On Variance-Based Subtyping
for Parametric Types

Atsushi Igarashi' and Mirko Viroli?

1 Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
igarashi@kuis.kyoto-u.ac. jp
2 DEIS, Universita degli Studi di Bologna
via Rasi e Spinelli 176, 47023 Cesena (FC), Italy

mviroli@deis.unibo.it

Abstract. We develop the mechanism of variant parametric types, in-
spired by structural virtual types by Thorup and Torgersen, as a means
to enhance synergy between parametric and inclusive polymorphism in
object-oriented languages. Variant parametric types are used to con-
trol both subtyping between different instantiations of one generic class
and the visibility of their fields and methods. On one hand, one para-
metric class can be used as either covariant, contravariant, or bivari-
ant by attaching a variance annotation—which can be either +, -, or
*, respectively—to a type argument. On the other hand, the type sys-
tem prohibits certain method/field accesses through variant parametric
types, when those accesses can otherwise make the program unsafe. By
exploiting variant parametric types, a programmer can write generic code
abstractions working on a wide range of parametric types in a safe way.
For instance, a method that only reads the elements of a container of
strings can be easily modified so that it can accept containers of any
subtype of string.

The theoretical issues are studied by extending Featherweight GJ—an
existing core calculus for Java with generics—with variant paramet-
ric types. By exploiting the intuitive connection to bounded existential
types, we develop a sound type system for the extended calculus.

1 Introduction

The recent development of high-level constructs for object-oriented languages
is witnessing renewed interest in the design, implementation, and applications
of parametric polymorphism. For instance, Java’s designers initially decided to
avoid generic features, and to provide programmers only with the inclusive poly-
morphism supported by inheritance. However, as Java was used to build large-
scale applications, it became clear that the introduction of parametric polymor-
phism would have significantly enhanced programmers’ productivity, as well as
the readability, maintainability, and safety of programs. In response to Sun’s
call for proposals for adding generics to the Java programming language [29]
many extensions have been proposed ([5,13,36,25,1] to cite some); finally, Bracha,

B. Magnusson (Ed.): ECOOP 2002, LNCS 2374, pp. 441-469, 2002.
© Springer-Verlag Berlin Heidelberg 2002

442 Atsushi Igarashi and Mirko Viroli

Stoutamire, Odersky, and Wadler’s GJ [5] has been chosen as the reference im-
plementation technique for the first upcoming release of Java with generics.
More recently, an extension of Microsoft’s .NET Common Language Runtime
[26] (CLR) with generics has been studied [30]. Such an extension not only pro-
vides C# with generic classes and methods but also has a potential impact to
promote genericity as a key paradigm in the whole CLR framework, because,
in principle, all the languages supported by CLR can be extended with generic
features. In this scenario, it is clear that studying language constructs related to
genericity is likely to play a key role in increasing the expressiveness of modern
high-level languages such as Java and C7#.

Following this research direction, we explore a technique to enhance the syn-
ergy between inclusive and parametric polymorphism, with the goal of increasing
expressiveness and reuse in object-oriented languages supporting generics.

In most current object-oriented languages—such as Java, C++, and C#—
inclusive polymorphism is supported only through inheritance. Their extensions
with generics allow a generic class to extend from another generic class [20],
and introduce pointwise subtyping: for instance, provided that class Stack<X>
is a subclass of Vector<X> (where X is a type parameter) a parametric type
Stack<String> is a subtype of Vector<String>.

Historically, most of well-known attempts to introduce another subtyping
scheme for generics were based on the notion of variance, which is used to define
a subtype relation between different instantiations of the same generic class.
Basically, a generic class C<X> is said to be covariant with respect to X if S < T
implies C<8> <t C<T> (where <: denotes the subtyping relation), and conversely,
C<X> is said to be contravariant with respect to X, if S <: T implies C<T> <: C<S>.
Also, C<X> is said to be invariant when C<S> <: C<T> is derived only if S = T.
For the resulting type system to be sound, covariance and contravariance can be
permitted under some constraints on the occurrences of type variable X within
C<X>’s signature. For example, consider a generic collection class whose element
type is abstracted as a type parameter. Typically, it can be covariant only if it
is read-only, while it can be contravariant only if write-only. Thus, to make use
of variance, one has to be more careful about the design of classes.

