
Yannis Smaragdakis

1 of 12

Concurrent Programming
Introduction and Advice

• Read the Birrell paper
- excellent introductory paper
- promotes understanding the material
- abstract content with direct application

- limited and rather outdated concrete technical
content

• I will concentrate on Java here, but the same
applies to other systems

Yannis Smaragdakis

2 of 12

Concurrent Programming

• Most thread programming nowadays is
monitor-style programming (e.g., Java threads,
PThreads, threads in OS kernels)

• Monitor style programming has two
components:

- locks/mutexes (lock)
- condition variables (wait, signal,
broadcast)

• Mapping of abstract to concrete:
- Java:

- lock -> synchronized
- wait -> wait
- signal -> notify
- broadcast -> notifyAll

- PThreads:
- lock -> pthread_mutex_lock ...
pthread_mutex_unlock

- wait, signal, broadcast ->
pthread_cond_{wait,signal,broadcast}

Yannis Smaragdakis

3 of 12

Different Models

• In Java every object can be a mutex/condition
variable

- better way to think of it: every object is
associated with a unique mutex and
condition variable

• In other systems you need to explicitly create
mutex/condition variables

- E.g.,
Mutex m; ... Lock(m) { ... }

• Thread creation is mostly uninteresting
- in Java: threads are instances of class
Thread, they begin execution when their
start method is called

Yannis Smaragdakis

4 of 12

Mutex Example

class List {
public synchronized int insert(int i)
{ [BODY] }
}

same as

class List {
public int insert(int i)
{ synchronized(this) [BODY] }
}

• Mutexes are used to control access to shared
data

- only one thread can execute inside a
synchronized clause

- other threads who try to enter
synchronized code, are blocked until
the mutex is unlocked

Yannis Smaragdakis

5 of 12

Condition Variables

• Condition variables are used to wait for
specific events (especially for long waits)

- free memory is getting low, wake up the garbage
collector thread

- 10,000 clock ticks have ellapsed, update that
window

- new data arrived in the I/O port, process it

• Each condition variable is associated with a
single mutex

- In Java, each mutex is also associated with a
single condition (ugly, ugly, ugly!)

• wait atomically unlocks the mutex (as many
times as needed) and blocks the thread

• notify awakes some blocked thread
- the thread is awoken inside wait
- tries to lock the mutex (maybe many times)
- when it (finally) succeeds, it returns from

the wait

Yannis Smaragdakis

6 of 12

Condition Variable Example

class Buffer {
Port port;
public synchronized void consume() {

while (port.empty())
wait();

process_data(port.first_data());
}

public synchronized void produce() {
port.add_data();
notify();

}
}

Use of Mutexes and Condition Variables

• We’ll talk about programming suggestions,
common errors, and good idioms

• Advice: read examples in paper and absorb at
your own pace

Yannis Smaragdakis

7 of 12

Deadlocks

Examples:

• A locks M1, B locks M2, A blocks on M2, B
blocks on M1

• Similar examples with condition variables and
mutexes

Techniques for avoiding deadlocks:

• Fine grained locking

• Two-phase locking: acquire all the locks you’ll
ever need up front, release all locks if you fail
to acquire any one

- very good technique for some applications,
but generally too restrictive

• Order locks and acquire them in order (e.g., all
threads first acquire M1, then M2)

Yannis Smaragdakis

8 of 12

Using Condition Variables

Recall our example:

class Buffer {
Port port;
public synchronized void consume() {

while (port.empty())
wait();

process_data(port.first_data());
}

public synchronized void produce() {
port.add_data();
notifyAll();

}
}

Why use while instead of if? (think of many
consumers, simplicity of coding producer)

• notifyAll is then safe to use in place of
notify

Yannis Smaragdakis

9 of 12

The Golden Rules

• Most problems with concurrent programming
are very simple oversights! People forget to
access shared variables in locks, forget to
signal when a condition changes, etc.
The golden rules:
1. Shared data should always be accessed

through a single mutex (easy in Java: just
make non-public in a class)

2. Think of a boolean condition (expressed in
terms of program variables) for each
condition variable. Every time the value of
the boolean condition may have changed,
call notifyAll for the condition variable
- only call notify when you are absolutely

certain that any and only one waiting
thread can enter the critical section

3. Globally order locks, acquire in order in all
threads

Yannis Smaragdakis

10 of 12

Monitor-Style Programming

• Armed with mutexes and condition variables,
you can implement any kind of critical section
CS.enter(); [controlled code] CS.exit();

• General pattern:

class CS {
[shared data]
public synchronized void enter() {

while (![condition])
wait();

[change shared data
to reflect in_CS]

[notify as needed]
}

public synchronized void exit() {
[change shared data
to reflect out_of_CS]

[notify as needed]
}

}

Yannis Smaragdakis

11 of 12

Example: Readers/Writers Locking
class RWLock {

int readers;
public RWLock() { readers = 0; }
public synchronized void enter_read() {

while (readers == -1)
wait();

readers++;
}
public synchronized void exit_read() {

readers--;
if (readers == 0)

notify();
}
public synchronized void enter_write() {

while (readers != 0)
wait();

readers = -1;
}
public synchronized void exit_write() {

readers = 0;
notifyAll();

}
}

Yannis Smaragdakis

12 of 12

Comments on Readers/Writers Example

• Invariant: readers >= -1

• Note the use of notifyAll

• Single condition variable for phase changes
- ugly, ugly, ugly, and inefficient!

• Note that a writer signals all potential readers
and one potential writer. Not all can proceed,
however (spurious wake-ups)

• Unnecessary lock conflicts may arise
(especially for multiprocessors):

- both readers and writers signal condition
variables while still holding the
corresponding mutexes

- notifyAll wakes up many readers that
will contend for a mutex

- can do a single notify, then have a reader
notify next reader

