
Yannis Smaragdakis

1 of 18

Garbage Collection Survey 

- Based on Wilson’s short survey

Yannis Smaragdakis

2 of 18

Garbage Collectors

• Two different tasks:
- reachability computation (from root set)
- reclamation

• Main degrees of variability:
- is GC incremental or stop-and-collect?

- incremental better, more complex
- are objects moved during reclamation?

- if not, high complexity to link garbage in free 
lists, etc.

- if they are, we lose conservatism (have to know 
all pointers), may suffer from the copy 
overhead (usually not too important)

• Important question: How to tell pointers from 
data?

- type information
- header fields, tag bits, etc.

Yannis Smaragdakis

3 of 18

Basic Garbage Collection Techniques

1.Reference Counting collection
2.Mark-Sweep collection
3.Mark-Compact collection
4.Copying collection
5.Implicit, non-copying collection

Yannis Smaragdakis

4 of 18

1. Reference Counting

• Keep for each object a count of how many 
times it is pointed to

• Advantages:
- simplicity, easy to make incremental
- locality probably good [DeTreville]
- little degradation when heap is almost full
- objects stay in place, can be conservative

• Disadvantages:
- work done for each pointer copying

- horrible for short-lived variables
- cycles can fool it

- cycles are common (doubly linked lists, etc.)
- biggest showstopper



Yannis Smaragdakis

5 of 18

2. Mark-Sweep Collection

• Two phases: marking (for reachability 
computation), sweeping (for reclamation)

• Advantages:
- objects stay in place, can be conservative

• Disadvantages:
- allocator kind of problems: fragmentation, 

locality
- cost of collection proportional to amount of 

garbage + live data (not just live data)

• All these problems can be alleviated with 
clever techniques, as in allocators. On the 
other hand, they can be solved altogether with 
other GC techniques

Yannis Smaragdakis

6 of 18

3. Mark-Compact Collection

• Like mark-sweep, only compaction phase 
instead of sweeping (usually “sliding 
compaction”)

• Advantages:
- no fragmentation
- good locality after compaction

• Disadvantages:
- no conservatism
- horrible locality during GC (multiple passes 

through memory)

Yannis Smaragdakis

7 of 18

4. Copying Collection

• Addresses a problem of mark-compact: 
memory needs to be traversed once

- reachability computation and copying are 
interleaved

- scavenging is another term used

• Most common implementations: semi-spaces 
with “scan” and “free” pointers that implement 
the tricolor abstraction:

- copied and scanned objects are black
- copied but not scanned objects are grey
- not copied, not scanned objects are white

• A FIFO scan queue (implementing a breadth-
first traversal) is often used for copied blocks

• Forwarding pointers are needed for objects 
that get copied (the originals may be reachable 
through some other objects— these references 
should be updated)

Yannis Smaragdakis

8 of 18

How often to copy (or compact)?

• “As rarely as possible, but definitely not more 
rarely”

• Infrequent collections are great: objects die

• But heap cannot be too large: has to fit in 
memory for collector to avoid paging

• Disadvantage of copying (relative to compact): 
semi-spaces make matters worse



Yannis Smaragdakis

9 of 18

5. Implicit Collection

• Observation: merging list is very fast

• Keep all objects in lists. Distinguish three lists:
- allocated
- free
- live (only used during GC)

• Implicit non-copying collection works 
isomorphically to a common copying 
collector:

- scan to “move” objects to live list (not 
really moved)

- then merge the allocated and free lists 
(allocated contains only garbage)

• Advantages:
- no copying (conservative, etc.)

Yannis Smaragdakis

10 of 18

• Disadvantages:
- no copying (fragmentation, etc.)
- high overhead (even allocated blocks need 

to have list pointers)
- hard to make low-fragmentation while 

keeping list merging cost low

Yannis Smaragdakis

11 of 18

Incremental Tracing Collectors
(the organization in the paper is not too good)

• Interleave garbage collection (marking and 
reclamation) with allocation and program 
actions (mutation)

• Tricolor marking is a useful abstraction
- reached objects with reached descendants 

are black
- reached objects whose descendants are not 

all reached are grey
- not-reached objects are white

• Important invariant: no black object holds a 
pointer directly to a white object

Yannis Smaragdakis

12 of 18

Problems and Solutions

• First problem: the mutator may cause 
violations of the invariant; the GC must notice 
so as to fix it

• Violation of the invariant would mean that 
some objects may not be traversed

• For collectors that move objects, a second 
(easier) problem emerges: the GC is itself a 
mutator and it can make program data invalid 
(objects are moved)

• Two kinds of solutions:
- read barriers
- write barriers 



Yannis Smaragdakis

13 of 18

Write Barriers

• Trap writes (of pointers to objects)

• Two occasions of interest:
- writing of a pointer to a white object in 

black object
- overwriting of the original pointer to the 

white object

• Two kinds of write barriers depending on 
which case they catch:

- snapshot-at-beginning: take a (virtual) 
snapshot of all pointers to white objects. In 
reality, trap writes that could be 
overwriting a pointer to a white object

- incremental update: catch writing in black 
objects; if pointer to white object is 
written, revert black object to grey (or 
make white object grey)

Yannis Smaragdakis

14 of 18

Snapshot-at-beginning

• Prevents overwriting pointers to white objects 
(and making them seem unreachable)

• When a location is written to, push the 
overwritten value on a stack, traverse it later

• Fairly conservative: whatever was live at the 
beginning of collection, will stay live

- no possibility of making something 
unreachable during the collection

• But only writes to grey and white objects need 
to be trapped (why?)

Yannis Smaragdakis

15 of 18

Incremental Update

• Notices when a pointer escapes into a location 
that has been traversed (black)

- all writes to black objects are trapped

• The black object is then made grey (lazy) or 
the white object pointed to is made grey 
(eager)

• This ensures that objects can become garbage 
after the collection has started

• Interesting question: should newly allocated 
objects be black or white?

- if black, too conservative (they may die 
very soon— before the GC is over)

- if white, complicated. The root set should 
be re-traversed at the end of a regular GC 

• Can the stack be traversed non-atomically?
- a write barrier that includes it is inefficient

Yannis Smaragdakis

16 of 18

Read Barriers

• The entire “white” space is read protected. 
Reading white objects makes them turn grey

• Quite expensive without specialized hardware

• Again question is, where to allocate new 
objects?

• Also, how to make sure that the GC does not 
run out of space?

- can tie rate of collection to rate of allocation

• Read barriers can be used with copying 
collection or implicit non-copying collection. 
The latter is the treadmill technique

- we now have 4 lists (one extra for 
allocations that occur during GC)



Yannis Smaragdakis

17 of 18

Generational Garbage Collection

• Most objects die very quickly, but the ones 
that survive a little tend to survive a lot longer

• Hence, the generational idea: multiple 
generations are GCed independently

- improves locality
- reduces work that needs to be done

• Usually 2 generations: the younger one is 
typically much smaller than the older one

• Main issue: how to treat inter-generational 
references?

Yannis Smaragdakis

18 of 18

Inter-Generational References

• Liveness is a global property: to tell what is 
garbage we need to take all generations into 
account

• Young-to-old references: small problem. 
Worst case, we traverse young generation 
(small) every time we GC the old one (rarely)

• Old-to-young references: big problem. 
Solutions:

- level of indirection (slows down all pointer 
accesses from old to young)

- write barrier on old generation, accounting 
of all the pointers from it to young

- can trap all writes. Even better: trap on first 
write, set dirtyness info, unprotect page (so that 
subsequent writes are fast), scan dirty pages at 
end

• Typically many more pointers from new to old


