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Concurrent Programming 
Introduction and Advice

• Read the Birrell paper
- excellent introductory paper
- promotes understanding the material
- abstract content with direct application

- limited and rather outdated concrete technical 
content

• I will concentrate on Java here, but the same 
applies to other systems
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Concurrent Programming

• Most thread programming nowadays is 
monitor-style programming (e.g., Java threads, 
PThreads, threads in OS kernels)

• Monitor style programming has two 
components:

- locks/mutexes (lock)
- condition variables (wait, signal, 
broadcast)

• Mapping of abstract to concrete:
- Java: 

- lock -> synchronized
- wait -> wait
- signal -> notify
- broadcast  -> notifyAll

- PThreads:
- lock -> pthread_mutex_lock  ... 
pthread_mutex_unlock

- wait, signal, broadcast  -> 
pthread_cond_{wait,signal,broadcast}
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Different Models

• In Java every object can be a mutex/condition 
variable

- better way to think of it: every object is 
associated with a unique mutex and 
condition variable

• In other systems you need to explicitly create 
mutex/condition variables

- E.g., 
Mutex m; ... Lock(m) { ... }

• Thread creation is mostly uninteresting
- in Java: threads are instances of class 
Thread, they begin execution when their 
start method is called
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Mutex Example

class List {
public synchronized int insert(int i)
{ [BODY] }
}

same as

class List {
public int insert(int i)
{ synchronized(this) [BODY] }
}

• Mutexes are used to control access to shared 
data

- only one thread can execute inside a 
synchronized clause

- other threads who try to enter 
synchronized code, are blocked until 
the mutex is unlocked
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Condition Variables

• Condition variables are used to wait for 
specific events (especially for long waits)

- free memory is getting low, wake up the garbage 
collector thread

- 10,000 clock ticks have ellapsed, update that 
window

- new data arrived in the I/O port, process it

• Each condition variable is associated with a 
single mutex 

- In Java, each mutex is also associated with a 
single condition (ugly, ugly, ugly!)

• wait atomically unlocks the mutex (as many 
times as needed) and blocks the thread

• notify awakes some blocked thread
- the thread is awoken inside wait
- tries to lock the mutex (maybe many times)
- when it (finally) succeeds, it returns from 

the wait

Yannis Smaragdakis

6 of 12

Condition Variable Example

class Buffer {
Port port;
public synchronized void consume() {

while (port.empty())
wait();

process_data(port.first_data());
}

public synchronized void produce() {
port.add_data();
notify();

}
}

Use of Mutexes and Condition Variables

• We’ll talk about programming suggestions, 
common errors, and good idioms

• Advice: read examples in paper and absorb at 
your own pace
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Deadlocks

Examples:

• A locks M1, B locks M2, A blocks on M2, B 
blocks on M1

• Similar examples with condition variables and 
mutexes

Techniques for avoiding deadlocks:

• Fine grained locking

• Two-phase locking: acquire all the locks you’ll 
ever need up front, release all locks if you fail 
to acquire any one

- very good technique for some applications, 
but generally too restrictive

• Order locks and acquire them in order (e.g., all 
threads first acquire M1, then M2)
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Using Condition Variables

Recall our example:

class Buffer {
Port port;
public synchronized void consume() {

while (port.empty())
wait();

process_data(port.first_data());
}

public synchronized void produce() {
port.add_data();
notifyAll();

}
}

Why use while instead of if? (think of many 
consumers, simplicity of coding producer)

• notifyAll  is then safe to use in place of 
notify
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The Golden Rules

• Most problems with concurrent programming 
are very simple oversights! People forget to 
access shared variables in locks, forget to 
signal when a condition changes, etc. 
The golden rules:
1. Shared data should always be accessed 

through a single mutex (easy in Java: just 
make non-public in a class)

2. Think of a boolean condition (expressed in 
terms of program variables) for each 
condition variable. Every time the value of 
the boolean condition may have changed, 
call notifyAll  for the condition variable
- only call notify  when you are absolutely 

certain that any and only one waiting 
thread can enter the critical section

3. Globally order locks, acquire in order in all 
threads
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Monitor-Style Programming

• Armed with mutexes and condition variables, 
you can implement any kind of critical section
CS.enter(); [controlled code] CS.exit();

• General pattern:

class CS {
[shared data]
public synchronized void enter() {

while (![condition])
wait();

[change shared data 
to reflect in_CS]

[notify as needed]
}

public synchronized void exit() {
[change shared data 
to reflect out_of_CS]

[notify as needed]
}

}
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Example: Readers/Writers Locking
class RWLock {

int readers;
public RWLock() { readers = 0; }
public synchronized void enter_read() {

while (readers == -1)
wait();

readers++;
}
public synchronized void exit_read() {

readers--;
if (readers == 0)

notify();
}
public synchronized void enter_write() {

while (readers != 0)
wait();

readers = -1;
}
public synchronized void exit_write() {

readers = 0;
notifyAll();

}
}
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Comments on Readers/Writers Example

• Invariant: readers >= -1

• Note the use of notifyAll

• Single condition variable for phase changes
- ugly, ugly, ugly, and inefficient!

• Note that a writer signals all potential readers 
and one potential writer. Not all can proceed, 
however (spurious wake-ups)

• Unnecessary lock conflicts may arise 
(especially for multiprocessors):

- both readers and writers signal condition 
variables while still holding the 
corresponding mutexes

- notifyAll  wakes up many readers that 
will contend for a mutex

- can do a single notify, then have a reader 
notify next reader


