
Yannis Smaragdakis

1 of 12

Java-C++ Comparison

- A refresher in OO language features
- Ask questions!



Yannis Smaragdakis

2 of 12

Differences at a Glance

Java eliminates some of the C++ complexities

• No preprocessor (#define, #include, 
#ifdef)

- no biggie? (cpp -P and some shell stuff)

• No direct memory access (pointers to existing 
storage)

• No multiple inheritance

• No operator overloading, no implicit 
conversions

• No goto, free, typedef

• No unions

• No stand-alone functions, global variables



Yannis Smaragdakis

3 of 12

Differences at a Glance

Java adds some things to C++

• Interfaces

• Garbage collection

• Object, reflection

• Threading (and monitors) in the language

• Bound/cast checking

Java does many things differently

• Packages, inner classes

• Arrays

• Templates vs. generics

• Incremental compilation

• Virtual machine and bytecode



Yannis Smaragdakis

4 of 12

Interesting Changes: Packages

• Java has no global variables and functions
- everything is part of a class

• Java packages are a module mechanism, like 
C++ namespaces

- unlike modules in other languages, 
namespaces and packages are open

• Access specifiers:
- for packages, public or private (by 

omitting public)
- for classes, private, public, 
protected, or package-protected (by 
omitting all access specifiers)



Yannis Smaragdakis

5 of 12

References

• Java has no pointers to memory—objects and 
arrays are always passed “by reference-value”

- “by reference” is another term used, but it’s 
overloaded (e.g., C++ reference types have 
the textbook “by reference” semantics)

- what is the difference? How do C++ references 
and const references work? How are Java 
primitives passed?

• This has some side-effects:
- copying can be done only with the clone 

method (on Cloneable types)
- deep equality can be tested only with the 
equals method (or equivalent)

- no direct access to memory, no pointer 
arithmetic, reference types treated 
differently than primitive types



Yannis Smaragdakis

6 of 12

Garbage Collection

• Java has no explicit free statement, memory 
is reclaimed automatically

• A “finalizer” may be called

• What’s wrong with never reclaiming any 
memory?

- address space “real estate” is cheap, isn’t it?

• Does this mean there can be no memory leaks?
- a field is not set to null, expecting to be 

overwritten in the future
- a local variable is not set to null, 

expecting to go out of scope soon
- a problem in long-running methods

- Swing/AWT listener that is not removed 
after it is no longer needed (either by fault 
of user code or by fault of system code)

- caching strategy makes objects become 
unreachable more slowly



Yannis Smaragdakis

7 of 12

Arrays

• No support for multidimensional arrays: they 
are just arrays of arrays

- this is not the same in C/C++, despite the 
similar syntax: an array of pointers to 
arrays is what’s closest to Java

- think of the memory layout and recall that 
multidimensional arrays is where the array/
pointer duality breaks in C

• Interesting syntax:
- byte f[][] = new byte[128][16]

- int i[][] = new int[100][]

• Arrays are covariant:
if the following is legal,
B b; A a = b;

then the following is also legal
A a[] = new B[];



Yannis Smaragdakis

8 of 12

Threads and Monitors

• Monitor-style concurrent programming:
- using mutexes for exclusion from a critical 

section
- using conditions (i.e., wait statements) for 

protected waiting
- used for inclusion in a critical section

• Java supports concurrent programming with 
threads and monitors at the language level

- synchronized keyword
- “friendly” thread library



Yannis Smaragdakis

9 of 12

Method Overriding 

• A method with the same signature can be 
defined and it overrides the superclass method

- the new method is called for objects of the 
subclass

(what’s the difference with “overloading”?)

• Pre-Java-5, overriding method needed to have 
the exact same signature as the original (non-

variance)

• In current Java (as in C++) the return type can 
be more specific (covariance)



Yannis Smaragdakis

10 of 12

Interfaces

• Interfaces partially describe the signature of a 
class

- not sufficient for static type checking, 
unfortunately: no nested classes, no 
constructors, no final attributes, etc.

• Interface conformance needs to be explicitly 
declared (named, not structural conformance)

• Interfaces used to eliminate a common need 
for multiple inheritance



Yannis Smaragdakis

11 of 12

C++ Templates (10 mile-high view)

• Class templates:

template <class E1, class E2>

struct Pair {

E1 fst;

E2 snd;

...

};

• Function templates:

template <class T>

const T& max(const T& e1, const T& e2)

{

if (e1 > e2)

return e1;

else

return e2;

}

• Templates: a full sub-language for compile-
time computation



Yannis Smaragdakis

12 of 12

C++ Operator Overloading and Implicit 
Conversions

• Advanced features from a language design 
point of view

- they are essentially extensibility features for 
C++ compilers

- can be used to redefine the syntax and the 
type system of the language

• Overloading:

struct F {

...

int operator[] (int index) {...}

};

• Implicit conversion:

class F {

 operator int() const {return 1;}

};


