
Declarative Datalog Debugging for Mere Mortals

Sven Köhler1, Bertram Ludäscher1, and Yannis Smaragdakis2

1 Department of Computer Science, University of California, Davis
{svkoehler,ludaesch}@ucdavis.edu

2 LogicBlox, Inc., Atlanta, GA and Univ. of Athens, Greece
yannis.smaragdakis@logicblox.com

Abstract. Tracing why a “faulty” fact A is in the model M = P (I)
of program P on input I quickly gets tedious, even for small examples.
We propose a simple method for debugging and “logically profiling” P
by generating a provenance-enriched rewriting P̂ , which records rule fir-
ings according to the logical semantics. The resulting provenance graph
can be easily queried and analyzed using a set of predefined and ad-hoc
queries. We have prototypically implemented our approach for two differ-
ent Datalog engines (DLV and LogicBlox), demonstrating the simplicity,
effectiveness, and system-independent nature of our method.

1 Introduction

Developing declarative, rule-based programs can be surprisingly difficult in prac-
tice, despite (or because of) their declarative semantics. Possible reasons include
what Kunen long-ago called the PhD effect [10], i.e., that a PhD in logic seems
necessary to understand the meaning of certain logic programs (with negation).
Similarly, An Amateur’s Introduction to Recursive Query Processing [2] from the
early days of deductive databases, rather seems to be for experts only. So what
is the situation now, decades later, for a brave, aspiring Datalog 2.0 programmer
who wants to develop complex programs?

The meaning and termination behavior of a Prolog program P depends on,
among other things, the order of rules in P , the order of subgoals within rules,
and even (apparently minor) updates to base facts. Consider, e.g., the program
for computing the transitive closure of a directed graph, i.e., Ptc =

r1: tc(X,Y) :− e(X,Y).

r2: tc(X,Z) :− e(X,Y), tc(Y,Z).

Seasoned logic programmers know that Ptc is not a correct way to compute the
transitive closure in Prolog.3 Under a more declarative Datalog semantics, on
the other hand, Ptc indeed is correct, since the result does not depend on rule
or subgoal order. The flip side, however, is that effective and practically useful

3 For I = {e(a, b), e(b, a)} the query ?-tc(c,X) correctly returns “No”, while the similar
?-tc(X,c) will not terminate! Prolog’s behavior gets worse when swapping rules r1
and r2, or when using left- or doubly-recursive variants P l

tc, P
d
tc, respectively.

procedural debugging techniques for Prolog, based on the box model [19], are
not available in Datalog. Instead, new debugging techniques are needed that are
solely based on the declarative reading of rules. In this paper, we develop such
a framework for declarative debugging and logic profiling.

Let M=P (I) be the model of P on input I. Bugs in P (or I) manifest
themselves through unexpected answers (ground atoms) A ∈M , or expected but
missing A /∈M . The key idea of our approach is to rewrite P into a provenance-
enriched program P̂ , which records the derivation history of M=P (I) in an
extended model M̂=P̂ (I). A provenance graph G is then extracted from M̂ ,
which the user can explore further via predefined views and ad-hoc queries.

Use Cases Overview. Given an IDB atom A, our approach allows to answer
questions such as the following: What is the data lineage of A, i.e., the set of
EDB facts that were used in a derivation of A, and what is the rule lineage, i.e.,
the set of rules used to derive A? When chasing a bug or trying to locate a source
of inefficiency, a user can explore further details: What is the graph structure
GA of all derivations of A? What is the length of A, i.e., of shortest derivations,
and what is the weight, i.e., number of simple derivations (proof trees) of A?

For another example, assume the user encounters two “suspicous” atoms A
and B. It is easy to compute the common lineage GAB = GA ∩ GB shared
by A and B, or the lowest common ancestors of A and B, i.e., the rule firings
and ground atoms that occur “closest” to A and B in GAB , thus triangulating
possible sources of error, somewhat similar to ideas used in delta debugging [22].