Recently, Thorup and Torgensen [33] briefly sketched how some flavors of
programming with structural virtual types, which support safe covariance, can
be simulated by an extension of parametric classes. The idea is to specify the
variance of each type parameter when the type is used, rather than when the
class is declared. For any type argument T, a parametric class C<X> induces two
types: C<T>, which is invariant, and C<+T>, which is covariant; in exchange for
covariance, certain (potentially unsafe) member accesses through C<+T> are for-
bidden. Thus, it is expected that class designers are released from the burden
of taking variance into account, and moreover class reuse is promoted. Unfortu-
nately, it has not been rigorously discussed how this idea works in a full-blown
language design.

Our contribution is to generalize this approach, and develop it into the mech-
anism of variant parametric types for possible application to widely disseminated

On Variance-Based Subtyping for Parametric Types 443

languages such as Java and C#. In particular, we study their basic design and
usefulness. Moreover, in order to discuss their fundamental concepts and sub-
tleties rigorously, we introduce a core language based on Featherweight GJ, a
generic version of Featherweight Java [20], with a formalization of its syntax,
type system, and operational semantics, along with a proof of type soundness.

Variant parametric types are a new form of parametric types, in which any
type parameter can come with one of the following variance annotation symbols:
+ for covariance, - for contravariance, and * for bivariance—C<*T> is a subtype
of C<xR> whatever T and R are. The type argument without an annotation is
considered invariant!. While types that are invariant in every type argument are
used for run-time types of objects, variant parametric types are used for field
types, method (argument and return) types, and local variable types.

Roughly speaking, a variant parametric type can be viewed as a set of
run-time types: for instance, type Vector<+Number> is the type of all those
vectors whose elements can be given type Number, including Vector<Number>,
Vector<Float>, Vector<Integer>, and so on. Thus, both subtype relations
Vector<Number> <: Vector<+Number> and Vector<Float> <: Vector<+Number>
hold (note that Vector<Float> is not a subtype of Vector<Number>). On the
other hand, since no hypothesis can be made on what kinds of elements can
be stored in a vector of type Vector<+Number>, the invocation of methods in-
serting elements in the vector is statically forbidden. With this language con-
struct, for example, the applicability of those methods accepting an argument
of type Vector<Number> and only reading its elements can be safely widened
by extending the argument type to Vector<+Number>, enabling the method to
accept generic vectors instantiated with any subtype of Number. As a result,
while standard variance is (typically) constrained to read-only and write-only
generic collection classes, variant parametric types are available for every class;
they provide uniform views of different instantiations of a generic class and can
be exploited by those code abstractions that access a collection only by reading
or by writing its elements.

We also show how some technical subtleties come in, especially when vari-
ant parametric types are arbitrarily nested. It seems that in previous work on
variance such as [14], such cases are not systematically addressed even though
they often arise in practice, making the whole safety argument not very con-
vincing. The key intuition to tackle the subtleties is similarity between vari-
ant parametric types and bounded existential types [12]. In the above exam-
ple of Vector<+Number>, the element type is only known to be some sub-
type of Number. In this sense, Vector<+Number> would correspond to type
JX<:Number.Vector<X>. In fact, this intuitive connection is exploited in the
whole design of a sound type system for variant parametric types.

! In [14], the term “bivariant” was used to mean what here we refer to as “invariant.”
We decide to adopt the term invariant since we believe it is standard and more
appropriate to denote the cases where type arguments cannot be different for an
instantiation to be a subtype of another.

444 Atsushi Igarashi and Mirko Viroli

The remainder of the paper is organized as follows. In Section 2, the classical
approach to variance of parametric types is briefly outlined. Section 3 informally
presents the language construct of variant parametric types, and addresses its
design issues. Section 4 discusses the applicability and usefulness of these types,
comparing their expressiveness to that of parametric methods in conjunction
with bounded polymorphism. Section 5 elaborates the interpretation of variant
parametric types as a form of bounded existential types, discussing the subtleties
of our language extension. Section 6 presents the core calculus for variant para-
metric types and provides a sound type system for it. Section 7 discusses related
work and section 8 presents concluding remarks and perspectives on future work.
For brevity, a detailed proof of type soundness is omitted in this paper; inter-
ested readers are referred to a full version of this paper, which will be available
at http://www.sato.kuis.kyoto-u.ac. jp/ igarashi/papers.html.

