensitivity only for the precision-critical methods.
The precise statements of Algorithms 1 and 2 capture the design choices of Zipper. Inferences

on flow patterns are made on a per-class basis, and context sensitivity is applied on a per-method
basis. It is easy to imagine applying context sensitivity at a finer granularity. That is, we could

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:13

apply context sensitivity to only the variables and object fields that are involved in the flows
in the precision loss patterns (i.e., the nodes stored in FlowNodes in Algorithm 2) instead of the
entire containing methods. In this way, although within the same precision-critical methods, other
variables and object fields that are irrelevant to precision loss patterns can be analyzed context-
insensitively, which may lead to better efficiency. For simplicity, in this paper we only consider
context sensitivity at the granularity of methods, and leave the potential of more refined options
for future work.

4 EVALUATION

In this section, we investigate the following research questions for evaluation.

RQ1. Is Zipper-guided pointer analysis precise and efficient?
(a) How much of the precision of a conventional analysis can Zipper preserve?

(b) How fast is Zipper-guided pointer analysis compared to a conventional analysis?

(c) What is the overhead of running Zipper?
(By łconventionalž, we mean a context-sensitive pointer analysis that applies context sensiti-
vity to all methods.)

RQ2. How does Zipper-guided pointer analysis compare to state-of-the-art alternative techniques
(specifically, introspective analyses [Smaragdakis et al. 2014]) that also apply context sensi-
tivity for only a subset of the methods, in terms of precision and efficiency?

RQ3. What is the effect of each of Zipper’s precision loss patterns on the analysis results?
(a) Howmany methods does Zipper consider precision-critical, and how does each precision

loss pattern contribute to this number?
(b) How does each of the precision loss patterns affect the precision and efficiency of Zipper-

guided pointer analysis?

Implementation. We have implemented Zipper as an open-source stand-alone tool in Java, avail-
able at http://www.brics.dk/zipper. Benefiting from simple insights and algorithms, Zipper’s core
implementation contains less than 1500 lines of Java code. In addition, Zipper is designed to work
with various pointer analysis frameworks, such as Doop [Bravenboer and Smaragdakis 2009],
Wala [WALA 2018], Chord [Naik et al. 2006], and Soot [Vallée-Rai et al. 1999]. To investigate
its effectiveness, we have integrated Zipper with Doop, a state-of-the-art whole-program pointer
analysis framework for Java. Interacting with existing context-sensitive pointer analysis is simple,
as Zipper’s output is just a set of precision-critical methods, as shown in Figure 6. For example,
we only need to slightly modify three Datalog rules in Doop to enable Doop to apply context
sensitivity to only the precision-critical methods reported by Zipper. We expect a similarly simple
integration for other pointer analysis tools.

Experimental Settings. We run all experiments on a machine with an Intel Xeon (E5) 2.6GHz
CPU and 48G memory. The time budget is set to 1.5 hours as in previous work [Jeong et al.
2017; Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2014]. We evaluate Zipper using a large
OpenJDK (1.6.0_24) library and 10 large Java programs: five are popular real-world applications (the
first five entries in Table 1) and five are from the standard DaCapo 2006 benchmarks [Blackburn
et al. 2006] (the last five entries in Table 1). We discuss the reason for this subset of the DaCapo
benchmarks after introducing the metrics and analysis settings.
In RQ1, we consider a 2-object-sensitive pointer (2obj) analysis (with one context element for

heap objects) [Milanova et al. 2002, 2005] as the conventional context-sensitive pointer analysis we
seek to match in terms of precision. 2obj is regarded as the most practical high-precision pointer
analysis for Java [Lhoták and Hendren 2006; Smaragdakis et al. 2011; Tan et al. 2016] and is widely

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

http://www.brics.dk/zipper

141:14 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

adopted in recent literature [Hassanshahi et al. 2017; Jeong et al. 2017; Kastrinis and Smaragdakis
2013; Scholz et al. 2016; Smaragdakis et al. 2013, 2014; Tan et al. 2017; Thiessen and Lhoták 2017]
and analysis tools, including popular static analysis frameworks for Android [Arzt et al. 2014;
Gordon et al. 2015]. Relative to other k-object-sensitive analyses, 2obj is significantly more precise
than 1obj [Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2011], and 3obj does not scale for
most DaCapo benchmarks [Tan et al. 2017].

In RQ2, we compare Zipper with the introspective analysis of Smaragdakis et al. [2014], which is
the most closely related state-of-the-art analysis that employs context sensitivity only for a subset
of the methods. These methods are selected by a pre-analysis according to two heuristics (the
pre-analysis is also based on a fast context-insensitive pointer analysis, like Zipper), resulting in
two variants of introspective analyses, IntroA and IntroB. (The naming and heuristics are from
Smaragdakis et al. [2014]. The Doop integration of Zipper is using the version published for the
artifact evaluation process of PLDI’14, which contains the exact setup for these algorithms, for
direct comparison.) Generally, IntroA is faster but less precise than IntroB.

In the DaCapo benchmarks, 2obj fails to scale for jython and hsqldb within 1.5 hours. Zipper
also cannot help scale for these two known problematic benchmarks [Kastrinis and Smaragdakis
2013; Smaragdakis et al. 2011; Tan et al. 2016, 2017], as, unlike the introspective analysis of Smarag-
dakis et al. [2014], Zipper is designed to keep most of the analysis precision: its precision-guided
principle prevents it from further removing more contexts, since that could degrade precision.
Regarding introspective analysis, IntroB also fails to scale for jython but scales for hsqldb; IntroA
scales for both but only achieves precision slightly better than a context-insensitive analysis. Con-
sequently, to provide an observable precision baseline (i.e., the most precise results achieved by
2obj), we consider the remaining five large DaCapo benchmarks for which 2obj is scalable. We
will examine how Zipper performs on the smaller, trivially-scalable benchmarks in Section 4.4.

4.1 RQ1: Precision and Efficiency of Zipper-Guided Pointer Analysis

In this section, we first examine the precision and efficiency of Zipper-guided pointer analysis
by comparing it with 2obj as explained above, and then show the overhead of running Zipper

itself. As a conventional context-sensitive pointer analysis, to produce high precision, 2obj applies
context sensitivity to each method of the program indiscriminately. This is still the mainstream
context-sensitivity scheme deployed in most pointer analysis frameworks for Java [Bravenboer and
Smaragdakis 2009; Naik et al. 2006; WALA 2018]) and Android [Arzt et al. 2014; Gordon et al. 2015].
Table 1 shows the results of all analyses. Each program has five rows of data, respectively

representing context-insensitive pointer analysis (ci), conventional object-sensitive pointer analysis
(2obj), Zipper (zipper-2obj), and two introspective pointer analyses (introA-2obj and introB-2obj).
The last two analyses will be discussed in Section 4.2.

4.1.1 How Much Precision of a Conventional Analysis Is Preserved by Zipper. To measure precision,
we consider four independently useful client analyses, (subsets of which) also used as the precision
metrics in past literature [Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Lhoták and Hendren
2006; Smaragdakis et al. 2014; Sridharan and Bodík 2006; Tan et al. 2017]: a cast-resolution analysis
(metric: the number of cast operations that may fail, denoted #fail-cast), a devirtualization analysis
(metric: the number of virtual call sites that cannot be disambiguated into monomorphic calls,
denoted #poly-call), a method reachability analysis (metric: the number of reachable methods,
denoted #reach-mtd), and a call-graph construction analysis (metric: the number of call graph
edges, denoted #call-edge). These metrics should give a thorough idea of analysis precision for
useful clients. The results are shown in the last four columns in Table 1. In all cases, lower is better.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:15

Table 1. Performance and precision metrics for context-insensitive (ci), conventional object-sensitive (2obj),

Zipper-guided (zipper-2obj), and introspective object-sensitive (introX-2obj) pointer analyses.