Since nodes in GA are associated with relation symbols and rules, a user
might also want to compute other aggregates, i.e., not only at the level of GA

(ground atoms and firings), but at the level of (non-ground) rules and relation
symbols, respectively. Through this schema-level profiling, a user can quickly find
the hot (cold) spots in P , e.g., rules having the most (least) number of firings.

Running Example. Figure 1 gives an overview using a very simple example:
(a) depicts an input graph e, while (b) shows its transitive closure tc := e+. The
structure and number of distinct derivations of tc atoms from base edges in e
can be very different, e.g., when comparing the right-recursive Ptc (=P r

tc) above,
with left-recursive or doubly-recursive variants P l

tc or P d
tc, respectively.

The provenance graph G (or the relevant subgraph GA ⊆ G, given a goal
A) provides crucial information to answer the above use cases. Fig. 1(c) shows
the provenance graph for the computation of tc via P r

tc from above. Box nodes
represent rule firings, i.e., individual applications of the immediate consequence
operator TP , and connect all body atoms to the head atom via a unique firing
node. For the debug goal A = tc(a, b) the subgraph GA, capturing all possible
derivations of A, is highlighted (through filled nodes and bold edges).

Overview and Contributions. We present a simple method for debugging
and logically profiling a Datalog program P via a provenance-enriched rewriting
P̂ . The key idea is to extract from the extended model M̂ a provenance graph G
which is then queried, analyzed, and visualized by the user. Given a debug goal A,
relevant subgraphs GA can be obtained easily and further analyzed via a library
of common debug views and ad-hoc user queries. At the core of our approach

a b c d
(a) Input graph: edge relation e

a b
c

d

(b) Output: transitive closure tc = e+

e(a,b)

r1

r2

r2

r2

tc(a,b)

tc(a,c)

tc(a,d)

e(b,c) r1

r2

r2

r2

tc(b,c)

tc(b,b)

tc(b,d)

e(c,b)

r1

r2

r2

r2

tc(c,b)

tc(c,c)

tc(c,d)
e(c,d) r1

(c) Provenance graph G; highlighted subgraph Gtc(a,b); firing nodes r (boxes),

atom nodes A (ovals); edge types A
in→ r and r

out
_A (edge labels not shown)

Fig. 1. P r
tc-provenance graph for input e, with derivations of tc(a,b) highlighted in (c).

are rewritings that (i) capture rule firings, then (ii) reify them, i.e., turn them
into nodes in G (via Skolem functions), while (iii) keeping track of derivation
lengths using Statelog [11], a Datalog variant with states.4 The rewritten Statelog
program P̂ is state-stratified [13] and has ptime data complexity. We view the
simplicity and system-independence as an important benefit of our approach. We
have rapidly prototyped this approach for rather different Datalog engines, i.e.,
DLV [12] and LogicBlox [14], and are currently developing improved versions.
We also note a close relationship of our provenance graphs with provenance
semirings [8] (a detailed account is beyond the scope of this paper). Here our
focus is on presenting a simple, effective method for debugging and profiling
declarative rules for “mere mortals”.

2 Provenance Rewritings for Datalog

In this section, we present three Datalog rewritings P
F
 · G
 · S
 P̂ for capturing

rule firings, graph generation, and Statelog evaluation, respectively. We assume
the reader is familiar with Datalog (e.g., see [1, 17]); the resulting Statelog
program P̂ has ptime data complexity and involves a limited (i.e., safe) form of
Skolem functions and state terms [13]. In the sequel, X̄ = X1, . . . , Xn denotes a
variable vector; lower case terms a, b, . . . denote constants.

4 Other state-oriented Datalog extensions include DatalognS [6] and XY-Datalog [21].

e(a,b)
fire1(a,b)(*)

fire2(a,b,b)

(*) tc(a,b)
(+)

(+)

tc(b,b)

(*)

Fig. 2. Subgraph with two rule firings fire1(a, b) and fire2(a, b, b), both deriving tc(a,b).