2 Classical Approach to Variance for Parametric Classes

Historically, one main approach to flexible inclusive polymorphism for generics
was through the mechanism called variance, which is briefly reviewed in this
section. The limitation of the approach is also discussed along with a proposed
solution, which inspired us to develop our variant parametric types.

A generic class C<X> is said to be covariant in the type parameter X when
the subtype relation C<R> <: C<S8> holds if R <: S. Conversely, C<X> is said to
be contravariant in X when C<R> <: C<8> holds if S <: R. Less general notions
of bivariance and invariance can be defined as well. C<X> is said to be bivariant
in X when C<R> <: C<S> for any R and S. C<X> is said to be invariant in X
when C<R> <: C<S> holds only when R = S. Since variance is a property of each
type parameter of a generic class, all these definitions can be easily extended to
generic classes with more than one type parameter.

However, not every class can be safely given a variance property, as the array
types in Java show us. Java arrays can be considered a generic class from which
the element type is abstracted out as a type parameter; moreover, the array types
are covariant in that type—e.g., String[] is a subtype of Object []. However,
since arrays provide the operation to update their content, this can lead to a
run-time error, as the following Java code shows:

Object[] o=new String[]{"1","2","3"};
o[0]=new Integer(1); // Exception thrown

The former statement is permitted because of covariance. The latter is also
statically accepted, because Integer is a subtype of Object. However, when the
code is executed an exception java.lang.ArrayStoreException is thrown: at
run time, the bytecode interpreter tries to insert an Integer instance to where
a String instance is actually expected.

To recover safety, previous work [14,2,3] proposed to pose restriction on how
a type variable can appear in a class definition, according to its variance. In
the case of a class covariant in the type parameter X, for instance, X should not

On Variance-Based Subtyping for Parametric Types 445

appear as type of a public (and writable) field or as an argument type of any
public method. Conversely, in the contravariant case, X should not appear as
type of a public (and readable) field or as return type of any public method. For
example, the following class (written in a GJ-like language [5])

class Pair<X extends Object, Y extends Object> extends Object{
private X fst;
private Y snd;
Pair(X fst,Y snd){ this.fst=fst; this.snd=snd; }
void setFst(X fst){ this.fst=fst; }
Y getSnd(){ return snd; }
}

can be safely considered covariant in type variable Y and contravariant in type
variable X, since X appears as the argument type in setFst and Y appears as the
return type in getSnd. It is easy to see that any type Pair<R,S> can be safely
considered a subtype of Pair<String,Number> when R is a supertype of String
and S is a subtype of Number, as the following code reveals.

Number getAndSet(Pair<String,Number> c, String s){
c.setFst(s);

return c.getSnd();
}

Number n=getAndSet(
new Pair<Object,Integer>(null, new Integer(1)),"1");

In fact, the invocation of getAndSet causes the string "1" to be safely passed to
setFst, which expected an Object, and an Integer object to be returned by
getSnd, whose return type is Number.

However, as claimed e.g. in [15], the applicability of this mechanism is con-
sidered not very wide, since type variables typically occur in such positions that
forbid both covariance and contravariance. In fact, consider the usual application
of generics as collection classes, and their typical signature schema with methods
for getting and setting elements, as is shown in the following class Vector<X>:

class Vector<X>{
private X[] ar;
Vector(int size){ ar=new X[sizel;}
int size(){ return ar.length; }
X getElementAt(int i){ return ar[i];}
// Reading elements disallows contravariance
void setElementAt(X t,int i){ ar[il=t;}
// Writing elements disallows covariance

}

Typically, the type variable occurs as a method return type when the method is
used to extract some element of the collection, while the type variable occurs as
a method argument type when the method is used to insert new elements into
the collection. As a result, a generic collection class can be considered covariant

446 Atsushi Igarashi and Mirko Viroli

only if it represents read-only collections, and contravariant only if it represents
write-only collections. Bivariance is even more useless since it would be safely
applied only to collections whose content is neither readable nor writable. As a
result, class designers have to be responsible for the tradeoff between variance
and available functionality of a class.

