Concurrent Programming
Introduction and Advice

- Read the Birrell paper
- excellent introductory paper
- promotes understanding the material

- abstract content with direct application

- limited and rather outdated concrete technical
content

- | will concentrate on Java here, but the same
applies to other systems

1of12

Yannis Smaragdakis



Concurrent Programming

- Most thread programming nowadays is
monitor-style programming (e.g., Java threads,
PThreads, threads in OS kernels)

- Monitor style programming has two
components:
- locks/mutexes (1ock)
- condition variables (wait, signal,
broadcast)

- Mapping of abstract to concrete:

- Java:

- lock -> synchronized

-wailt->wait

- signal -> notify

- broadcast -> notifyAll
- PThreads:

- lock -> pthread mutex_lock ...
pthread mutex unlock

- walt, signal, broadcast ->

pthread cond {wait,signal,broadcast}

Yannis Smaragdakis

20f12



Different Models

- In Java every object can be a mutex/condition
variable
- better way to think of it: every object is
assoclated with a unique mutex and
condition variable

- In other systems you need to explicitly create
mutex/condition variables
-E.Q.,
Mutex m; ... Lock(m) { ... }

- Thread creation is mostly uninteresting
- In Java: threads are instances of class
Thread, they begin execution when their
start method is called

30f12

Yannis Smaragdakis



Mutex Example

class List {
public synchronized int insert(int i)

1 [BODY] }
}

Same as

class List {

public Int Insert(int 1)

{ synchronized(this) [BODY] }
by

- Mutexes are used to control access to shared
data
- only one thread can execute inside a
synchronized clause
- other threads who try to enter
synchronized code, are blocked until
the mutex is unlocked

Yannis Smaragdakis

4 0f 12



Condition Variables

- Condition variables are used to wait for

specific events (especially for long waits)

- free memory is getting low, wake up the garbage
collector thread

- 10,000 clock ticks have ellapsed, update that
window

- new data arrived in the 1/O port, process it

- Each condition variable Is associated with a

single mutex
- In Java, each mutex is also associated with a
single condition (ugly, ugly, ugly!)

- wait atomically unlocks the mutex (as many
times as needed) and blocks the thread

- notify awakes some blocked thread
- the thread is awoken inside wait
- tries to lock the mutex (maybe many times)
- when it (finally) succeeds, it returns from
the wait

50f12

Yannis Smaragdakis



Condition Variable Example

class Buffer {
Port port;
public synchronized void consume() {
while (port.empty())
wait();
process_data(port.first data());
by

public synchronized void produce() {
port.add data();

notity();
}
}

Use of Mutexes and Condition Variables

- We’ll talk about programming suggestions,
common errors, and good idioms

- Advice: read examples in paper and absorb at
your own pace

6 of 12

Yannis Smaragdakis



Deadlocks

Examples:

- A locks M1, B locks M2, A blocks on M2, B
blocks on M1

- Similar examples with condition variables and
mutexes

Techniques for avoiding deadlocks:
- Fine grained locking

- Two-phase locking: acquire all the locks you’ll
ever need up front, release all locks if you fail
to acquire any one

- very good technigue for some applications,
but generally too restrictive

- Order locks and acquire them in order (e.qg., all
threads first acquire M1, then M2)

Yannis Smara gdakis

7 of 12



Using Condition Variables
Recall our example:

class Buffer {
Port port;
public synchronized void consume() {
while (port.empty())
wait();
process data(port.first data());
by

public synchronized void produce() {
port.add data();

notifyAll();
¥
¥

Why use whi le instead of 1 ¥? (think of many
consumers, simplicity of coding producer)

- notifyAll is then safe to use in place of

notify

8 of 12

Yannis Smaragdakis



The Golden Rules

- Most problems with concurrent programming
are very simple oversights! People forget to
access shared variables in locks, forget to
signal when a condition changes, etc.

The golden rules:

1. Shared data should always be accessed
through a single mutex (easy in Java: just
make non-public in a class)

2. Think of a boolean condition (expressed in
terms of program variables) for each
condition variable. Every time the value of
the boolean condition may have changed,
call notifyAll for the condition variable
- only call notify when you are absolutely

certain that any and only one waiting
thread can enter the critical section

3. Globally order locks, acquire in order in all
threads

9 of 12

Yannis Smaragdakis



Monitor-Style Programming

- Armed with mutexes and condition variables,

you can implement any kind of critical section
CS.enter(); [controlled code] CS.exit();

- General pattern:

class CS {
[shared data]
public synchronized void enter() {
while (![condition])
wait();
[change shared data
to reflect 1n_CS]
[notify as needed]

}

public synchronized void exit() {
[change shared data
to reflect out of CS]
[notify as needed]

}
}

Yannis Smaragdakis

10 of 12



Example: Readers/Writers Locking

class RWLock {

INt readers;

public RWLock() { readers = 0; }

public synchronized

while (readers ==
wairt(Q);
readers++;

public synchronized
readers--;

IT (readers == 0)
notify();

public synchronized

while (readers I=
wait(Q);
readers = -1;

public synchronized
readers = O;

) notifyAll();

void enter_read() {

-1)

void exit read() {

void enter_write() {

0)

void exit write() {

Yannis Smaragdakis

11 of 12



Comments on Readers/Writers Example

- Invariant: readers >= -1
- Note the use of notifyAll

- Single condition variable for phase changes
- ugly, ugly, ugly, and inefficient!

- Note that a writer signals all potential readers
and one potential writer. Not all can proceed,
however (spurious wake-ups)

- Unnecessary lock conflicts may arise
(especially for multiprocessors):

- both readers and writers signal condition
variables while still holding the
corresponding mutexes

- notifyAll wakes up many readers that
will contend for a mutex

- can do a single noti Fy, then have a reader
notify next reader

Yannis Smaragdakis

12 of 12