2.1 Recording Rule Firings: P
F
 P F

The first rewriting (cf. Green et al. [9]), captures the provenance of rule firings.
Let r be a unique identifier of a rule in P . We assume r to be safe, i.e., every
variable in r must also occur positively in the body:

r : H(Ȳ) :− B1(X̄1), . . . , Bn(X̄n)

Let X̄ :=
⋃

i X̄i include all variables in r, ordered, e.g., by occurrence in the body.
Since r is safe, Ȳ ⊆ X̄, i.e., the head variables are among the X̄. The rule r is
now replaced by two new rules in the rewritten program PF :

rin : firer(X̄) :− B1(X̄1), . . . , Bn(X̄n)

rout : H(Ȳ) :− firer(X̄)

Thus PF records, for each r-satisfying instance x̄ of X̄, a unique fact: firer(x̄).

2.2 Graph Reification of Firings: P F G
 PG

To facilitate querying the results of the previous step, we reify ground atoms and
firings as nodes in a labeled provenance graph G. For each pair of rules rin, rout
above, we add n rules (i = 1, . . ., n) to generate the in-labeled edges in G:

g(Bi(X̄i), in, firer(X̄)) :− firer(X̄)

and one more rule for generating out-labeled edges in G as well:

g(firer(X̄), out, H(Ȳ)) :− firer(X̄)

Note the safe use of atoms as Skolem terms in the rule heads: for finitely many
rule firings firer(x̄), we obtain a finite number of in- and out-edges in G.

Example. After applying both transformations · F
 · G
 · to Ptc from above, the

rewritten program PG
tc can be executed, yielding a directed graph with labeled

edges g(v1, `, v2) in the enriched model M̂ . Figure 2 shows a subgraph with two
rule firings, both deriving the atom tc(a,b). Oval (yellow) nodes represent atoms
A and boxed (blue) nodes represent firings F . Arrows with solid heads and label
(*) are in-edges, while those with empty heads and label (+), represent out-
edges. Note that according to the declarative semantics, in (out) edges, model
logical conjunction “∧” (logical disjunction “∨”), respectively. Thus, w.r.t. their
incoming edges, boxed nodes are AND-nodes, while oval nodes are OR-nodes.5

5 In semiring parlance, they are product “⊗” and sum “⊕” nodes, respectively.

2.3 Statelog Rewriting: PG S
 PS

Statelog [11, 13] is a state-oriented Datalog variant for expressing active update
rules and declarative rules in a unified framework. The next rewriting simulates
a Statelog derivation in Datalog via a limited (safe) form of “state-generation”.
The key idea is to keep track of the firing rounds In+1 := TP (In) of the TP

operator (I0 := I is the input database). This provides a simple yet powerful
means to detect tuple rederivations, to identify unfounded derivations, etc.

First, replace all rules rin, rout above with their state-oriented counterparts:

rin : firer(S1, X̄) :− B1(S, X̄1), . . . , Bn(S, X̄n), next(S,S1).

rout : H(S, Ȳ) :− firer(S, X̄).

The goal next(S,S1) is used for the safe generation of new states: The next state
s+1 is generated only if at least one atom A was new in state s :

next(0, 1) :− true.

next(S,S1) :− next(,S), new(S, A), S1 := S + 1.

An atom A is newly derived if it is true in s+1, but not in the previous state s:

newAtom(S1, A) :− next(S,S1), g(S1, , out, A), ¬ g(S, , out, A).

Similarly, rule firing F is new if it is true in s+1, but not previously in s:

newFiring(S1, F) :− next(S,S1), g(S1, F, out,), ¬ g(S, F, out,).

The n rules for generating in-edges are replaced with state-oriented versions:

g(S, Bi(X̄i), in, firer(X̄)) :− firer(S, X̄)

and similarly, for the out-edge generating rules:

g(S, firer(X̄), out, H(Ȳ)) :− firer(S, X̄).