More recently, Thorup and Torgersen [33] have briefly sketched a possible
solution to the applicability limitations of this classical approach. The idea is
to let a programmer specify within parametric types whether he/she wants the
type argument to be invariant or covariant: for the latter case, the + symbol
is inserted before the (actual) type argument, e.g. writing Vector<*Object>,
which behaves similarly to the structural virtual type Vector [X<:0bject] and
prohibits write access to the vector of that type. With this syntax, the choice of
the variance property can be deferred from when a class is defined to when a class
is used to derive a type. It seems that two advantages arise from this approach:
the applicability of the mechanisms is widened—e.g., from read-only containers
to read-write ones—and the designers of libraries are generally released from the
burden of making decisions about the tradeoff mentioned above. Unfortunately,
aside from the fact that they dealt with only covariance, the informal idea has
been not fully explored so far. So, we generalize this idea to include contravari-
ance and bivariance, and investigate how it works in a full-fledged language
design.

3 Variant Parametric Types

Now, based on the idea sketched in [33], we introduce the notion of variant
parametric types and their basic aspects.

Variant parametric types are a generalization of standard parametric (or
generic) types where each type parameter may be associated with a variance
annotation, either +, - or *, respectively referred to as the covariance, con-
travariance, or bivariance annotation symbol. Syntactically, a variance annota-
tion symbol precedes the type parameter it refers to and introduces the cor-
responding variance to the argument position: for example, Vector<+String>
is a subtype of Vector<+Object>. Similarly to the case of generic types, the
type parameter of a variant parametric type can be either a variant parametric
type or a type variable, as in Vector<+String>, Pair<+String,-Integer>, and
Vector<Vector<*X>>. A parametric type where no (outermost) type argument
has a variance annotation is called a fully invariant type (or just an invariant
type). Vector<String> and Pair<Vector<+String>, Integer> are examples of
invariant types. Since the type argument following * does not really matter, due
to bivariance, it is often omitted by simply writing e.g. Vector<*>, which is also
the syntax we propose for an actual language extension.

Unlike the standard mechanism of variance, described in the previous sec-
tion, programmers derive covariant, contravariant, and bivariant types from one
generic class. Safety is achieved by restricting accesses to fields and methods, in-
stead of constraining their declarations. For example, even when setElementAt

On Variance-Based Subtyping for Parametric Types 447

A A A

Vector<+Object> |1\
i \| Vector<+Number> |1\
\i Vector<+Integer> I@

A

Vector<-Integer> -%
[esorcomeas |—— P e tumber: 1= [vcctmn |

A

Vector<Object> Vector<Number> Vector<Integer>

Fig. 1. Subtyping graph of variant parametric types

is declared in Vector, Vector<+Number> can be used in a program; the type
system just forbids accessing the method setElementAt through the covariant
type Vector<+Number>.

A simple interpretation of variant parametric types is given as a set of in-
variant types. A type C<+T> can be interpreted as the set of all invariant types
of the form C<S> where S is a subtype of T; a type C<-T> can be interpreted
as the set of all invariant types of the form C<S> where S is a supertype of T;
and, a type C<*T> can be interpreted as the set of all invariant types of the
form C<S>. Hence, Vector<+Integer> <: Vector<+Number> directly follows as
an inclusion of the set they denote. Moreover, it is easy to derive subtyping
between types that differ only in variance annotations: since an invariant type
would correspond to a singleton, Vector<Integer> <: Vector<+Integer> and
Vector<Integer> <: Vector<-Integer> hold. Similarly, Vector<+Integer> <
Vector<*Integer> and Vector<-Integer> <: Vector<xInteger> hold as well.
In summary, Figure 1 shows the subtyping relation for the class Vector and type
arguments Object, Number, and Integer (under the usual subtyping relation:
Integer <: Number <: Object.)

More generally, subtyping for variant parametric types is defined as follows.
Suppose C is a generic class that takes n type arguments, and S, and T (possibly
with subscripts) are types.

— The following subtype relations hold that involve variant parametric types
differing just in the variance annotation symbol on one type parameter?:

C<..., T,...><iC<...,+T,...>

C<..., T,...><tC<...,-T,...>

C<...,+T, ...><i C<...,xT,...>

C<...,-T,...><: C<... ,*T,...>
2 More precisely, e.g. the first relation means that for any types Ti, T, ..., T, we have
C<T1,...,Ti—1,T,Tig1,...,Tp> <t C<T1,...,Ti—1,+T,Tigx1,...,Tn>, and similarly

for the others.