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

batik

ci 82 2 961 4 681 19 197 101 616
2obj 3 137 1 606 3 491 16 859 76 807

zipper-2obj 927 1 614 3 501 16 863 76 858
introA-2obj 232 2 675 4 262 19 011 97 120
introB-2obj 2 146 2 149 3 997 18 703 90 126

checkstyle

ci 50 1 114 1 444 9 866 57 490
2obj 1 912 581 1 035 9 513 48 809

zipper-2obj 355 607 1 059 9 526 48 945
introA-2obj 124 970 1 206 9 769 55 736
introB-2obj 1 566 792 1 134 9 595 51 437

sunflow

ci 61 3 003 4 113 19 773 106 410
2obj 1 124 1 837 3 385 19 245 89 866

zipper-2obj 520 1 869 3 391 19 247 89 902
introA-2obj 153 2 764 3 796 19 651 103 536
introB-2obj 404 2 346 3 529 19 429 95 602

findbugs

ci 52 2 508 2 925 13 036 77 370
2obj 2 321 1 409 2 182 12 657 65 836

zipper-2obj 830 1 437 2 190 12 662 65 880
introA-2obj 191 2 271 2 422 12 960 73 681
introB-2obj 422 2 024 2 372 12 882 70 725

jpc

ci 58 2 370 5 013 17 146 96 669
2obj 515 1 392 4 222 15 852 81 030

zipper-2obj 211 1 415 4 231 15 857 81 072
introA-2obj 130 2 169 4 703 17 038 95 170
introB-2obj 331 1 736 4 327 16 001 85 316

eclipse

ci 23 1 139 1 334 8 465 45 474
2obj 126 546 980 7 911 38 151

zipper-2obj 66 586 1 013 7 927 38 369
introA-2obj 58 977 1 118 8 319 43 781
introB-2obj 72 764 1 046 8 001 39 876

chart

ci 46 1 810 1 852 12 064 63 453
2obj 244 883 1 378 11 330 52 374

zipper-2obj 77 910 1 384 11 334 52 399
introA-2obj 126 1 580 1 613 11 952 61 323
introB-2obj 183 1 236 1 497 11 518 55 594

fop

ci 74 2 458 3 585 17 154 84 330
2obj 1 022 1 446 2 844 16 438 71 408

zipper-2obj 457 1 471 2 860 16 442 71 478
introA-2obj 197 2 206 3 246 17 007 82 113
introB-2obj 512 1 804 2 979 16 571 75 770

xalan

ci 39 1 182 1 898 9 705 51 302
2obj 985 533 1 522 9 047 44 871

zipper-2obj 107 568 1 542 9 129 45 332
introA-2obj 111 1 129 1 765 9 637 50 659
introB-2obj 705 723 1 579 9 119 45 904

bloat

ci 31 1 924 2 014 8 939 61 150
2obj 3 128 1 193 1 427 8 470 53 143

zipper-2obj 2 704 1 224 1 449 8 486 53 289
introA-2obj 57 1 809 1 690 8 869 60 111
introB-2obj 135 1 621 1 522 8 626 55 455

zipper-2obj* 52 1 310 1 511 8 538 54 049

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:16 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

1

2

3

4

5

6

7

class BufferedReader{

 Reader in;

 BufferedReader(Reader in){

 this.in = in;

 }

 void close(){in.close();}

}

8

9

10

11

12

13

14

//Usage Code

InputStreamReader isReader = new InputStreamReader();

BufferedReader reader1 = new BufferedReader(isReader);

reader1.close();

FileReader fReader = new FileReader();

BufferedReader reader2 = new BufferedReader(fReader);

//reader2.close();

Fig. 9. Example of the no-out flow case.

Comparing Zipper with the conventional pointer analysis 2obj, we see that Zipper is able to
achieve nearly identical precision as 2obj for every metric in every program. In summary, on
average, 98.8% of the precision of 2obj can be preserved considering all client analyses.1 Specifically,
the average number for each client analysis is 96.8% for #fail-cast, 98.9% for #poly-call, 99.8% for
#reach-mtd and 99.7% for #call-edge.

Zipper can produce such great precision because it is designed according to its precision-guided
principle: all the methods that are involved in the three basic flows (direct, wrapped, and unwrapped
flows), or their combinations, will be analyzed context-sensitively. Since the three flows capture
the essence of value flows in Java programs where imprecision may arise through method calls (as
explained in Section 2), most context-related imprecision can be discovered by Zipper. However, on
average, Zipper still misses 1.2% of the precision. Although these cases are rare and it is extremely
hard to enumerate all of them, it is informative to examine some of them to understand the
capabilities of Zipper more comprehensively. Next, let us take two examples to illustrate some of
the rare cases where Zipper loses precision.

The No-Out Flow Case. This case is observed in real code in our experiments, and we simplify the
code as in Figure 9. The InputStreamReader object (created in line 9) and the FileReader object
(created in line 12) flow into the In method BufferedReader (a constructor) through parameter in
(line 3). The objects are stored (line 4) and further loaded and become the receiver objects of the
virtual call in.close() (line 6). The flow does not flow out through an Out method and thus the
two methods in class BufferedReader are analyzed context-insensitively. As a result, the virtual
call in line 6 will not be disambiguated into a monomorphic call, resulting in precision loss in the
devirtualization analysis client. Note that there would be no observable (in our metrics) precision
loss compared to a conventional object-sensitive analysis if the call in line 14 existed (i.e., if it were
not commented out). The call site on line 6 is truly polymorphic, and can be exercised for multiple
receiver objects, as the addition of line 14 demonstrates.

void m(A input,B output) {

 output.field = input;

}

m(a, b); //rare

b.setField(a); //common

Fig. 10. Example of the parameter-

out flow case.

The Parameter-Out Flow Case. A second instance where Zipper
loses precision, this time made up but interesting theoretically,
is shown in Figure 10. An In method m of some class accepts
two parameters input and output, and unlike any of our three
precision loss patterns, there is no flow out of an Out method.
Instead, the flowing-in object through input flows out through
another parameter output via a store operation, output.field
= input. Thus, Zipper reports m as non-precision-critical. However, if m is analyzed context-
insensitively, the flowing-in objects may be merged in the wrapper object (say w, which is pointed
to by output) and imprecision would be introduced when the objects are then loaded from w outside

1To further validate the generality of Zipper’s precision-guided capability, we also compare Zipper with a 2-type-sensitive

pointer analysis (2type), another key context sensitivity for Java which is less precise but faster than 2obj. On average,

99.1% of the precision of 2type is preserved by Zipper; the detailed results are shown in Table 6 in Appendix A.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:17

method m. This case is rare, since it is unusual in Java programs to modify some field of an object
by calling methods such as m. In Java, such modification is usually done with a call as in the last
line of the example.