It is not difficult to see that the above rules are state-stratified (a form of lo-
cal stratification) and that the resulting program terminates after polynomially
many steps [13]: When no more new atoms (or firings) are derived in a state,
then the above rules for next can no longer generate new states, thus in turn
preventing rules of type rin from generating new firer(S1, X̄) atoms.

Example. When applying the transformations · F
 · G
 · S
 · to the transitive

closure program P r
tc, a 4-ary graph g is created, with the additional Tp-round

counter in the first (state) argument position. Figure 3 shows the graphical
representation of g for our running example (observe the cycle in g, caused by
the cycle in the input e).

3 Debugging and Profiling using Provenance Graphs

When debugging and profiling Datalog programs we typically employ all program

transformations P
F
 · G

 · S
 P̂ , i.e., the enriched model M̂ contains the full

provenance graph relation g with state annotations.

e(a,b) r1 [1]

r2 [3]

tc(a,b)
[1]e(b,c)

r2 [2] tc(b,b)
[2]

e(c,b)
r1 [1]

r2 [3]

tc(c,b)
[1]

Fig. 3. State-annotated provenance graph g for the derivation of tc(a,b). Annotations
[in brackets] show the firing round (i.e., state number) in which an atom was first
derived. To avoid clutter, we often depict firing nodes without their variable bindings.

3.1 Debugging Declarative Rules

If a Datalog program does not compute the expected model, it is very helpful
to understand how the model was derived, focusing in particular on certain
goal atoms during the debugging process. Since relation g captures all possible
derivations of the given program, we can define various queries and views on g
to support debugging.

Provenance Graph. The complete description of how a program was evaluated
can be derived by just visualizing the whole provenance graph g, optionally
removing the state argument through projection:

ProvGraph(X,L,Y) :− g(,X,L,Y).

Figure 1(c) shows the provenance graph for a transitive closure computation.
One can easily see how all transitive edges were derived and—by following the
edges backwards—one can see on which EDB facts and rules each edge depends.

Provenance Views. Since provenance graphs are large in practice, it is often
desirable to just visualize subgraphs of interest. The following debug view returns
all “upstream” edges, i.e., the provenance subgraph relevant for debug atom Q:

ProvView(Q,X,out,Q) :− ProvGraph(X,out,Q).
ProvView(Q,X,L,Y) :− ProvView(Q,Y, ,), ProvGraph(X,L,Y).

Figure 3 shows the result of this view for the debug goal Q = tc(a, b); the large
(goal-irrelevant) remainder of the graph is excluded. Fig. 1(c), in contrast, shows
the same query but now in the context of the whole provenance graph.

Computing the Length of Derivations. A typical question during debug-
ging is when and from which other facts a debug goal was derived. Such temporal
questions can be explained using a Statelog rewriting of the program. We an-
notate atoms and firings with a length attribute to record in which round they
were first derived. The length is defined as follows:

len(F) := 1 + max{ len(A) | (A in→ F) ∈ g } ; if F is a firing node

len(A) :=

{
min{ len(F) | (F out→ A) ∈ g } ; if A is an IDB atom

0 ; if A is an EDB atom

A rule firing F can only succeed one round after the last body atom (i.e., hav-
ing maximal length) has been derived. Conversely, the length of an atom A is
determined by its first derivation (i.e., having minimal length). The Statelog
rewriting captures evaluation rounds, so the state associated with a new firing
determines the length of the firing:

len(F,LenF) :− newFiring(S,F), LenF=S.

Similarly, the length of an atom is equal to the first round it was derived:

len(A,LenA) :− newAtom(S,A), LenA=S.

Fig. 4 shows a provenance graph with such length annotations.