448 Atsushi Igarashi and Mirko Viroli

— The following relations hold that involve variant parametric types differing
in the instantiation of just one type parameter:

C<..., S,...><1C<..., T,..>ifS<Tand T<: S
C<...,48,...>< C<... ,+T,...>if S T
C<...,-S,...><1C<...,-T,...>if T« S
C<...,*%8,...><C<... ,*%T,...>VS, T

(Note that the subtyping relation is not anti-symmetric: Vector<*0Object>
and Vector<xInteger> are subtypes of each other but not (syntactically)
equal.)

— Other cases of subtyping between different instantiations of the same generic
class can be obtained by the above ones through transitivity.

Subtyping of variant parametric types which are instantiations of different
generic classes—that is, involving inheritance—is more subtle than it might have
been expected, and is discussed in Section 5.

Objects are created from generic classes through an expression of the form
new C<Ty,...,T,>(...), without specifying any variant annotation in the (out-
ermost) type arguments (variance annotations can appear inside T;.) Objects
created through this expression are given the corresponding invariant paramet-
ric type C<Ty,..,T,>. While an invariant parametric type denotes a singleton
set and is used for the run-time type of an object, a variant parametric type can
be generally used as a common supertype for many different instantiations of
the same generic class.

A more refined view of variant parametric types is given as a correspon-
dence to bounded existential types [12], originally used for modeling par-
tially abstract types. Actually, this view, exploited throughout the develop-
ment of the type system, explains how access restriction is achieved. Intu-
itively, the covariant type Vector<+Number> would correspond to the existential
type JX<:Number.Vector<X>, read “Vector<X> for some X which is a subtype
of Number.” Then, an invocation of setElementAt on an expression of type
Vector<+Number> is forbidden because the first argument type is X, which is
known as some unknown subtype of Number, but the actual argument can-
not be given a subtype of X. Similarly, Vector<-Number> would correspond
to JX:>Number.Vector<X>, where only the lower bound of the element type
is known. Thus, invocation of getElementAt is not allowed because its return
type would be an abstract type X, which cannot be promoted to a concrete
type. Finally, Vector<*> would correspond to the unbounded existential type
JX.Vector<X>, which prevents both getElementAt and setElementAt from be-
ing invoked. Actually, if the type structure over which type variables range has
the “top” type (for example, Object is a supertype of any reference type in
Java), it is possible to allow getElementAt to be invoked on Vector<-T> or
Vector<*>, giving the result the top type. However, we decided to disallow it
so that member access restrictions and method/field typing becomes much the
same as expected for the classical approach, discussed in the previous section.

On Variance-Based Subtyping for Parametric Types 449

The intuitive connection is further explored in Section 5 to deal with more com-
plicated use of type variables, in particular when they appear inside parametric
types, and to deal with inheritance-based subtyping—type variables naturally
appear inside the type specified as the superclass in the extends clause.

In summary, variant parametric types provide uniform views over different
instantiations of the same generic class. Unlike the standard mechanism reviewed
in the previous section, variant parametric types are just a means for static access
control, so there is no additional constraints on how classes are declared.

4 On Applicability and Usefulness

In this section, the usefulness of variant parametric types is studied by focus-
ing on those generic classes representing collections—such as classes Pair<X,Y>
(completed with methods setSnd and getFst), and Vector<X> defined in pre-
vious sections—which actually form one of the basic and significant application
cases for generic classes.