4.1.2 How Fast Is Zipper-Guided Pointer Analysis Compared with a Conventional Analysis? The
analysis times for Zipper-guided pointer analysis and 2obj are shown in the third column in Table 1.
On average, Zipper-guided pointer analysis achieves 3.4X speedup compared with 2obj. The best
case is program xalan where 2obj spends about 17 minutes while Zipper-guided analysis finishes
running in well under 2 minutes (9.2X speedup). The worst case is program bloat where 2obj
spends 52 minutes while Zipper-guided analysis is 7 minutes faster (1.2X speedup).

Recall that the goal of Zipper is not simply to speed up context-sensitive pointer analysis, but to
do so while retaining its precision. All methods considered precision-critical are analyzed context-
sensitively with the Zipper approach, even though context-insensitive analysis might be faster.
This explains the bloat case: despite not seeing much efficiency improvement, high precision
(98.8%) has been successfully maintained.

Zipper-2obj* for bloat. The strict precision-guided design of Zipper can be relaxed for better
efficiency if some heuristics are considered. That is, among the precision-critical methods identified
by Zipper, some of them can be further excluded by keeping only the highly-precision-critical
methods which may cause a significant precision loss if not analyzed context-sensitively. As a
proof-of-concept, to identify these highly-precision-critical methods, we simply modify Zipper

by adding one more heuristic and apply the modified Zipper (named zipper-2obj* in Table 1) to
analyze bloat as described below.

The added heuristic is that we do not consider basic flow tracking from an In method unless the
flowing-in objects have a large number of different types (for this proof-of-concept experiment,
we set the number to 50). As a result, the modified Zipper (zipper-2obj*) reports only 14% of the
methods as highly-precision-critical (in comparison, the original Zipper reports 40% of the methods
as precision-critical), and the achieved efficiency and precision is shown in the last row of Table 1.
The speedup now becomes 60.2X, which is much faster than the original 1.2X; however, as explained
above, precision is accordingly hurt: 95.5% of the precision is preserved, which is less than the
98.8% achieved by the original Zipper (zipper-2obj).

This extra experiment demonstrates that heuristic approaches can be developed on top of Zipper
via its construction of precision flow graphs. How to make other precision and efficiency trade-offs
by leveraging Zipper is not the focus of this paper; however, it may be interesting to explore further
in future work.
Note that, as Zipper only reports on average 38% of the methods in a program as precision-

critical (see Section 4.3.1), most methods are analyzed context-insensitively, which results inmemory
savings compared to a conventional context-sensitive pointer analysis. Thus, Zipper is expected to
be even more beneficial for memory-constrained analysis environments.

4.1.3 What Is the Overhead of Running Zipper? As shown earlier, in Figure 6, the overhead of
Zipper consists of: (1) running a context-insensitive pointer analysis (ci) as Zipper’s pre-analysis
and (2) running Zipper itself which identifies the precision-critical methods. The analysis time of
ci is given in Table 1. On average, ci costs 52 seconds for each program.
Table 2 (last row) shows the performance of Zipper itself: the average analysis time of Zipper

is just 32 seconds per input program. Table 2 also lists some related metrics about program size
(the number of classes) and elements of Zipper’s reasoning, i.e., the number of nodes and edges
of the object flow graph (OFG) per program, and the average number of nodes and edges of the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:18 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

Table 2. Size metrics of all the programs and the corresponding overhead of running Zipper.

Size metrics batik checkstyle sunflow findbugs jpc eclipse chart fop xalan bloat avg.

#classes 2 701 1 301 2 496 1 752 2 039 1 122 1 578 2 580 1 268 1 107 1 794
#nodes in OFG 189 993 92 167 188 395 127 939 166 639 84 352 115 515 162 086 94 969 87 223 130 928
#edges in OFG 486 629 203 445 407 526 276 319 386 618 172 161 230 409 370 003 207 300 201 057 294 147
#avg. nodes in PFG 3 576 3 620 3 329 1 711 2 329 1 823 2 513 2 285 3 061 1 942 2 619
#avg. edges in PFG 10 253 9 090 8 677 4 273 6 727 4 480 6 207 6 403 7 478 4 724 6 831

Zipper time (seconds) 102 18 53 13 39 8 16 54 14 8 32

precision flow graph (PFG) per class. The overhead of running Zipper is very small considering the
considerable speedup it achieves for costly context-sensitive pointer analysis as shown in Table 1.

4.2 RQ2: Zipper-Guided Pointer Analysis vs. Introspective Pointer Analyses

We next compare Zipper-guided pointer analysis with the most closely related state-of-the-art
work: the two introspective analyses, IntroA and IntroB [Smaragdakis et al. 2014], in terms of
precision and efficiency.
Detailed comparison results are shown in the last three entries for each program in Table 1.

On average, IntroA preserves 74.0% and IntroB keeps 86.5% of the 2obj precision while Zipper
maintains 98.8% of it. Moreover, Zipper achieves better precision than both IntroA and IntroB for
all four client analyess in all the evaluated programs, with the exception of one instance (out of
80): #reach-mtd for xalan with IntroB (which is almost 7 times slower than Zipper).

As both Zipper and introspective analysis involve a pre-analysis to select the methods that will
be analyzed context-sensitively in the main analysis, the efficiency comparison has two parts: the
costs of their pre-analyses and the guided main analyses.
Regarding the pre-analysis, its cost consists of the time of running context-insensitive pointer

analysis (for providing basic analysis information) and the time of running Zipper and introspective
analysis themselves (for selecting the precision-critical methods). For the former, their costs are
the same as they rely on the same context-insensitive pointer analysis provided by Doop. For the
latter, for each program, on average, IntroA and IntroB spend 19 and 24 seconds, respectively, while
Zipper spends 32 seconds (as shown in Section 4.1.3).

Regarding the main analysis, their results are shown in Table 1 (the third column). In summary,
IntroA runs faster than Zipper in 9 out of 10 programs; this comes with no surprise given that the
precision of IntroA is only slightly better than context-insensitive analysis while Zipper preserves
almost all the precision of a conventional one, i.e., 2obj in our setting. Zipper runs faster than
IntroB in 7 out of 10 programs (except sunflow, findbugs, and bloat) while achieving better
precision than IntroB in all cases except #reach-mtd for xalan, as described above.

4.3 RQ3: Effect of Each Precision Loss Pattern

Zipper identifies precision-critical methods and guides context-sensitive pointer analysis based
on the three precision loss patterns introduced in Section 2. In this section, we further evaluate
Zipper by measuring the impact of each pattern. We consider four combinations of the three
patterns: (1) direct flow alone (Direct), (2) direct flow and wrapped flow (Direct+Wrapped),
(3) direct flow and unwrapped flow (Direct+Unwrapped) and (4) all three flows, i.e., Zipper
(Direct+Wrapped+Unwrapped).