3.2 Logic-Based Profiling

There are multiple ways to write a Datalog program that computes a desired
query result and the performance of these programs may vary significantly. For
example, consider an EDB with a linear graph e having 10 nodes. In addition
to the right-recursive program P r

tc, we consider the doubly-recursive variant P d
tc

with the rules: (1) tc(X,Y) :− e(X,Y) and (2) tc(X,Y) :− tc(X,Z), tc(Z, Y).
When computing tc, the two programs perform differently and we would like
to find the cause. In this section, we present queries for profiling measures of
Datalog programs that can help to answer such questions.

Counting Facts. When evaluating a Datalog program on an input EDB, a
number of IDB atoms are derived. We assume here that the resulting model
only contains desired facts, i.e., the program was already debugged with the
methods described earlier. We can use, e.g., the number of derived IDB atoms
as a baseline for profiling a program. It can be computed easily via aggregation:

DerivedFact(H) :− ProvGraph(,out,H).
DerivedHeadCount(C) :− C = count{ H : DerivedFact(H) }.

Both P r
tc and P d

tc derive 45 facts for our small graph example, which is exactly
the number of transitive edges we are looking for.

Counting Firings. An important measure in declarative profiling is the num-
ber of rule firings needed to produce the final model. It can be computed from
the out-edges and another simple aggregation:

Firing(F) :− ProvGraph(F,out,).
FiringCount(C) :− C = count{ F : Firing(F) }.

Using this measure we can see a clear difference between the two variants of the
transitive closure program. While the right-recursive program P r

tc uses 45 rule
firings to compute the model, the doubly-recursive variant P d

tc causes 129 rule
firings to derive the same 45 transitive edges. The reason is that P d

tc will use
all combinations of edges to derive a fact, while P r

tc extends paths only in one
direction, one edge at a time.

For better readability, Figure 4 shows the provenance graph for a smaller
input graph consisting of a 5-node linear chain. Nodes are annotated with their

e(a,b) 1

2

3

4

tc(a,b)
[1]

tc(a,c)
[2]

tc(a,d)
[3]

tc(a,e)
[4]

e(b,c) 1

2

3

tc(b,c)
[1]

tc(b,d)
[2]

tc(b,e)
[3]

e(c,d)
1

2

tc(c,d)
[1]

tc(c,e)
[2]

e(d,e) 1 tc(d,e)
[1]

(a) P r
tc: right-recursive

3

tc(a,d)
[3]3

3 tc(a,e)
[3]

3 tc(b,e)
[3]

3

4

4

e(a,b) 1 tc(a,b)
[1]

e(b,c) 1 tc(b,c)
[1]

e(c,d) 1 tc(c,d)
[1]

e(d,e) 1 tc(d,e)
[1]

2

2

2

tc(a,c)
[2]

tc(b,d)
[2]

tc(c,e)
[2]

(b) P d
tc: doubly-recursive

Fig. 4. Provenance graphs with annotations for profiling P r
tc and P d

tc on a 5-node linear
graph. P d

tc causes more rule firings than P r
tc and also derives facts in multiple ways.

Numbers denote len(F) (in firing nodes) and len(A) (in atom nodes), respectively.

length, i.e., earliest possible derivation round. Note how some atom nodes in the
graph for P d

tc in Fig. 4(b) have more incoming edges (and derivations) than the
corresponding nodes in the P r

tc variant shown in Fig. 4(a).

Computing the Maximum Round. Another measure is the number of states
(TP rounds), needed to derive all conclusions. From the rewriting PS , we can
simply determine the final state:

MaxRound(MR) :− MR = max{ S : g(S, , ,) }.

This measure shows another clear difference between P r
tc and P d

tc: While P r
tc

requires 10 rounds to compute all transitive edges in our sample graph, P d
tc only

needs 6 rounds. Generally, the doubly-recursive variant requires significantly
fewer rounds, i.e., logarithmic in the size of the longest simple path in the graph
versus linear for the right-recursive implementation.