4.1 Covariance

As discussed in the previous section, type Vector<+T> is a supertype of any type
Vector<R> if R as a subtype of T, and can be interpreted as the type of all those
vectors whose extracted elements can be given type T. Hence, the invocation of
method setElementAt is forbidden on an object with type Vector<+T>, while
method getElementAt can be invoked that returns an object of type T. As a
first application, consider the following method £illFrom for class Vector:

class Vector<X extends Object>{

void fillFrom(Vector<+X> v, int start){
// Here no methods with X as argument type are invoked on v
for (int i=0;i<v.size() && i+start<size();i++)
setElementAt (v.getElementAt (i) ,i+start);
P}

Vector<Number> vn = new Vector<Number>(20);

Vector<Integer> vi = new Vector<Integer>(10);

Vector<Float> vf = new Vector<Float>(10);

vn.fillFrom(vi,0); // Permitted for Vector<Integer> <: Vector<+Number>
vn.fillFrom(vf,10);// Permitted for Vector<Float> <: Vector<+Number>

Here the method fillFrom accepts a vector which is meant to be only read, and
whose elements are expected to be given type X. As a result, instead of simply
declaring formal argument v to have type Vector<X>, it is more convenient to
use type Vector<+X>. The corresponding method execution is always safe since
the only method invoked on v is getElementAt, and even more, the applicability
of £i11From is extended to a wider set of vectors. In the code above a vector of
numbers is filled with elements of vectors of integers and floats. So, in general, the

450 Atsushi Igarashi and Mirko Viroli

covariant parameterization structure can be exploited to widen the applicability
of methods that take a collection and simply read its elements.

Now that we have a mechanism to deal with different instantiations of the
same generic class in a uniform way, one may be willing to rely on nested pa-
rameterizations so as to further exploit the flavors of collections classes, as in
the following method fillFromVector:

class Vector<X extends Object>{

void fillFromVector(Vector<+Vector<+X>> vv){
int pos=0;
for (int i=0;i<vv.size();i++){
Vector<+X> v = vv.getElementAt(i);
if (pos+v.size()>=size()) break;
fillFrom(v,pos);
pos += v.size();

Vector<Number> vn = new Vector<Number>(20);

Vector<Integer> vi = new Vector<Integer>(10);

Vector<Float> vf = new Vector<Float>(10);
Vector<Vector<+Number>> vvn = new Vector<Vector<+Number>>(2);
vvn.setElementAt (vi,0);

vvn.setElementAt (vf,1);

vn.fillFromVector (vvn) ;

The method fillFromVector takes a vector of vectors and puts its inner-level
elements into the vector on which the method is invoked. Since neither the
outer vector nor the inner vectors are updated, the argument can be given type
Vector<+Vector<+X>>. The inner +, which means that the inner vectors are
read-only, allows different inner vectors to be mixed in one vector: as in the code
above, a vector of integers and a vector of floats are put in one vector vvn. The
outer +, which means that the outer vector is also read-only, allows inner vectors
passed to fillFromVector to extend class Vector, as in the following code:

class MyVector<X extends Object> extends Vector<X> { ... }

Vector<MyVector<+Number>> mvv = ...;
vn.fillFromVector (mvv) ;

4.2 Contravariance

Contravariance has a dual kind of use. Type Vector<-T> is a supertype of any
type Vector<R> if T is a subtype of R, and can be interpreted as the type of all
those vectors which is safe to fill with elements of type T. Hence, the invocation
of method getElementAt on an object of type Vector<-T> is forbidden, while
method setElementAt can be invoked passing an object of type T. The following
method £i11To provides an example similar to the one shown for the covariance
case:

On Variance-Based Subtyping for Parametric Types 451

class Vector<X extends Object>{

void fillTo(Vector<-X> v,int start){
// Here no methods with X as return type are invoked on v
for (int i=0;i<size() && i+start()<v.size();i++)
v.setElementAt (getElementAt (i) ,i+start);
} o}

Vector<Number> vn = new Vector<Number>(20);

Vector<Integer> vi = new Vector<Integer>(10);

Vector<Float> vf = new Vector<Float>(10);

vi.fillTo(vn,0); // Permitted for Vector<Number> <: Vector<-Integer>
vf.fillTo(vn,10);// Permitted for Vector<Number> <: Vector<-Float>

Mixed variance parameterizations can be useful as well. For instance, consider
a method fillToVector that inserts elements of the receiver vector this into
a structure of the kind Vector<Vector<X>> provided as input—which is a dual
case with respect to the method fillFromVector. In this case, the method’s for-
mal argument vv should be safely given type Vector<+Vector<-X>>. There, the
outer vector is just used to access its elements through method getElementAt—
hence it can be safely declared covariant—while the inner vectors may only be
updated through method setElementAt—so they can be safely declared con-
travariant.