Note that, as direct flow is the basic flow on which wrapped and unwrapped flows depend
(Zipper requires direct flow to track the flows of the wrapper and unwrapped objects), the above
four combinations cover all reasonable combined cases of the three precision loss patterns.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:19
1

9
 1

9
7

9
 8

6
6

1
9

 7
7

3

1
3

 0
3

6

1
7

 1
4

6

8
 4

6
5

1
2

 0
6

4

1
7

 1
5

4

9
 7

0
5

8
 9

3
9

4
 9

9
9

2
 3

4
2

4
 4

9
6

2
 5

7
9

3
 4

0
3

1
 8

2
5

2
 3

3
0 3

 6
4

4

2
 2

9
4

2
 2

3
7

7
 8

6
5

3
 6

1
5

7
 5

6
4

4
 7

2
3

5
 6

2
1

3
 1

2
7

3
 9

7
2

5
 8

4
4

3
 5

1
9

3
 4

9
2

5
 5

8
4

2
 5

6
4

5
 0

7
4

3
 0

2
2

3
 9

0
9

2
 0

3
2

2
 5

8
6

4
 1

9
8

2
 4

7
4

2
 3

9
5

8
 2

6
1

3
 8

1
1

7
 8

9
6

4
 8

4
7 5
 9

0
6

3
 2

4
8

4
 1

5
7

6
 1

9
8

3
 6

6
4

3
 5

7
3

batik checkstyle sunflow findbugs jpc ecl ipse chart fop xalan bloat

#Reachable Methods

Direct

Direct+Wrapped

Direct+Unwrapped

Direct+Wrapped+Unwrapped

Fig. 11. Precision-critical methods under different combinations of the basic precision loss patterns.

We first evaluate the number of precision-critical methods reported by Zipper under different
flow combinations in Section 4.3.1, and then present the precision and efficiency of Zipper-guided
pointer analyses with respect to the different flow combinations in Section 4.3.2.

4.3.1 HowManyMethods Does ZipperConsider Precision-Critical, and HowDoes Each Precision Loss

Pattern Contribute? Figure 11 gives the numbers of precision-critical methods reported by Zipper

under the different combinations of direct, wrapped, and unwrapped flow. #Reachable Methods de-
notes the numbers of methods that are reachable by Zipper’s pre-analysis, i.e., a context-insensitive
pointer analysis. Let us first focus on Direct+Wrapped+Unwrapped, which denotes the combination
of all the three patterns and also represents the final results of Zipper. On average, Zipper reports
that only 38% of the methods need contexts per program under Direct+Wrapped+Unwrapped. As
shown in Section 4.1.1, applying context sensitivity to only this 38% of the methods is able to
preserve 98.8% of the precision of conventional 2-object-sensitive pointer analysis.
In Figure 11, we can see that Zipper reports that 22.3% of the methods need contexts un-

der Direct, 36.4% under Direct+Wrapped, and 24.9% under Direct+Unwrapped, which shows
that wrapped flow introduces significantly more precision-critical methods than unwrapped flow.
Direct+Unwrapped introduces 2.6%moremethods than Direct, while Direct+Wrapped+Unwrapped
introduces 1.6% more methods than Direct+Wrapped. This means that some methods are involved
in multiple precision loss patterns, e.g., both wrapped flow and unwrapped flow, simultaneously.

4.3.2 How Does Each Precision Loss Pattern Affect the Precision and Efficiency of Zipper-Guided

Pointer Analysis? We evaluate the impact of each precision loss pattern by using Zipper with
different combinations of patterns to guide 2obj analysis.

Precision. To evaluate the precision of 2obj under Zipper’s different elements, we focus on the
#poly-call metric as it is one of the most representative metrics and also widely considered in Java
pointer analysis research [Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Lhoták and Hendren
2006; Smaragdakis et al. 2011, 2014; Sridharan et al. 2005; Tan et al. 2017]. It denotes the number of
virtual calls that cannot be disambiguated into monomorphic calls. Generally, a pointer analysis
with better precision can disambiguate more virtual calls and reports smaller #poly-call.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:20 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis
4

 6
8

1

1
 4

4
4

4
 1

1
3

2
 9

2
5

5
 0

1
3

1
 3

3
4

1
 8

5
2

3
 5

8
5

1
 8

9
8

2
 0

1
4

1
 3

8
1

4
 0

1
1

2
 8

6
2

4
 9

2
4

1
 2

5
9

1
 7

8
7

3
 4

8
8

1
 8

1
5

1
 9

5
5

3
 5

0
7

1
 0

6
6

3
 4

0
4

2
 1

9
0

4
 2

4
1

1
 0

2
0 1

 3
9

0

2
 8

7
2

1
 5

5
4

1
 4

5
5

1
 2

6
2

3
 7

6
8

2
 6

3
0

4
 7

7
5

1
 2

0
8

1
 7

0
2

3
 3

0
2

1
 7

6
6

1
 8

1
3

3
 5

0
1

1
 0

5
9

3
 3

9
1

2
 1

9
0

4
 2

3
1

1
 0

1
3 1

 3
8

4

2
 8

6
0

1
 5

4
2

1
 4

4
9

batik checkstyle sunflow findbugs jpc ecl ipse chart fop xalan bloat

ci

Direct

Direct+Wrapped

Direct+Unwrapped

Direct+Wrapped+Unwrapped

Fig. 12. #poly-call for different combinations of the basic precision loss patterns.

Figure 12 shows #poly-call as reported by the Zipper-guided pointer analyses under different
combinations of direct, wrapped, and unwrapped flow. We use the #poly-call reported by the
context-insensitive pointer analysis (denoted by ci) as the baseline. Overall, Zipper with more flow
patterns enabled achieves better precision. (batik lacks data for Direct and Direct+Unwrapped

since the pointer analysis cannot terminate within the time budget under these two combinations;
the reason will be discussed later.)
The direct flow pattern covers the usage of simple object flow (e.g., getter/setter methods),

which is common in Java programs. However, Figure 12 shows, perhaps surprisingly, that Zipper
under Direct is only slightly more precise than context-insensitive pointer analysis. These results
demonstrate that only applying context sensitivity to the methods involved in direct flow is far
from sufficient for achieving good precision.
When wrapped flow comes into play, the precision is improved significantly. For example,

compared to Direct, Zipper under Direct+Wrapped further eliminates 683 false polymorphic
calls for jpc, and this improvement is much greater than that of Direct compared to ci (89 calls).
The data for other programs exhibit similar trends, which means that wrapped flow is the key to
preserving the precision of conventional object-sensitivity.

Unwrapped flow is also useful for improving precision. For example, for sunflow, Zipper under
Direct+Unwrapped eliminates 243 false polymorphic calls based on Direct. However, the improve-
ments of unwrapped flow become less significant after combining with wrapped flow. For example,
for sunflow, Zipper under Direct+Wrapped+Unwrapped only eliminates 13 false polymorphic
calls based on Direct+Wrapped. One reason is that some precision-critical methods introduced by
unwrapped flow can also be introduced by wrapped flow, as discussed in Section 4.3.1.

Efficiency. Table 3 gives the elapsed time of Zipper-guided pointer analysis under different
combinations of the three precision loss patterns. Generally, when more patterns are enabled,
Zipper reports more methods as precision-critical, and the corresponding guided pointer analysis
run faster. For all programs, Zipper under Direct+Wrapped runs faster than Direct alone, and for 6
out of 10 programs, Zipper under Direct+Wrapped+Unwrapped runs faster than Direct+Wrapped.

These results clearly demonstrate that losing precision may also introduce performance decline.
This is especially typical for context-sensitive pointer analysis, as the spurious data flow (caused
by imprecision) will be replicated and propagated under different contexts, which can make the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:21

Table 3. The corresponding performance (seconds) of the analyses in Figure 12.

batik checkstyle sunflow findbugs jpc eclipse chart fop xalan bloat

Direct ś 477 1 492 2 298 1 851 127 433 2 751 262 3 119
Direct+Wrapped 873 287 500 841 221 71 82 427 122 2 764
Direct+Unwrapped ś 458 2 720 2 952 3 454 117 632 5 147 251 3 108
Direct+Wrapped+Unwrapped 927 355 520 830 211 66 77 457 107 2 704

pointer analysis very inefficient. For example, Zipper under Direct and Direct+Unwrapped is less
precise than Direct+Wrapped+Unwrapped. While the first two analyses cannot even finish within
the time budget (1.5 hours) for batik, the last one requires just 927 seconds.

