
Yannis Smaragdakis

8 of 19

AspectJ

• A very nice MOP/general compositional
semantic extensibility facility for Java

- used entirely for interposing code, not
changing how the object system works

- AspectJ is a transparent extension of Java,
comes with IDE support (for easier editing,
inspection of aspect code)

• To demonstrate, consider an example
application: a figure editor

FigureEle
incrXY

Point
getX
setX
incrXY

Line
getX
setX
incrXY move

aspect

Yannis Smaragdakis

9 of 19

Join points

• Many possible join points in AspectJ. At:
- method call (inside calling object)
- method call reception by an object (any

method)
- method execution (specific method)
- field access (get/set)
- constructor call (inside object doing new)
- constructor call reception (any constructor)
- exception handler execution
- class initialization (static initializers run)

Pointcuts

• Pointcut = set of join points + values from the
context (e.g., the this object, method
parameters, etc.)

call(void Point.setX(int))
- all join points where the method called is
void Point.setX(int)

Yannis Smaragdakis

10 of 19

Kinds of Pointcuts

• Pointcuts can be thought of as runtime
predicates: when they are true, we are at a join
point described by the pointcut.

• Several kinds of pointcuts. E.g.:
- call(signature)
- execution(signature)
- get/set(signature)

- value can be matched with args
- args(Type)
- handler(ThrowableClass)
- this/target(Type)
- within(Type)
- withincode(signature)
- cflow(pointcut)
- initialization(ConstrSig)
- staticinitialization(Type)

• Also: boolean pointcut operators (&&, ||, etc.)
and pointcut constants (user-defined pointcuts)

Yannis Smaragdakis

11 of 19

Pointcut Example

pointcut moves():
 call(void FigureElement.incrXY(int,int))

|| call(void Line.setP1(Point))
|| call(void Line.setP2(Point))
|| call(void Point.setX(int))
|| call(void Point.setY(int));

• describes the join points where methods that
cause “movement” of a figure are called

- Note that a “user-defined” pointcut
(operator pointcut) is used to give a
name (moves) to the pointcut

Advice

• Advice: specification of aspect code to be
interposed at pointcuts

- before, after, or instead of (around) the
code at a join point

- two special cases of “after”: after returning/after
throwing (for normal/exception exits)

Yannis Smaragdakis

12 of 19

Aspects

• Aspects have class-like syntax (and, to some
extent, semantics—e.g., for scoping). They can
contain pointcuts, advice, and regular class
declarations (member vars/methods)

aspect MoveTracking {
static boolean flag = false;
static boolean testAndClear() {
boolean result = flag;
flag = false;
return result;

}

pointcut moves():
 call(void FigureElement.incrXY(int,int))
|| call(void Line.setP1(Point))
|| call(void Line.setP2(Point))
|| call(void Point.setX(int))
|| call(void Point.setY(int));

after(): moves() { // advice
flag = true;

}
}

Yannis Smaragdakis

13 of 19

Aspects

• Aspects can have multiple instances

• There are complex rules about how aspect
execution (advice application) is ordered

- the rules take into account Aspect
relationships (e.g., if aspect A extends B,
then it’s considered more specific)

- there is a dominates keyword for aspects
that know about each other

Example (uses MoveTracking from last slide)

aspect Mobility dominates MoveTracking {
static boolean enableMoves = true;

around() returns void:
MoveTracking.moves()

{ if (enableMoves) proceed(); }
}

defines an “around” (instead-of) method
preventing moves if the flag is not set

Yannis Smaragdakis

14 of 19

Pointcut Parameters

• Advice and pointcut definitions can have
parameters (see empty parentheses in previous
examples)

• The parameters can be used in pointcut
predicates instead of type variables and take
the value of the instance matching the
predicate

- this is overloading the existing syntax for an
entirely different purpose

before(Point p, int nval):
call(void p.setX(nval)) {
System.out.println(“x value of” + p +
“ will be set to ” + nval + “.”);

}

To print a message every time the value of x for
a point changes

Example: Getting the current object

Yannis Smaragdakis

15 of 19

• regular pointcut definition:
pointcut foo() :

instanceof(Point);

• pointcut with parameter:
pointcut foo(Point p) :

instanceof(p);

• p is the object of class Point with which the
join point is associated!

Example: Around Advice and Proceed

• We saw proceed earlier, but it can also be
called with parameters

• To ensure that a method is only called with
non-negative int arguments:
around(int nv) returns void:
call(void Point.setX(nv))

{ proceed(Math.max(0, nv)); }

Yannis Smaragdakis

16 of 19

Abstract and Generic Aspects

A “virtual type”-like mechanism allows aspect
genericity

abstract aspect SimpleTracing {
abstract pointcut tracePoints();
//yet undefined

before(): tracePoints() {
printMessage(“Entering”,thisJoinPoint);

}
after(): tracePoints() {
printMessage(“Exiting”,thisJointPoint);

}

void printMessage(String s, JoinPoint tjp)
{ ... }

}

aspect XYTracing extends SimpleTracing {
pointcut tracePoints():
call(
void FigureElement.incrXY(int,int));

}
- (note the thisJointPoint variable and the
JoinPoint type: they reflectively export
details of the AspectJ implementation)

Yannis Smaragdakis

17 of 19

Wildcards

E.g.,

call(* Point.*(..))
call(Point.new(..))

Control-Flow Based Pointcuts

The cflow operator is true on points under the
dynamic extent of other join points (e.g., while
the methods corresponding to these join points
are still active on the execution stack)

pointcut moves(FigureElement fe):
<see before>;

pointcut topLevelMoves(FigureElement fe):
moves(fe) && !cflow(moves(FigureElement));

Implementation

The AspectJ compiler inserts code to check and
call the right aspects at join points: efficient

Yannis Smaragdakis

18 of 19

Introductions / Inter-type Declarations

Can declare members and supertypes for
existing classes!

A static transformation language. These
“introductions” are not advice and are not
associated with pointcuts

Add an “enabled” field to all
FigureElements:

- boolean FigureElement.enabled=false;

Add a setter method:
- public

FigureElement.setEnabled(boolean b) {
this.enabled = b;

}

Add superclasses to FigureElement:
- declare parents:

FigureElement extends Drawable

Yannis Smaragdakis

19 of 19

Overall Critique

• AspectJ is a good tool, but not particularly
ground-breaking

• The question is, how much “aspect”-
functionality is MOP-like?

- probably not much:
- most of the compositional functionality (e.g.,

before-after methods) can be done without
MOPs (e.g., with mixins)

- the rest needs a full blown generator