Counting Rederivations. To analyze the number of derivations in more detail,
we can use the Statelog rewriting PS to also capture temporals aspects. With
each application of the TP operator, some facts might be rederived. Note that, if
a fact is derived via different variable bindings in the body of a rule (or different

rules), the rederivation is captured already in firings. Rederivations occurring
during the fixpoint computation can be captured using the Statelog rewriting:

ReDerivation(S,F) :− g(S,F,out,A), len(A,LenA), LenA < S.
ReDerivationCount(S,C) :− C = count{ F : ReDerivation(S,F) }.
ReDerivationTotal(T) :− T = sum{ C : ReDerivationCount(S,C) }.

When comparing the rederivation counts, the difference between the Ptc variants
is illuminated further. P r

tc rederives facts 285 times until the fixpoint is reached.
The double-recursive program P d

tc causes 325 rederivations.

Schema-Level Profiling. We can easily determine how many new facts per
relation are used in each round to derive new facts:

FactsInRound(S,R,A) :− g(S,A,in,), RelationName(A,R).
FactsInRound(S1,R,A) :− g(S, ,out,A), next(S,S1), RelationName(A,R).
NewFacts(S,R,A) :− g(S, ,out,A), ¬FactsInRound(S,R,A), RelationName(A,R).
NewFactsCount(S,R,C) :− C = count{ A : NewFacts(S,R,A) }.

This allows us to “plot” the temporal evolution for our result relation R(= tc):
For P r

tc and S = 1, . . . , 9 the counts are C = 9, 8, 7, 6, 5, 4, 3, 2, 1, while for P r
tc and

S = 1, . . . , 5 we have C = 9, 8, 13, 14, 1. Although P d
tc requires fewer rounds than

P r
tc, its new fact count mostly increases over time, while for P r

tc, it decreases.

Confronting the Real-World. In practical implementations, the doubly-
recursive version P d

tc has horrible performance. For a representative, realistic
graph6 with 1710 nodes and 3936 edges, the right-recursive P r

tc runs in 2.6 sec,
while the doubly-recursive P d

tc takes 15.4 sec. Our metrics can easily explain
the discrepancy. The tc-fact count for both versions is 304,000, but the rule
firing count varies widely. Using our program rewriting and the profiling view
FiringCount(C), we discover that P d

tc has over 64 million different rule firings,
while P r

tc has under 566 thousand. One reason is that the doubly-recursive
rule tc(X,Y) :− tc(X,Z), tc(Z, Y) derives the same tc(X,Y) fact many times
over. This practical example also illustrates the burden of declarative debugging:
Adding the profiling calculation to the right-recursive version, P r

tc only grows
the running time slightly, to 3 sec. Adding it to the doubly-recursive P d

tc how-
ever, yields a running time of 51.3 sec. This is due to the cost of storing more
than 64 million combinations of variables for rule firings.

4 GPAD Prototype Implementations

By design, our method of provenance-based debugging and profiling only relies on
the declarative reading of rules, i.e., is agnostic about implementation details or

6 The specifics are secondary to our argument, but we list them for completeness. The
graph is the application-level call-graph and edges indicating whether a method can
call another) for the pmd program from the DaCapo benchmark suite, as produced
by a precise low-level program analysis. Timings are on a quad-core Xeon E5530
2.4GHz 64-bit machine (only one thread was active at a time) with plentiful RAM
(24GB) for the analysis, using LogicBlox Datalog ver. 3.7.10.

evaluation techniques specific to the underlying Datalog engine. Indeed, parallel
with the development of the method, we have implemented two incarnations of
a Graph-based Provenance Analyzer and Debugger, i.e., prototypes Gpad/dlv
and Gpad/lb, for declarative debugging with the DLV [12] and LogicBlox [14]
engines, respectively. Both prototypes “wrap” the underlying Datalog engine,
and outsource some processing aspects to a host language.