4.4 Robustness of Zipper

To further test the robustness of Zipper, we show the results of two supplementary experiments.

Different Benchmark Programs. First, we show Zipper’s effectiveness over the available bench-
marks from the DaCapo 2009 set (instead of the original DaCapo 2006 benchmarks). The DaCapo
2009 benchmarks are less commonly used in static analysis research, since they present some
engineering complications. The benchmarks do not provide stub classes for each benchmark’s
individual execution and are instead driven by code that employs Java reflection. To overcome such
complications, we use the supportive log files (the Tamiflex [Bodden et al. 2011] reflection logs) and
the packed jars (to enable whole-program static analysis) from the current Doop project repository.
We consider only 4 benchmarks for this experiment: xalan, avrora, batik and sunflow. Of the
rest, fop, tomcat, tradesoap are not considered as their log files or packed jars are not available in
the repository; lusearch, luindex and pmd are not considered, just as in DaCapo 2006, as they are
trivially scalable; jython, eclipse, h2 and tradebeans are not considered as the baseline analysis
(2obj) cannot finish running even in three hours (as opposed to the default 1.5 hours of our previous
experiment).
Table 4 shows the results for the four available DaCapo 2009 benchmarks. On average, Zipper

achieves 99.5% of the precision of 2obj with a speedup of 3.0X. In addition, IntroB is both less

Table 4. Performance and precision metrics of different analyses on the available DaCapo 2009 benchmarks.

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

xalan09

ci 58 1 975 3 722 13 386 75 626
2obj 1 257 1 054 3 089 12 957 66 601

zipper-2obj 283 1 074 3 092 12 962 66 652
introA-2obj 159 1 779 3 507 13 288 74 275
introB-2obj 444 1 395 3 228 13 086 68 891

avrora09

ci 62 1 829 2 141 15 244 71 656
2obj 267 1 026 1 557 14 752 61 742

zipper-2obj 156 1 042 1 560 14 755 61 766
introA-2obj 146 1 659 1 858 15 128 69 994
introB-2obj 304 1 381 1 651 14 920 65 762

batik09

ci 118 3 651 5 951 22 075 128 940
2obj 8 295 2 234 5 172 21 464 112 800

zipper-2obj 2 254 2 268 5 178 21 467 112 834
introA-2obj 370 3 383 5 531 21 866 123 538
introB-2obj 831 2 903 5 309 21 684 118 533

sunflow09

ci 48 2 099 2 504 14 120 70 733
2obj 208 1 179 1 948 13 576 60 402

zipper-2obj 95 1 192 1 955 13 592 60 460
introA-2obj 102 1 849 2 262 14 014 69 269
introB-2obj 168 1 558 2 046 13 746 64 045

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:22 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

Table 5. Precision metrics of different analyses on the trivially-scalable DaCapo benchmarks.

Program Pointer analysis #fail-cast #poly-call #reach-mtd #call-edge Program Pointer analysis #fail-cast #poly-call #reach-mtd #call-edge

antlr

ci 992 1 776 7 794 53 468

lusearch09

ci 925 1 373 8 035 40 968
2obj 428 1 520 7 357 49 348 2obj 351 1 056 7 701 36 227

zipper-2obj 452 1 530 7 361 49 400 zipper-2obj 366 1 061 7 705 36 254
introA-2obj 990 1 694 7 783 53 071 introA-2obj 756 1 184 7 934 39 673
introB-2obj 640 1 560 7 448 50 257 introB-2obj 536 1 101 7 764 37 164

lusearch

ci 844 1 133 7 352 36 343

luindex09

ci 919 1 239 8 144 41 622
2obj 299 850 6 904 31 811 2obj 378 851 7 824 36 886

zipper-2obj 322 864 6 907 31 869 zipper-2obj 399 855 7 827 36 911
introA-2obj 681 981 7 277 35 531 introA-2obj 785 1 000 8 024 40 106
introB-2obj 462 891 6 970 32 656 introB-2obj 586 919 7 891 37 881

luindex

ci 734 940 6 670 33 130

pmd09

ci 1 514 1 571 9 770 49 388
2obj 297 675 6 256 29 021 2obj 877 1 114 9 431 43 735

zipper-2obj 327 686 6 259 29 076 zipper-2obj 898 1 124 9 434 43 770
introA-2obj 617 802 6 600 32 370 introA-2obj 1 383 1 277 9 670 47 597
introB-2obj 450 714 6 316 29 835 introB-2obj 1 144 1 195 9 527 45 125

pmd

ci 1 263 1 039 8 427 42 415
2obj 657 718 7 648 35 563

zipper-2obj 676 728 7 654 35 626
introA-2obj 1 136 882 8 351 41 674
introB-2obj 859 777 7 929 37 379

precise and less efficient than Zipper in most cases, and IntroA runs faster but is significantly less
precise than Zipper in all cases. These results are consistent with the ones for the DaCapo 2006
benchmarks and other real-world Java applications as reported in Section 4.1.

Precision for łTrivially-Scalablež Programs. We also evaluate Zipper’s precision for those łtrivially-
scalablež DaCapo 2006 and DaCapo 2009 benchmarks that were excluded from our earlier presenta-
tion. Although Zipper would likely not be used for such programs (since a highly-precise pointer
analysis can already analyze them very fast), it is interesting to ask if it still maintains most of the
precision of a highly-precise context-sensitive analysis (i.e., 2obj) for these programs.

Table 5 shows the precision results of Zipper for the seven trivially-scalable DaCapo (2006 and
2009) benchmarks (note that the DaCapo 2009 benchmark suite does not contain antlr). The results
demonstrate that Zipper is able to preserve most of the precision (98.3% on average) of 2obj even
for those trivially-scalable programs that are outside the target domain of Zipper.

5 RELATED WORK

In this section, we mainly discuss related work that leverages pre-analysis to achieve good precision
and efficiency balances for whole-program context-sensitive pointer analysis.
Introspective analysis [Smaragdakis et al. 2014] applies context sensitivity to a subset of the

program’s methods selected based on two heuristics, resulting in two introspective analyses, IntroA
and IntroB, which have been compared with Zipper in Section 4.2. Like Zipper, introspective
analysis first performs a cheap pre-analysis, i.e., a context-insensitive pointer analysis, to extract
required information to guide the main pointer analysis. Unlike Zipper, it relies on a set of six
manually-selected metrics (e.g., the cumulative size of points-to set over all local variables of each
method) to define the two heuristics for determining which methods are potentially precision-
critical. As these heuristics lack a theoretical explanation of when omitting context sensitivity for a
method would introduce imprecision, the precision-critical methods cannot be identified accurately
by introspective analysis. As a result, as shown in Section 4.2, IntroB is less precise and less efficient
than Zipper in most cases, and IntroA runs faster but is significantly less precise than Zipper in all
cases.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:23

Hassanshahi et al. [2017] also leverage manually-selected metrics to define some heuristics to
guide object-sensitive pointer analysis for large codebases. Their pre-analysis contains several
phases that each need different metrics and heuristics. Basically, a program kernel (where a call-
site-insensitive or object-sensitive pointer analysis may not be precise enough) is first extracted
based on a context-insensitive pointer analysis, and then this kernel is analyzed by a fixed object-
sensitive pointer analysis to determine the appropriate context depth for each selected object. Such
information is finally used to guide a selective object-sensitive pointer analysis, which has been
demonstrated to work well for the OpenJDK library [Hassanshahi et al. 2017]. However, unlike
introspective analysis [Smaragdakis et al. 2014] and Zipper, the overhead of their pre-analysis is
uncertain, as it is sensitive to the complexity of the extracted kernel, which further depends on
various threshold values given by the user before the pre-analysis.

