Concurrent Programming
I ntroduction and Advice

.- Read the Birrell paper
- excellent introductory paper
- promotes understanding the material

- abstract content with direct application
- limited and rather outdated concrete technical
content

. | will concentrate on Java here, but the same
applies to other systems

Tof12

Yannis Smaragdakis

Different Models

- In Java every object can be a mutex/condition
variable
- better way to think of it: every objectis
associated with a unique mutex and
condition variable

- In other systems you need to explicitly create
mutex/condition variables
-E.g,

Mut ex m Lock(m { ... }

. Thread creation is mostly uninteresting

- inJava: threads are instances of class
Thr ead, they begin execution when their
start methodiscalled

3of12

Yannis Smaragdakis

Concurrent Programming

. Most thread programming nowadays is

monitor-style programming (e.g., Javathreads,
PThreads, threads in OS kernels)

- Monitor style programming has two

components:
- locks/mutexes (I ock)
- condition variables (wai t , si gnal ,
br oadcast)

- Mapping of abstract to concrete:

- Java
-l ock ->synchroni zed
-wai t ->wait
-signal ->notify
- broadcast ->noti fyAll
- PThreads:
-l ock ->pt hread_nut ex_I ock ...
pt hr ead_rut ex_unl ock
-wai t,signal,broadcast ->
pt hread_cond_{wai t, si gnal , br oadcast }

Yannis Smaragdakis

20f12

Mutex Example

class List {
public synchronized int insert(int i)

}{ [BODY] }

same as

class List {

public int insert(int i)

{ synchroni zed(this) [BODY] }
}

. Mutexes are used to control access to shared
data
- only one thread can execute inside a
synchroni zed clause
- other threads who try to enter
synchroni zed code, are blocked until
the mutex is unlocked

Yannis Smaragdakis

40f12

Condition Variables

- Condition variables are used to wait for
specific events (especially for long waits)
- free memory is getting low, wake up the garbage
collector thread
- 10,000 clock ticks have ellapsed, update that
window
- new data arrived in the 1/O port, process it

. Each condition variable is associated with a
single mutex

- In Java, each mutex is also associated with a
single condition (ugly, ugly, ugly!)

- wai t atomically unlocks the mutex (as many
times as needed) and blocks the thread

- noti f y awakes some blocked thread
- the thread is awoken inside wai t
- tries to lock the mutex (maybe many times)
- when it (finally) succeeds, it returns from
thewai t

5of12

Yannis Smaragdakis

Deadlocks
Examples:

. AlocksM1, B locks M2, A blockson M2, B
blockson M1

- Similar examples with condition variables and
mutexes

Techniques for avoiding deadlocks:
- Fine grained locking

- Two-phaselocking: acquireall thelocksyou'll
ever need up front, release all locks if you fail
to acquire any one

- very good technique for some applications,
but generally too restrictive

- Order locks and acquirethemin order (e.g., all
threads first acquire M1, then M 2)

7of12

Yannis Smaragdakis

Condition Variable Example

class Buffer {
Port port;
publ i c synchroni zed voi d consune() {

while (port.enpty())
wai t () ;
process_data(port.first_data());

}

publ i c synchroni zed voi d produce() {
port.add_data();
notify();

}
}

Use of Mutexes and Condition Variables

- We'll talk about programming suggestions,
common errors, and good idioms

. Advice: read examples in paper and absorb at
your own pace

Yannis Smaragdakis

6of12

Using Condition Variables
Recall our example:

class Buffer {
Port port;
publ i c synchroni zed voi d consune() {
while (port.enpty())
wai t () ;
process_data(port.first_data());

}

publ i c synchroni zed voi d produce() {
port.add_data();
noti fyAll ();
}
}

Why usewhi | e instead of i f ? (think of many
consumers, simplicity of coding producer)

- notifyAll isthensafetousein place of
notify

Yannis Smaragdakis

8of12

The Golden Rules

- Most problems with concurrent programming
are very simple oversights! People forget to
access shared variables in locks, forget to
signal when a condition changes, etc.

The golden rules:

1. Shared data should always be accessed
through a single mutex (easy in Java: just
make non-public in a class)

2. Think of a boolean condition (expressed in
terms of program variables) for each
condition variable. Every time the val ue of
the boolean condition may have changed,
call noti fyAl | for the condition variable
- only call not i fy when you are absolutely

certain that any and only one waiting
thread can enter the critical section

3. Globally order locks, acquirein order in all
threads

Yannis Smaragdakis

9of12

Example: Reader s/\Writers L ocking

cl ass RWock {
int readers
public RWMock() { readers = 0; }
publ i c synchroni zed void enter_read() {
while (readers == -1)
wai t();
reader s++;

public synchroni zed void exit_read() {
readers--;
if (readers == 0)
notify();

public synchronized void enter_wite() {
while (readers !'= 0)
wai t () ;
readers = -1

public synchronized void exit_wite() {
readers = 0
noti fyAll ()

Yannis Smaragdakis

1lof12

M onitor-Style Programming

. Armed with mutexes and condition variables,

you can implement any kind of critical section
CS.enter(); [controlled code] CS.exit();

.- General pattern:

class CS {
[shared dat a]
public synchroni zed void enter() {
while (![condition])
wai t () ;
[change shared data
to reflect in_CS]
[notify as needed]

}

public synchronized void exit() {
[change shared data
to reflect out_of _CS]
[notify as needed]
}
}

Yannis Smaragdakis

100f12

Comments on Reader Writers Example

. Invariant: r eaders >= -1
- Notetheuseof noti f yAl |

- Single condition variable for phase changes
- ugly, ugly, ugly, and inefficient!

- Notethat awriter signals all potential readers
and one potential writer. Not all can proceed,
however (spurious wake-ups)

- Unnecessary lock conflicts may arise
(especially for multiprocessors):

- both readers and writers signal condition
variables while still holding the
corresponding mutexes

-notifyAl | wakesup many readers that
will contend for a mutex

-candoasinglenot i f y, then have a reader
noti f y next reader

Yannis Smaragdakis

120f12

