
Yannis Smaragdakis

1 of 16

Elements of Type Systems

Random thoughts on types, genericity 
mechanisms, and more



Yannis Smaragdakis

2 of 16

What is a Type?

Way to think about it: a type is a set of values. It 
always makes sense to ask whether a value has a 
certain type (values do not have a single type!)

• Usually, expressing a type means being able to 
define variables of that type

- variables: identifiers whose value can 
change at run-time (includes parameters 
and results of functions)

• Nevertheless, this is not an absolute truth: 
sometimes one can conceptually refer to types, 
but not define variables

- then only constants can assume this type
- from a type system standpoint, if you can 

represent constants, you can also represent 
variables. But there may be 
implementation issues making the latter 
undesirable



Yannis Smaragdakis

3 of 16

What are Types Good For?

• Types are used as static properties of values. 
They enable error checking, optimization

• Examples of types:
- Simple types: int, bool, float, etc.
- Composite types: records, classes, 

functions, unions
- Parametric types or type templates: arrays

• Type systems vary w.r.t. what types they allow 
the user to define, what types are pre-defined, 
etc.

• If pre-defined types are considered constants, 
does the type system allow type variables? If 
yes: genericity or polymorphism. Many 
flavors:

- parametric polymorphism
- sybtyping



Yannis Smaragdakis

4 of 16

Subtyping

• Roughly, when a type is a subset of another

• What does that mean for method signatures? 
(covariance/contravariance of arguments result 
types)

• Consider (which one really defines a subset?):

interface I1 {
Animal foo(Dog d);

}
interface I2 extends I1 {
Dog foo(Animal d);

}
interface I3 extends I1 {
Object foo(PrettyDog d);

}
interface I4 extends I2 {
Dog foo(Dog d);

}



Yannis Smaragdakis

5 of 16

Universal Types (Parametric Polymorphism) 
vs Root of Hierarchy (Subtyping)

• Subtype polymorphism allows (homogeneous) 
generic data types but not type-safely

• When elements are extracted from the data 
structure, they need to be cast back to their 
type

• Universal types allow homogeneous 
collections type safely:

List<E> insert<forall E> 
(List<E> l, E e);

E retrieve<forall E>
(List<E>::iterator l);

• The latter occurs entirely at compile-time, and 
is commonly more efficient



Yannis Smaragdakis

6 of 16

Parenthesis: Named Conformance vs. 
Structural Conformance

• In Java, you have to explicitly declare that a 
class implements an interface (named 
conformance)

• This is an orthogonal (and largely “software 
engineering”) question to typing

• It is equally reasonable to accept any object 
that supports the right methods with the right 
signatures, regardless of whether its definition 
states that it implements the interface 
(structural conformance)

• Advantage of named conformance: no 
accidental conformance (draw for graphical 
object, draw for cowboy)

• Advantage of structural conformance: no need 
to adapt code when adding interfaces



Yannis Smaragdakis

7 of 16

Genericity Mechanisms in 
C++ and Java

A discussion of modern approaches to creating 
generic data types: parametric typing, virtual 
typing, etc.



Yannis Smaragdakis

8 of 16

C++ Templates (10 mile-high view)

• Class templates:

template <class E1, class E2>
struct Pair {
E1 fst;
E2 snd;
...
};

• Function templates (and C++ type inference):

template <class T>
const T& max(const T& e1, const T& e2)
{
if (e1 > e2)
return e1;

else
return e2;

}

• C++ type inference allows expressing 
(polymorphic functions with) universal types 



Yannis Smaragdakis

9 of 16

C++ Templates

• C++ templates are type templates, not types. 
There is no way to use the uninstantiated 
template

• Approaches using type templates are called 
parametrically polymorphic

• Example C++ code skeleton:

template <class E>
class List {
struct ListNode {
E e;
ListNode *next;

};

public:
typedef ListNode *iterator;
void insert(E e) { ... }
E retrieve(iterator i) { ... }

};



Yannis Smaragdakis

10 of 16

Universal Types vs. Type Templates

• Note the difference between 
List<E>::insert and the universally 
typed (polymorphic) function
List<E> insert<foreach E>

(List<E> l, E e);
- (this is not a C++ type signature)

• We can express the latter in C++ using 
function templates

template <class E>
List<E> insert(List<E> l, E e) {...}



Yannis Smaragdakis

11 of 16

Java Genericity: GJ

• GJ: a parametric polymorphism approach that 
is the blueprint for Java generics

- a lot of emphasis on backward and forward 
compatibility with legacy Java code

interface Collection<E> {
public void insert(E e);
public Iterator<E> init();

}

interface Iterator<E> {
public E next();
public boolean hasNext();

}

class List<A> implements Collection<A> 
{ ... }



Yannis Smaragdakis

12 of 16

F-Bounded Polymorphism

• Type parameters can be bounded with 
extends clauses

• F-bounded polymorphism: the bound can be 
parameterized, possibly by a type parameter

interface Comparable<A> {
public int compareTo(A that);

}

class CollectionUtils {
public static 
<A extends Comparable<A>>
A max (Collection<A> xs) { ... }

}



Yannis Smaragdakis

13 of 16

GJ Translation

• GJ is translated by erasure: regular code with 
Object references and casts is generated. 
Type safety is ensured, though

Collection<A> c;
...
c.init().next() ...

becomes

Collection c;
...
(A)(c.init().next())...

• This limits the possible use of type parameters:
- cannot inherit from a type parameter (no 

mixins)
- cannot cast to a type parameter
- cannot construct an object
- originally could not read member classes 

from a type parameter



Yannis Smaragdakis

14 of 16

Virtual Typing (in the Java context)

• Virtual types: a superclass defines a version of 
a type variable, but the subclass can refine it 
(restrict it to a subtype)

class Vector {
typedef ElemType as Object;
void insert (ElemType e) ...
ElemType elementAt(int index) ...
...

}

class PointVector {
typedef ElemType as Point;

}

• Not statically type safe in the simplest form: a 
PointVector is not a Vector, because the 
argument of the insert method is covariant

- the implementation is done with casts so 
runtime type errors may arise



Yannis Smaragdakis

15 of 16

Virtual Types

• Virtual types come from the Beta 
programming language

• Virtual types are an existential, not a universal 
types approach

- generic classes are real classes, not 
templates

- code operating on generic classes just relies 
on the existence of some virtual type

• We saw something like virtual typing in 
AspectJ and generic aspects



Yannis Smaragdakis

16 of 16

Other Proposals

• Several more proposals for Java genericity, but 
the GJ model won

- NexGen
- PolyJ (where clauses instead of F-bounds)
- Agesen, Freund, and Mitchell’s parametric 

types system with a heterogeneous 
translation (and mixins)