Different from introspective analysis and the approach by Hassanshahi et al. [2017], Zipper
does not rely on any inputs (i.e., various threshold values needed by heuristics) provided by users.
Instead, Zipper’s precision-guided principle enables it to identify the precision-critical methods by
exploiting the precision loss patterns only from the programs themselves. As a result, Zipper can
exhibit more stable analysis results.
Metrics and heuristics can be selected and defined manually, as in the above approaches [Has-

sanshahi et al. 2017; Smaragdakis et al. 2014], or can be learned from machine learning techniques,
as in the two pieces of work we describe next.
Wei and Ryder [2015] introduce an adaptive context-sensitive analysis for JavaScript. Some

user-specific method features are first extracted from an inexpensive pre-analysis, and a machine
learning algorithm is then applied to obtain the relationship between these method features and
the potential context-sensitivity candidates. The relationship is expressed as a decision tree, which
is further manually adjusted (based on domain knowledge) to produce certain heuristics. Guided
by these heuristics, different methods are finally analyzed with different context sensitivity.
Jeong et al. [2017] present a data-driven approach to guiding context-sensitive analysis for

Java. Unlike introspective analysis and Zipper, where for each method, context sensitivity is either
applied or not, the data-driven analysis assigns each method an appropriate context length including
zero (i.e., context insensitivity). By appropriately applying context sensitivity with deeper context
for only a subset of the methods, more efficient context-sensitive analysis can be achieved with good
precision. To assign an appropriate context length for each method, 25 metrics (atomic features)
are selected, and, based on these metrics, a machine learning approach is used to learn heuristics.
However, unlike Zipper’s lightweight pre-analysis, the learning phase is heavy and costs 54 hours
in Jeong et al.’s experimental setting. Still, the learned heuristics can help the main analysis scale
for even some trouble programs (e.g., jython) with good precision [Jeong et al. 2017]. One reason
that may contribute to the beneficial effect of the learned heuristics is that the training programs
and the testing programs partly share the same Java library code.

Generally, machine learning approaches are sensitive to the training process on the selected input
programs, and the learned results are usually difficult to explain, e.g., why the learning algorithm
considers method A rather than B as precision-critical. Differently, Zipper is a principled approach
derived from the insight of exploiting the precision loss patterns inherent in a program; thus its
guiding is interpretable and its guided results are tractable, resulting in more uniform and stable
effectiveness achieved.
The Bean approach by Tan et al. [2016] is also based on a pre-analysis. Conventional context-

sensitivity uses consecutive context elements for each context, whereas Bean identifies and skips
context elements that are useless for improving the precision. As a result, more space is saved and,
thus, more precision-useful context elements can be added to distinguish more contexts, making
the pointer analysis more precise with a small efficiency overhead. Instead of improving precision

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:24 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

by sacrificing some efficiency, Zipper makes a context-sensitive pointer analysis run faster while
preserving essentially all of its precision.

Scaler [Li et al. 2018] achieves scalable context-sensitive points-to analysis by considering the
relationship between scalability and memory size. It leverages the object allocation graph (OAG)
proposed by Tan et al. [2016], to efficiently estimate the amount of context-sensitive points-to
information that would be needed for each method. Then, given a threshold related to the available
memory size, Scaler selects an appropriate context-sensitivity variant for each method so that the
total amount of points-to information is bounded. As a result, Scaler utilizes the available space to
provide scalability while maximizing precision. Unlike Zipper which prioritizes precision, Scaler
is a scalability-first approach. The two techniques can be combined, using Scaler to estimate the
context-sensitive points-to information only for the precision-critical methods identified by Zipper.

Based on a cheap pre-analysis, Tan et al. [2017] presentMahjong, a heap abstraction for pointer
analysis of Java, which enables allocation-site-based pointer analysis to run significantly faster while
achieving almost the same precision for type-dependent clients, such as call graph construction.
Differently, Zipper works for general pointer analysis, including alias analysis (i.e., not just type-
dependent clients), which cannot be handled effectively by Mahjong.
Bean [Tan et al. 2016] and Scaler [Li et al. 2018] leverage object allocation graphs (OAGs),

andMahjong [Tan et al. 2017] exploits field points-to graphs (FPGs), in a pre-analysis to extract
necessary information to guide a later main analysis. Similarly, in Zipper, we introduce precision
flow graphs (PFGs) to express the three kinds of value flow patterns (Section 2) and identify the
precision-critical methods by solving a graph reachability problem on the PFG (Section 3.3). OAGs
and FPGs cannot express value flow information and are therefore conceptually different from
PFGs. However, other graphs, conceptually similar to PFGs, are used in pointer analysis, as briefly
discussed next.
Li et al. [2011] leverage value flow graphs (VFGs) to accelerate pointer analysis for C/C++ pro-

grams. VFGs are also designed to express value flow information but they have two key differences
from PFGs. First, they represent pointer information differently, e.g., dereferencing a pointer in
C/C++ does not involve a field reference. Second, VFGs cannot express wrapped/unwrapped flows.

Pointer assignment graphs (PAGs) are used as the representation of the analyzed program in Java
pointer analysis [Lhoták and Hendren 2003]. A field reference node in a PAG is a field dereference
on a variable while an object field node in a PFG is a field dereference on the object pointed to by
a variable. Thus, unlike PFGs, the value flow through load/store operations is not connected in
PAGs, e.g., given statements p.f = a and b = q.f, there is no path from a to b in the PAG even if
variables p and q point to the same object. Therefore, unlike PFGs, PAGs cannot express the flow of
objects in a program directly.
Recent research has produced efficient demand-driven pointer analyses (e.g., [Späth et al. 2016;

Wang et al. 2017]). A demand-driven analysis typically only computes points-to information for
program points that may affect a particular site of interest for specific clients. Differently, the
Zipper analysis and other whole-program pointer analyses [Hassanshahi et al. 2017; Jeong et al.
2017; Smaragdakis et al. 2014; Tan et al. 2016, 2017] compute points-to information for all sites,
thereby providing information for all possible clients.

6 CONCLUSION

Context sensitivity is an important technique for ensuring high precision in pointer analysis for
Java. Previous work has shown that it is beneficial to apply context sensitivity selectively, instead
of uniformly for all methods, as conventionally done. In this paper, we have presented Zipper: a
principled approach to identifying precision-critical methods, with a focus on keeping as much
precision as possible compared to a conventional analysis.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:25

The conceptual contribution of this work consists of the three basic patterns of value flows
(direct, wrapped, and unwrapped flows) that explain where and how most imprecision is introduced
in a context-insensitive pointer analysis, together with the concept of precision flow graphs that
concisely model the relevant value flow. The practical contribution consists of the implementation
and experiments, which demonstrate the effectiveness of the technique on real-world Java programs.
The experimental results show that the three precision loss patterns successfully capture the vast
majority of the methods that benefit from context sensitivity, and as a result, we obtain a significant
analysis speedup while retaining essentially all of the precision of conventional context-sensitive
pointer analysis. Zipper is conceptually simple and easy to integrate with existing pointer analysis
tools.