For example, Gpad/dlv uses Swi-Prolog [20] as a “glue” to automate (1)
rule rewritings, (2) invocation of DLV, followed by (3) result post-processing,
and (4) result visualization using Graphviz. We are actively developing Gpad
further and plan a public release in the near future.

5 Related Work

Work on declarative debugging, in particular in the form of algorithmic debugging
goes as far back as the 1980’s [18, 7]. Algorithmic debugging is an interactive
process where the user is asked to differentiate between the actual model of
the (presumeably buggy) program and the user’s intended model. Based on the
user’s input, the system then tries to locate the faulty rules in an interactive ses-
sion. Our approach differs in a number of aspects. First, algorithmic debugging
is usually based on a specific operational semantics, i.e., SLDNF resolution, a
top-down, left-to-right strategy with backtracking and negation-as-failure, which
differs significantly from the declarative Datalog semantics (cf. Section 1). More-
over, while our approach is applicable, in principle, in an interactive way, this
suggests a tighter coupling between the debugger and the underlying rule en-
gine. In contrast, our approach and its Gpad implementations do not require
such tight coupling, but instead treat the rule engine as a black box. In this way,
debugging becomes a post-mortem analysis of the provenance-enriched model
M̂ = P̂ (I) via simple yet powerful graph queries and aggregations.

Another approach, more closely related to ours, is the Datalog debugger [3],
developed for the DES system. Unlike prior work, and similar to ours, they do
not view derivations as SLD proof trees, but rather use a computation graph,
similar to our labeled provenance graph. Our approach differs in a number of
ways, e.g., our reification of derivations in a labeled graph allows us to use regular
path queries to navigate the provenance graph, locate (least) common ancestors
of buggy atoms, etc. Another difference is our use of Statelog for keeping track of
derivation rounds, which facilitates profiling of the model computation over time
(per firing round, identify the rules fired, the number of (re-)derivations per atom
or relation, etc.) Recent related work also includes work on trace visualization
for ASP [4], step-by-step execution of ASP programs [15], and an integrated
debugging environment for DLV [16].

Debugging and Provenance. Chiticariu et al. [5] present a tool for debugging
database schema mappings. They focus on the computation of derivation routes
from source facts to a target. The method includes the computation of minimal
routes, similar to shortest derivations in our graph. However, their approach

seems less conducive to profiling since, e.g., provenance information on firing
rounds is not available in their approach.

There is an intruigingly close relationship between provenance semirings, i.e.,
provenance polynomials and formal power series [8], and our labeled provenance
graphs G. The semiring provenance of atom A is represented in the structure of
GA. Consider, e.g., Figure 2: the in-edges of rule firings correspond to a logical
conjunction “∧”, or more abstractly, the product operator “⊗” of the semiring.
Similarly, out-edges represent a disjunction “∨”, i.e., an abstract sum operator
“⊕”, mirroring the fact that atoms in general have multiple derivations. It is easy
to see that a fact A has an infinite number of derivations (proof trees) iff there is a
cycle in GA: e.g., the derivation of A = tc(a, b) in Figures 1 and 2 involves a cycle
through tc(b,b), tc(c,b), via two firings of r2. This also explains Prolog’s non-
termination (Section 1), which “nicely” mirrors the fact that there are infinitely
many proof trees. On the other hand, such cycles are not problematic in the
original Datalog evaluation of M = P (I) or in our extended provenance model
M̂ = P̂ (I), both of which can be shown to converge in polynomial time.

6 Conclusions

We have presented a framework for declarative debugging and profiling of Data-
log programs. The key idea is to rewrite a program P into P̂ , which records the
derivation history of M = P (I) in an extended model M̂ = P̂ (I). P̂ is obtained
from three simple rewritings for (1) recording rule firings, (2) reifying those
into a labeled graph, while (3) keeping track of derivation rounds in the style
of Statelog. After the rewritten program is evaluated, the resulting provenance
graph can be queried and visualized for debugging and profiling purposes.

