
Yannis Smaragdakis

1 of 12

(GoF) Design Patterns

The Gamma, Helm, Johnson, and Vlissides 
(GoF) book is the “bible” of design patterns: it 
catalogues some of the most common and useful 
OO idioms

- This lecture will just be a quick refresher 
and warm-up

- We will cover some very fundamental 
patterns, just to have a common 
vocabulary

- in later lectures I will freely say things like “this 
is done with an Abstract Factory” or “a 
Singleton pattern takes care of this”

- There are tons of material on the web—
these slides are just quick notes

- http://www.cs.wustl.edu/~schmidt/
tutorials-patterns.html

- http://www.objenv.com/cetus/
oo_patterns.html

Yannis Smaragdakis

2 of 12

Overview

A design pattern is an abstract pattern occurring 
in the course of designing an OO system

Why catalogue patterns?

• not having to reinvent them

• common vocabulary => better communication, 
documentation

Ok, but what makes something a “pattern”? Why 
isn’t every single idiom a pattern?

• resistance to change!

• design patterns are design “fixpoints”
- they represent the state of a mature system, 

after requirements have changed many 
times and the system architecture has 
reached a steady state

Yannis Smaragdakis

3 of 12

Catalogue

The catalogue has a strict format
- Pattern name (e.g., Observer) and 

classification (creational/structural/
behavioral)

- Intent
- Alternate names
- Motivation
- Applicability
- Structure
- Participants
- Collaborations
- Consequences
- Implementation
- Sample code
- Known uses
- Related patterns

Yannis Smaragdakis

4 of 12

Creational Patterns: Abstract Factory

• For creating families of related objects without 
specifying which

• Example:
- Window with subclasses PMWindow, 

MotifWindow
- Scrollbar with subclasses PMScrollbar, 

MotifScrollbar
- client is oblivious to actual window used, 

employs an abstract factory to 
“CreateScrollBar”, “CreateWindow”

- concrete factories are subclasses of the 
abstract factory



Yannis Smaragdakis

5 of 12

Factory Method

• For defining an interface for object creation, 
but letting subclasses decide which class to 
instantiate. Example:

- a generic library of abstract classes (an 
application framework) is used as the basis 
of client-server applications

- applications create documents (Document 
is an abstract class in the framework), the 
application class (also an abstract class in 
the framework) has an abstract 
CreateDocument method

- other application code in the framework 
refers to this method and manipulates the 
documents it returns

- concrete applications define the 
CreateDocument method and create the 
right concrete Document (instance of a 
subclass of Document)

Yannis Smaragdakis

6 of 12

Singleton

• For ensuring that a class only has one instance

• Example implementation:
- the class cannot be instantiated externally 

(e.g., protected constructor)
- a static method (“class method”) is used to 

access the single instance of the class and 
create it the first time

• Advantages over a class with only static 
members and methods

- singleton means “at most one”, not “exactly 
one”

- object identity (can use the object as a key, 
for instance)

- avoid issues of order of static initialization
- able to inherit methods from a non-

singleton class, or implement interface 
(i.e., able to do dynamic dispatch)

Yannis Smaragdakis

7 of 12

Structural Patterns: Bridge 
(aka Envelope-Letter)

• For decoupling an abstraction from its 
implementation (so they can be extended 
independently)

• Example:
- A window may be subclassed across two 

different axes of variability: windowing 
toolkit (e.g., XWindows, PMWindows) 
and implementation (e.g., TextWindow, 
GraphicalWindow)

- Avoid the combinatorial blowup by 
separating the Window abstract class from 
the WindowImpl abstract class

- A window holds a reference to a 
WindowImpl

Yannis Smaragdakis

8 of 12

Behavioral Patterns: Command

• For encoding actions as objects so they can be 
recorded, logged, modified at runtime (e.g., 
context sensitive menus) etc.

• Example:
- A graphical application may have several 

different commands in a menu
- Instead of calling a method for each 

command, register a “command” object 
(instance of a subclass of an abstract 
Command class)

- Each command object supports an 
“execute” method

• An OO way to do callbacks



Yannis Smaragdakis

9 of 12

Observer (aka Publish-Subscribe)

• For registering objects and notifying them 
when events occur

• Example:
- A class Model models data to be displayed 

graphically. The data may be presented in 
multiple views. Each view is a subclass of 
a View abstract class, which defines an 
update method

- Model has methods to dynamically 
register and unregister views

- When the data change, all registered views 
are notified (their update is called)

• Very common pattern for GUIs (MFC, 
Smalltalk MVC)

Yannis Smaragdakis

10 of 12

Visitor

• For encoding operations as independent 
entities, without distributing them throughout 
the classes they are applicable on

- useful for adding functionality without 
editing classes

• Typically, in OO designs if an “operation” is 
applicable to multiple types (classes), it is 
defined as a method in all the corresponding 
classes. With visitor, the “operation” can be in 
a class by itself

• Example:
- A compiler has TypeCheck, CodeGen, 

etc. operations with different 
implementations for declarations, 
statements, etc.

- It is easier to organize code with these 
operations as separate entities

Yannis Smaragdakis

11 of 12

- Also easier to add new operations
- Each class (Declaration, Statement, 

etc.) defines an Accept method that takes 
a visitor and passes this as a parameter to 
the visitor’s Visit method (or 
VisitDeclaration, 
VisitAssignment, etc., method if no 
overloading)

- The visitor defines the operation (e.g., 
typecheck) and is an instance of a subclass 
of the Visitor abstract class (which 
defines Visit, or VisitAssignment, 
etc.)

• Visitor is a way to structure code by operation 
instead of by type of data

• “Programming functionally in an OO 
language”

Yannis Smaragdakis

12 of 12

Comments

“There is no problem in computer programming 
that cannot be solved with one extra level of 
indirection” (Anonymous)

“There are run-time inefficiencies, but the 
human inefficiencies are more important in the 
long run” (GoF)

• There are other correct designs, but they may 
not withstand change so well

• Design patterns add indirection to help 
anticipate change in the system