For future work, it is interesting to further explore the opportunities for relaxing the precision-
guided principle (as suggested in Section 4.1.2), and to use theZipper approach at amore fine-grained
level, on variables and object fields instead of methods (as mentioned in Section 3.3).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

141:26 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

A APPENDIX

Table 6. Performance and precision metrics for context-insensitive (ci), conventional type-sensitive (2type),

Zipper-guided (zipper-2type), and introspective type-sensitive (introX-2type) pointer analyses.

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

batik

ci 82 2 961 4 681 19 197 101 616
2type 378 1 938 3 623 16 892 77 337

zipper-2type 239 1 941 3 617 16 894 77 351
introA-2type 187 2 751 4 316 19 027 97 330
introB-2type 509 2 398 4 107 18 733 90 824

checkstyle

ci 50 1 114 1 444 9 866 57 490
2type 125 695 1 122 9 534 49 274

zipper-2type 82 711 1 140 9 544 49 436
introA-2type 106 982 1 267 9 785 55 876
introB-2type 156 852 1 205 9 613 51 718

sunflow

ci 61 3 003 4 113 19 773 106 410
2type 197 2 247 3 506 19 315 90 967

zipper-2type 136 2 262 3 510 19 316 91 022
introA-2type 126 2 840 3 855 19 685 104 135
introB-2type 169 2 561 3 635 19 476 96 376

findbugs

ci 52 2 508 2 925 13 036 77 370
2type 265 1 683 2 345 12 674 66 443

zipper-2type 179 1 703 2 349 12 678 66 488
introA-2type 120 2 296 2 581 12 987 74 820
introB-2type 225 2 068 2 534 12 901 72 006

jpc

ci 58 2 370 5 013 17 146 96 669
2type 128 1 599 4 328 15 908 81 527

zipper-2type 98 1 614 4 336 15 911 81 559
introA-2type 117 2 224 4 776 17 063 95 417
introB-2type 156 1 868 4 413 16 046 86 709

eclipse

ci 23 1 139 1 334 8 465 45 474
2type 57 665 1 031 7 933 38 337

zipper-2type 50 714 1 063 7 967 38 677
introA-2type 55 1 004 1 161 8 336 43 911
introB-2type 63 850 1 100 8 026 40 289

chart

ci 46 1 810 1 852 12 064 63 453
2type 84 1 155 1 446 11 439 52 965

zipper-2type 79 1 175 1 451 11 444 53 011
introA-2type 108 1 664 1 658 11 976 61 731
introB-2type 121 1 384 1 541 11 579 56 380

fop

ci 74 2 458 3 585 17 154 84 330
2type 251 1 753 2 930 16 477 71 847

zipper-2type 189 1 777 2 943 16 482 71 922
introA-2type 199 2 288 3 298 17 024 82 301
introB-2type 278 2 005 3 045 16 618 76 638

xalan

ci 39 1 182 1 898 9 705 51 302
2type 99 729 1 565 9 151 45 444

zipper-2type 79 758 1 578 9 160 45 566
introA-2type 107 1 136 1 793 9 655 50 775
introB-2type 130 889 1 640 9 232 46 927

bloat

ci 31 1 924 2 014 8 939 61 150
2type 74 1 486 1 626 8 523 54 279

zipper-2type 73 1 508 1 642 8 536 54 424
introA-2type 61 1 833 1 812 8 885 60 305
introB-2type 73 1 714 1 684 8 647 56 041

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

Precision-Guided Context Sensitivity for Pointer Analysis 141:27

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC) under the FP7 and Horizon
2020 research and innovation programs (grant agreements 307334, 790340, and 647544).

REFERENCES

Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language. Ph.D. Dissertation. University

of Copenhagen.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick D. McDaniel. 2014. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for Android apps. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259ś269.

https://doi.org/10.1145/2594291.2594299

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006.

The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,

Portland, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 169ś190. https://doi.org/10.1145/1167473.1167488

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming reflection: Aiding static analysis

in the presence of reflection and custom class loaders. In Proceedings of the 33rd International Conference on Software

Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, May 21-28, 2011. 241ś250. https://doi.org/10.1145/1985793.1985827

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.

In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens (Eds.). ACM,

243ś262. https://doi.org/10.1145/1640089.1640108

Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: a powerful approach to weakest preconditions. In

Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin,

Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 363ś374. https://doi.org/10.1145/1542476.1542517

David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. 1990. Analysis of Pointers and Structures. In Proceedings of the

ACM SIGPLAN’90 Conference on Programming Language Design and Implementation (PLDI), White Plains, New York, USA,

June 20-22, 1990, Bernard N. Fischer (Ed.). ACM, 296ś310. https://doi.org/10.1145/93542.93585

Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008. Effective typestate verification in the

presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17, 2 (2008), 9:1ś9:34. https://doi.org/10.1145/1348250.1348255

Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen, and Martin C. Rinard. 2015. Information

Flow Analysis of Android Applications in DroidSafe. In 22nd Annual Network and Distributed System Security Symposium,

NDSS 2015, San Diego, California, USA, February 8-11, 2015. The Internet Society. https://www.ndss-symposium.org/

ndss2015/information-flow-analysis-android-applications-droidsafe

Neville Grech and Yannis Smaragdakis. 2017. P/Taint: unified points-to and taint analysis. PACMPL 1, OOPSLA (2017),

102:1ś102:28. https://doi.org/10.1145/3133926

Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard Scholz, and Yi Lu. 2017. An

efficient tunable selective points-to analysis for large codebases. In Proceedings of the 6th ACM SIGPLAN International

Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2017, Barcelona, Spain, June 18, 2017, Karim Ali and

Cristina Cifuentes (Eds.). ACM, 13ś18. https://doi.org/10.1145/3088515.3088519

Michael Hind. 2001. Pointer analysis: haven’t we solved this problem yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis For Software Tools and Engineering, PASTE’01, Snowbird, Utah, USA, June 18-19, 2001, John

Field and Gregor Snelting (Eds.). ACM, 54ś61. https://doi.org/10.1145/379605.379665

Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. 2017. Data-driven context-sensitivity for points-to analysis.

PACMPL 1, OOPSLA (2017), 100:1ś100:28. https://doi.org/10.1145/3133924

Vini Kanvar and Uday P. Khedker. 2016. Heap Abstractions for Static Analysis. ACM Comput. Surv. 49, 2, Article 29 (June

2016), 47 pages. https://doi.org/10.1145/2931098

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-

Juergen Boehm and Cormac Flanagan (Eds.). ACM, 423ś434. https://doi.org/10.1145/2462156.2462191

Ondrej Lhoták and Laurie J. Hendren. 2003. Scaling Java Points-to Analysis Using SPARK. In Compiler Construction, 12th

International Conference, CC 2003, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in Computer Science), Görel Hedin (Ed.), Vol. 2622.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/1348250.1348255
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3088515.3088519
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/3133924
https://doi.org/10.1145/2931098
https://doi.org/10.1145/2462156.2462191

141:28 Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis

Springer, 153ś169. https://doi.org/10.1007/3-540-36579-6_12

Ondrej Lhoták and Laurie J. Hendren. 2006. Context-Sensitive Points-to Analysis: Is It Worth It?. In Compiler Construction,

15th International Conference, CC 2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2006, Vienna, Austria, March 30-31, 2006, Proceedings (Lecture Notes in Computer Science), Alan Mycroft and Andreas

Zeller (Eds.), Vol. 3923. Springer, 47ś64. https://doi.org/10.1007/11688839_5

Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the Performance of Flow-sensitive Points-to Analysis Using

Value Flow. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of

Software Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 343ś353. https://doi.org/10.1145/2025113.2025160

Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis. 2018. Scalability-First Pointer Analysis with Self-Tuning Context-

Sensitivity. In Proc. 12th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering (ESEC/FSE).

Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slicing by Sequential Criteria. In 30th European

Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs), Shriram Krishnamurthi

and Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 15:1ś15:27. https://doi.org/

10.4230/LIPIcs.ECOOP.2016.15

Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities in Java Applications with Static Analysis. In

Proceedings of the 14th USENIX Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005, Patrick D. McDaniel

(Ed.). USENIX Association.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized object sensitivity for points-to and side-effect

analyses for Java. In Proceedings of the International Symposium on Software Testing and Analysis, ISSTA 2002, Roma, Italy,

July 22-24, 2002, Phyllis G. Frankl (Ed.). ACM, 1ś11. https://doi.org/10.1145/566172.566174

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for Java.

ACM Trans. Softw. Eng. Methodol. 14, 1 (2005), 1ś41. https://doi.org/10.1145/1044834.1044835

Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the ACM

SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14,

2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 308ś319. https://doi.org/10.1145/1133981.1134018

Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. 2009. Effective static deadlock detection. In 31st International

Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings. IEEE, 386ś396. https:

//doi.org/10.1109/ICSE.2009.5070538

Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity Guided

by Impact Pre-analysis. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’14). ACM, New York, NY, USA, 475ś484. https://doi.org/10.1145/2594291.2594318

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. 2012. Statically checking API protocol conformance

with mined multi-object specifications. In 34th International Conference on Software Engineering, ICSE 2012, June 2-9,

2012, Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer Society, 925ś935.

https://doi.org/10.1109/ICSE.2012.6227127

Barbara G. Ryder. 2003. Dimensions of Precision in Reference Analysis of Object-Oriented Programming Languages. In

Compiler Construction, 12th International Conference, CC (Lecture Notes in Computer Science), Vol. 2622. Springer, 126ś137.

Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. 2016. On fast large-scale program analysis in Datalog.

In Proceedings of the 25th International Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016,

Ayal Zaks and Manuel V. Hermenegildo (Eds.). ACM, 196ś206. https://doi.org/10.1145/2892208.2892226

Micha Sharir and Amir Pnueli. 1981. Two Approaches to Interprocedural Data Flow Analysis. Chapter 7, 189ś233.

Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. Dissertation. Carnegie Mellon University.

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and Trends in Programming Languages 2,

1 (2015), 1ś69. https://doi.org/10.1561/2500000014

Yannis Smaragdakis, George Balatsouras, and George Kastrinis. 2013. Set-based Pre-processing for Points-to Analysis. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications (OOPSLA ’13). ACM, New York, NY, USA, 253ś270. https://doi.org/10.1145/2509136.2509524

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your contexts well: understanding object-sensitivity.

In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,

TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 17ś30. https://doi.org/10.1145/1926385.1926390

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across the

board. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United

Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 485ś495. https://doi.org/10.1145/

2594291.2594320

Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and

Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming, ECOOP 2016,

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/11688839_5
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1109/ICSE.2012.6227127
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/2594291.2594320

Precision-Guided Context Sensitivity for Pointer Analysis 141:29

July 18-22, 2016, Rome, Italy. 22:1ś22:26. https://doi.org/10.4230/LIPIcs.ECOOP.2016.22

Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive points-to analysis for Java. In Proceedings of

the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June

11-14, 2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 387ś400. https://doi.org/10.1145/1133981.1134027

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Alias Analysis for Object-Oriented

Programs. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke, James Noble,

and Tobias Wrigstad (Eds.). Lecture Notes in Computer Science, Vol. 7850. Springer, 196ś232. https://doi.org/10.1007/

978-3-642-36946-9_8

Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. 2007. Thin slicing. In Proceedings of the ACM SIGPLAN 2007 Conference

on Programming Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne Ferrante and

Kathryn S. McKinley (Eds.). ACM, 112ś122. https://doi.org/10.1145/1250734.1250748

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-driven points-to analysis for Java. In

Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and Richard P. Gabriel (Eds.).

ACM, 59ś76. https://doi.org/10.1145/1094811.1094817

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer Analysis More Precise with Still k-Limiting. In

Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings (Lecture Notes

in Computer Science), Xavier Rival (Ed.), Vol. 9837. Springer, 489ś510. https://doi.org/10.1007/978-3-662-53413-7_24

Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis: modeling the heap by merging equivalent

automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 278ś291. https://doi.org/

10.1145/3062341.3062360

Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA,

263ś277. https://doi.org/10.1145/3062341.3062359

Paolo Tonella and Alessandra Potrich. 2005. Reverse Engineering of Object Oriented Code. Springer. https://doi.org/10.1007/

b102522

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a Java

bytecode optimization framework. In Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative

Research, November 8-11, 1999, Mississauga, Ontario, Canada, Stephen A. MacKay and J. Howard Johnson (Eds.). IBM, 13.

https://doi.org/10.1145/781995.782008

WALA. 2018. Watson Libraries for Analysis. http://wala.sf.net.

Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani. 2017. Graspan: A Single-machine Disk-based

Graph System for Interprocedural Static Analyses of Large-scale Systems Code. In Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’17). ACM,

New York, NY, USA, 389ś404. https://doi.org/10.1145/3037697.3037744

Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis for JavaScript. In 29th European Conference on

Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs), John Tang Boyland (Ed.),

Vol. 37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 712ś734. https://doi.org/10.4230/LIPIcs.ECOOP.2015.712

Guoqing Xu and Atanas Rountev. 2008. Merging Equivalent Contexts for Scalable Heap-cloning-based Context-sensitive

Points-to Analysis. In Proceedings of the 2008 International Symposium on Software Testing and Analysis (ISSTA ’08). ACM,

New York, NY, USA, 225ś236. https://doi.org/10.1145/1390630.1390658

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 141. Publication date: November 2018.

https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1094811.1094817
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062359
https://doi.org/10.1007/b102522
https://doi.org/10.1007/b102522
https://doi.org/10.1145/781995.782008
http://wala.sf.net
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.1145/1390630.1390658

	Abstract
	1 Introduction
	2 Causes of Imprecision in Context-Insensitive Pointer Analysis
	2.1 Pattern 1: Direct Flow
	2.2 Pattern 2: Wrapped Flow
	2.3 Pattern 3: Unwrapped Flow

	3 Zipper
	3.1 Overview of Zipper
	3.2 Object Flow Graphs
	3.3 Precision Flow Graphs and Graph Reachability

	4 Evaluation
	4.1 RQ1: Precision and Efficiency of Zipper-Guided Pointer Analysis
	4.2 RQ2: Zipper-Guided Pointer Analysis vs. Introspective Pointer Analyses
	4.3 RQ3: Effect of Each Precision Loss Pattern
	4.4 Robustness of Zipper

	5 Related Work
	6 Conclusion
	A Appendix
	Acknowledgments
	References

