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(GoF) Design Patterns

The Gamma, Helm, Johnson, and Vlissides 
(GoF) book is the “bible” of design patterns: it 
catalogues some of the most common and useful 
OO idioms

- This lecture will just be a quick refresher 
and warm-up

- We will cover some very fundamental 
patterns, just to have a common 
vocabulary

- in later lectures I will freely say things like “this 
is done with an Abstract Factory” or “a 
Singleton pattern takes care of this”

- There are tons of material on the web—
these slides are just quick notes

- http://www.cs.wustl.edu/~schmidt/
tutorials-patterns.html

- http://www.objenv.com/cetus/
oo_patterns.html

Yannis Smaragdakis

2 of 12

Overview

A design pattern is an abstract pattern occurring 
in the course of designing an OO system

Why catalogue patterns?

• not having to reinvent them

• common vocabulary => better communication, 
documentation

Ok, but what makes something a “pattern”? Why 
isn’t every single idiom a pattern?

• resistance to change!

• design patterns are design “fixpoints”
- they represent the state of a mature system, 

after requirements have changed many 
times and the system architecture has 
reached a steady state
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Catalogue

The catalogue has a strict format
- Pattern name (e.g., Observer) and 

classification (creational/structural/
behavioral)

- Intent
- Alternate names
- Motivation
- Applicability
- Structure
- Participants
- Collaborations
- Consequences
- Implementation
- Sample code
- Known uses
- Related patterns
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Creational Patterns: Abstract Factory

• For creating families of related objects without 
specifying which

• Example:
- Window with subclasses PMWindow, 

MotifWindow
- Scrollbar with subclasses PMScrollbar, 

MotifScrollbar
- client is oblivious to actual window used, 

employs an abstract factory to 
“CreateScrollBar”, “CreateWindow”

- concrete factories are subclasses of the 
abstract factory
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Factory Method

• For defining an interface for object creation, 
but letting subclasses decide which class to 
instantiate. Example:

- a generic library of abstract classes (an 
application framework) is used as the basis 
of client-server applications

- applications create documents (Document 
is an abstract class in the framework), the 
application class (also an abstract class in 
the framework) has an abstract 
CreateDocument method

- other application code in the framework 
refers to this method and manipulates the 
documents it returns

- concrete applications define the 
CreateDocument method and create the 
right concrete Document (instance of a 
subclass of Document)
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Singleton

• For ensuring that a class only has one instance

• Example implementation:
- the class cannot be instantiated externally 

(e.g., protected constructor)
- a static method (“class method”) is used to 

access the single instance of the class and 
create it the first time

• Advantages over a class with only static 
members and methods

- singleton means “at most one”, not “exactly 
one”

- object identity (can use the object as a key, 
for instance)

- avoid issues of order of static initialization
- able to inherit methods from a non-

singleton class, or implement interface 
(i.e., able to do dynamic dispatch)
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Structural Patterns: Bridge 
(aka Envelope-Letter)

• For decoupling an abstraction from its 
implementation (so they can be extended 
independently)

• Example:
- A window may be subclassed across two 

different axes of variability: windowing 
toolkit (e.g., XWindows, PMWindows) 
and implementation (e.g., TextWindow, 
GraphicalWindow)

- Avoid the combinatorial blowup by 
separating the Window abstract class from 
the WindowImpl abstract class

- A window holds a reference to a 
WindowImpl
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Behavioral Patterns: Command

• For encoding actions as objects so they can be 
recorded, logged, modified at runtime (e.g., 
context sensitive menus) etc.

• Example:
- A graphical application may have several 

different commands in a menu
- Instead of calling a method for each 

command, register a “command” object 
(instance of a subclass of an abstract 
Command class)

- Each command object supports an 
“execute” method

• An OO way to do callbacks
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Observer (aka Publish-Subscribe)

• For registering objects and notifying them 
when events occur

• Example:
- A class Model models data to be displayed 

graphically. The data may be presented in 
multiple views. Each view is a subclass of 
a View abstract class, which defines an 
update method

- Model has methods to dynamically 
register and unregister views

- When the data change, all registered views 
are notified (their update is called)

• Very common pattern for GUIs (MFC, 
Smalltalk MVC)
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Visitor

• For encoding operations as independent 
entities, without distributing them throughout 
the classes they are applicable on

- useful for adding functionality without 
editing classes

• Typically, in OO designs if an “operation” is 
applicable to multiple types (classes), it is 
defined as a method in all the corresponding 
classes. With visitor, the “operation” can be in 
a class by itself

• Example:
- A compiler has TypeCheck, CodeGen, 

etc. operations with different 
implementations for declarations, 
statements, etc.

- It is easier to organize code with these 
operations as separate entities
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- Also easier to add new operations
- Each class (Declaration, Statement, 

etc.) defines an Accept method that takes 
a visitor and passes this as a parameter to 
the visitor’s Visit method (or 
VisitDeclaration, 
VisitAssignment, etc., method if no 
overloading)

- The visitor defines the operation (e.g., 
typecheck) and is an instance of a subclass 
of the Visitor abstract class (which 
defines Visit, or VisitAssignment, 
etc.)

• Visitor is a way to structure code by operation 
instead of by type of data

• “Programming functionally in an OO 
language”
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Comments

“There is no problem in computer programming 
that cannot be solved with one extra level of 
indirection” (Anonymous)

“There are run-time inefficiencies, but the 
human inefficiencies are more important in the 
long run” (GoF)

• There are other correct designs, but they may 
not withstand change so well

• Design patterns add indirection to help 
anticipate change in the system


