
Yannis Smaragdakis

1 of 12

Interface Dispatch in Java 
(and efficient dispatch in OO 

languages)

• Based on OOPSLA 2001 paper on the 
Jalapeno JVM

- contains a thorough (but messy) discussion 
of related work

- a recent point of reference and an 
introduction to the intricacies of Java

- with measurements of actual programs

Yannis Smaragdakis

2 of 12

Interface Dispatch in Java

• We saw Myers’s scheme for merging type 
headers in a Java-like language (no multiple 
inheritance but interface inheritance)

• All such optimizations could apply to Java, but 
decisions are made at interface load time

• Java supports separate loading:
- when a class is loaded, the interfaces it 

references should not be loaded until they 
are used!

- loading them may cause exceptions (e.g., not 
found)

- objects should be checked dynamically to 
ensure that they support a certain interface 
when an interface method is called

- run-time, not load-time (verifier) check
- the results of the check could be cached for 

later use by the VM

Yannis Smaragdakis

3 of 12

On-the-fly Compilation

• High performance Java VMs are essentially 
compilers from bytecode to native code

• With compilation on-the-fly, the opportunities 
for better layout are more

- although the entire inheritance hierarchy of 
a program is not known, it is slowly 
discovered while classes/interfaces are 
loaded

- previous code can be re-compiled when 
method offset conflicts are detected

Yannis Smaragdakis

4 of 12

Common Techniques in JVMs

• Every object points to a type structure (instead 
of having separate pointers to all interface 
dispatch tables and the class dispatch table)

- less space per object, but typically slower 
interface dispatch than standard C++ 
layout

- we lose the type information (interface or 
class) of the current object pointer

- what happens when we cast the object to an 
interface? Need to have a lookup mechanism 
for methods that is not sensitive to the actual 
type/layout of the object

- the pointer to the type structure would be 
there anyway for run-time type info 
(instanceof), reflection, etc.

- the type structure can contain the class 
dispatch table inline, but the interface 
dispatch tables may have conflicting 
method index assignments



Yannis Smaragdakis

5 of 12

Interface Method lookup

• Recall, we need techniques that are insensitive 
to the actual type of the object 

- i.e., they will work the same for all objects that 
implement the interface, regardless of their 
actual class

• Naive implementation (“searched ITables”): a 
linked list of interface dispatch tables is 
searched on every dispatch

- some locality can be exploited by self-
reorganizing lists (move-to-front)

• Better implementation: the type structure 
contains a hash table from interface ids to 
“interface tables”

• Even better implementation (CACAO JVM 
“Directly Indexed ITables”): make it a perfect 
hash (unique id per interface when it is loaded, 
large array—as many entries as interfaces)

Yannis Smaragdakis

6 of 12

- can even keep the table small with on-the-
fly compilation!!! (finite hash table, 
reorganize and recompile in case of hash 
conflicts)

• Even then, one more load is needed for 
interface dispatch than for virtual method 
dispatch (or compared to the C++ conventional 
layout)

- because the object points to type structure 
that points to interface dispatch table that 
points to the code

Yannis Smaragdakis

7 of 12

Selector Indexed Tables

• Here is an extreme idea that provides the link 
to the next few ideas that are more realistic

- all subsequent techniques are 
approximations of this ideal

• If we can have a perfect hash for interfaces, 
why not have a perfect hash for methods 
(method id to method code) ?

- thus, we can avoid all method offset 
conflicts. All class and interface dispatch 
tables can be merged and can be included 
inline in the type structure

- this is possible because of all code being 
compiled in order: we assign a unique id to 
every method of every interface as it gets 
loaded (no recompilation needed)

- all dispatch tables in the system have slots 
for all these methods (perfect hashing)

- problem? (how much space?)

Yannis Smaragdakis

8 of 12

An Approximation

• CACAO (proposed) “selector coloring” for 
perfect hash:

- assign method offsets while classes and 
interfaces are loaded

- when a conflict is detected, change the 
offset assignment for a conflicting 
interface, go back and recompile past code 
to be consistent with new offset 
assignments

- this only works because of on-the-fly 
compilation



Yannis Smaragdakis

9 of 12

IMT-Based Dispatch

• Another approximation proposed in the paper

• Have a fixed size hash table for methods

• Instead of perfect hashing, make the common 
case fast (common case: no conflict)

• Jump directly to code pointed to by hash table 
entry, after storing a method id in a register

• In case of conflict, this code is “conflict 
resolution code”

- reads the previously stored id for the 
method

- performs tests (comparisons) to determine 
which code it should really branch to

Yannis Smaragdakis

10 of 12

IMT-based Performance Comparison

• In case of no conflict, the code in the hash 
table entry is the method code (as fast as 
virtual dispatch)

• In case of conflict, we have as many 
indirections as a “directly indexed ITable” 
(i.e., one more than traditional C++ dispatch-
table-based dispatch) + a small computation 
overhead for the conflict disambiguation code

- the latter is minimal

• Compared to a regular hash table, no hashing 
is needed (although still need a check and a 
branch) in the no-conflict case

• In case of conflicts, pointer chasing in a hash 
table would be very slow compared to the 
conflict stubs

Yannis Smaragdakis

11 of 12

Efficient Dynamic Dispatch: Inline Caches

• There are several general techniques to make 
dynamic dispatch more efficient

- not only for interface dispatch but also for 
virtual method invokations

• Inline caches: 
- overwrite the call site with a direct call to 

the latest method invoked from there
- change the prologue of that method to check 

that the caller is of the right type
- if the call is not to the correct method, 

initiate a general lookup routine

• Inline caches are good when the call site is 
really monomorphic or has good temporal 
locality

Yannis Smaragdakis

12 of 12

• Polymorphic inline caches:
- same thing, but for multiple previously seen 

cases
- saves one indirection relative to traditional 

dispatch table layout