4.3 Bivariance

From a conceptual point of view, the construct of bivariant parametric types
comes for free once covariance and contravariance are defined. In fact, for the
same reason why one may need to denote by Vector<+T> the supertype of each
Vector<R> with R < T, and conversely for contravariance, then it may also be
the case to explicitly denote the supertype of both Vector<+T> and Vector<-T>,
which is represented here by Vector<*T>—or more concisely, by Vector<>.

No methods that contain the type variable X in their signature can be invoked
on an expression of Vector<*> so Vector<*> is meant to represent a sort of
“frozen” vector, which can be neither read nor written. For instance, bivariance
can be exploited to build a method that sums the sizes of a vector of vectors, as
follows:

int countVector (Vector<+Vector<*>> vv){
int sz=0;
for (int i=0;i<vv.size();i++){
sz+=vv.getElementAt (i) .size();
return sz;

}

More useful are those cases where a generic class involves more than one type
parameter. Consider the following method:

452 Atsushi Igarashi and Mirko Viroli

class Vector<X>{
void fillFromFirst(Vector<+Pair<+X,*>> vp,int start){
for (int i=0;i<vp.size() && i+start<size();i++)
setElementAt (vp.getElementAt (i) .getFst () ,i+start);
o3

Since method £fillFromFirst does not actually read or write the second element
in each pair, its type can be any type, so annotation symbol * can be used in
place of it. This example suggests an interesting application for bivariance as a
mechanism providing a parametric type’s partial instantiation.

4.4 Comparison with Parametric Methods

One may wonder if parametric methods with bounded polymorphism can be used
for the examples shown above; indeed, some of them can be easily handled with
parametric methods. For instance, the method £i11From can be implemented as
follows:

class Vector<X extends Object>{

<Y extends X> void fillFrom(Vector<Y> v, int start){
for (int i=0;i<v.size() && i+start<size();i++)
setElementAt (v.getElementAt (i), i+start);
Y

Vector<Number> vn = new Vector<Number>(20);
Vector<Integer> vi = new Vector<Integer>(10);
Vector<Float> vf = new Vector<Float>(10);
vn.fillFrom<Integer>(vi,0);
vn.fillFrom<Float>(vf,10);

Here, the definition of £i11From is parameterized by a type variable Y, bounded
by an upper bound X and the actual type arguments are explicitly given (inside
<>) at method invocations. Similarly, £i11To can be expressed by using a lower
bound of a type parameter:

class Vector<X extends Object>{

<Y extendedby X> void fillTo(Vector<Y> v,int start){
for (int i=0;i<size() && i+start<v.size();i++)
v.setElementAt (getElementAt (i) ,i+start);
3

Here, the keyword extendedby means that the type parameter Y must be a
supertype of X. In general, it seems that a method taking arguments of variant
parametric types can be easily rewritten to a parametric methods.

Although they can be used almost interchangeably for some cases, we think
variant parametric types and parametric methods are complementary mecha-
nisms. On one hand, variant parametric types provides a uniform viewpoint

On Variance-Based Subtyping for Parametric Types 453

over different instantiations of the same generic classes, making it possible to mix
different types in one data structure, as we have seen in Vector<+Vector<+X>>
and Vector<+Vector<-X>>. On the other hand, parametric methods can better
express type dependency among method arguments and results, as in the two
methods below:

// swapping pos-th element in vl and v2
<X> void swapElementAt(Vector<X> v1,Vector<X> v2,int pos){...}

// a database-like join operation on tables vl and v2.
<X,Y,Z> Vector<Pair<X,Z>> join(Vector<Pair<X,Y>> vi,
Vector<Pair<Y,Z>> v2){...}

The method swapElementAt requires the arguments to be vectors carrying the
same type of elements, while in method join variables X, Y, and Z are used to
express dependency among the inputs and outputs. In both cases, such depen-
dencies cannot be expressed by variant parametric types.

As shown above, simulating contravariance with parametric methods requires
type parameters with lower bounds. However, their theory has not been well
studied and it is not very clear whether or not basic implementation techniques
such as type-erasure [5] can be extended to parametric methods with lower
bounds. One may argue that the features provided by the methods £i11To and
fillFrom are much the same, so one can easily find the covariant version of
any method tha