We have illustrated the declarative profiling approach by analyzing different,
logically equivalent versions of the transitive closure program Ptc. The measures
obtained through logic profiling correlate with runtime measures for a large, real-
world example. Two prototypical systems Gpad/dlv and Gpad/lb have been
implemented, for DLV and LogicBlox, respectively; a public release is planned
for the near future. While we have presented our approach for positive Datalog
only, it is not difficult to see how it can be extended, e.g., for well-founded
Datalog. Indeed, the Gpad prototypes already support the handling of well-
founded negation through a simple Statelog encoding [11, 13].

Acknowledgments. Work supported in part by NSF awards OCI-0722079, IIS-
1118088, and a gift from LogicBlox, Inc.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

[2] Bancilhon, F., Ramakrishnan, R.: An Amateur’s Introduction to Recursive Query
Processing Strategies. In: Readings in Database Systems. pp. 507–555 (1988)

[3] Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: A theoretical framework for the
declarative debugging of Datalog programs. Semantics in Data and Knowledge
Bases pp. 143–159 (2008)

[4] Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A visual tracer for DLV. In: Workshop
on Software Engineering for Answer Set Programming (SEA) (2009)

[5] Chiticariu, L., Tan, W.C.: Debugging Schema Mappings with Routes. In: VLDB.
pp. 79–90 (2006)

[6] Chomicki, J., Imieliński, T.: Finite representation of infinite query answers. ACM
Transactions on Database Systems (TODS) 18(2), 181–223 (1993)

[7] Drabent, L., Nadjm-Tehrani, S.: Algorithmic Debugging with Assertions. In:
Meta-programming in Logic Programming (1989)

[8] Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS
(2007)

[9] Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update Exchange with
Mappings and Provenance. In: VLDB. pp. 675–686 (2007)

[10] Kunen, K.: Declarative Semantics of Logic Programming. Bulletin of the EATCS
44, 147–167 (1991)

[11] Lausen, G., Ludäscher, B., May, W.: Transactions and Change in Logic Databases,
chap. On Active Deductive Databases: The Statelog Approach, pp. 69–106. LNCS
1472 (1998)

[12] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic (TOCL) 7(3), 499–562 (2006)

[13] Ludäscher, B.: Integration of Active and Deductive Database Rules. Ph.D. thesis,
Albert-Ludwigs Universität, Freiburg, Germany (1998)

[14] Marczak, W.R., Huang, S.S., Bravenboer, M., Sherr, M., Loo, B.T., Aref, M.: Se-
cureBlox: Customizable Secure Distributed Data Processing. In: SIGMOD (2010)

[15] Oetsch, J., Pührer, J., Tompits, H.: Stepping through an answer-set program.
Logic Programming and Nonmonotonic Reasoning pp. 134–147 (2011)

[16] Perri, S., Ricca, F., Terracina, G., Cianni, D., Veltri, P.: An integrated graphic tool
for developing and testing DLV programs. In: Workshop on Software Engineering
for Answer Set Programming (SEA) (2007)

[17] Ramakrishnan, R., Ullman, J.: A Survey of Deductive Database Systems. Journal
of Logic Programming 23(2), 125–149 (1995)

[18] Shapiro, E.: Algorithmic program debugging. Dissertation Abstracts International
Part B: Science and Engineering, 43(5) (1982)

[19] Tobermann, G., Beckstein, C.: What’s in a trace: The box model revisited. In:
Automated and Algorithmic Debugging, LNCS, vol. 749, pp. 171–187 (1993)

[20] Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. CoRR
abs/1011.5332 (2010)

[21] Zaniolo, C., Arni, N., Ong, K.: Negation and Aggregates in Recursive rules: the
LDL++ Aprrpach. Deductive and Object-Oriented Databases pp. 204–221 (1993)

[22] Zeller, A.: Isolating cause-effect chains from computer programs. In: SIGSOFT
Symposium on Foundations of Software Engineering (2002)

