Garbage Collection Survey

- Based on Wilson’s short survey
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Garbage Collectors

- Two different tasks:
- reachability computation (from root set)
- reclamation

- Main degrees of variability:
- IS GC incremental or stop-and-collect?
- Incremental better, more complex
- are objects moved during reclamation?

- If not, high complexity to link garbage in free
lists, etc.

- If they are, we lose conservatism (have to know
all pointers), may suffer from the copy
overhead (usually not too important)

- Important question: How to tell pointers from
data?
- type information
- header fields, tag bits, etc.
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Basic Garbage Collection Technigues
1.Reference Counting collection
2.Mark-Sweep collection
3.Mark-Compact collection
4.Copying collection
5.Implicit, non-copying collection
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1. Reference Counting

- Keep for each object a count of how many
times it is pointed to

- Advantages:
- simplicity, easy to make incremental
- locality probably good [DeTreville]
- little degradation when heap is almost full
- objects stay in place, can be conservative

- Disadvantages:
- work done for each pointer copying
- horrible for short-lived variables
- cycles can fool it

- cycles are common (doubly linked lists, etc.)
- biggest showstopper
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2. Mark-Sweep Collection

- Two phases: marking (for reachability
computation), sweeping (for reclamation)

- Advantages:
- objects stay in place, can be conservative

- Disadvantages:
- allocator kind of problems: fragmentation,
locality
- cost of collection proportional to amount of
garbage + live data (not just live data)

- All these problems can be alleviated with
clever techniques, as in allocators. On the
other hand, they can be solved altogether with
other GC techniques
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3. Mark-Compact Collection

- Like mark-sweep, only compaction phase
Instead of sweeping (usually “sliding
compaction”)

- Advantages:
- no fragmentation
- good locality after compaction

- Disadvantages:
- N0 conservatism
- horrible locality during GC (multiple passes
through memory)

6 of 18

Yannis Smaragdakis



4. Copying Collection

- Addresses a problem of mark-compact:
memory needs to be traversed once
- reachability computation and copying are
Interleaved
- scavenging Is another term used

- Most common implementations: semi-spaces
with “scan’” and “free” pointers that implement
the tricolor abstraction:

- copied and scanned objects are black
- copied but not scanned objects are grey
- not copied, not scanned objects are white

- A FIFO scan queue (implementing a breadth-
first traversal) is often used for copied blocks

- Forwarding pointers are needed for objects
that get copied (the originals may be reachable
through some other objects—these references
should be updated)
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How often to copy (or compact)?

- “As rarely as possible, but definitely not more
rarely”

- Infrequent collections are great: objects die

- But heap cannot be too large: has to fit in
memory for collector to avoid paging

- Disadvantage of copying (relative to compact):

semi-spaces make matters worse
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5. Implicit Collection

- Observation: merging list is very fast

- Keep all objects in lists. Distinguish three lists:

- allocated
- free
- live (only used during GC)

- Implicit non-copying collection works
Isomorphically to a common copying
collector:

- scan to “move” objects to live list (not
really moved)

- then merge the allocated and free lists
(allocated contains only garbage)

- Advantages:
- N0 copying (conservative, etc.)
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- Disadvantages:
- no copying (fragmentation, etc.)
- high overhead (even allocated blocks need
to have list pointers)
- hard to make low-fragmentation while
keeping list merging cost low
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Incremental Tracing Collectors
(the organization in the paper is not too good)

- Interleave garbage collection (marking and
reclamation) with allocation and program
actions (mutation)

- Tricolor marking is a useful abstraction
- reached objects with reached descendants
are black
- reached objects whose descendants are not
all reached are grey
- not-reached objects are white

- Important invariant: no black object holds a
pointer directly to a white object
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Problems and Solutions

- First problem: the mutator may cause
violations of the invariant; the GC must notice
so as to fix it

- Violation of the invariant would mean that
some objects may not be traversed

- For collectors that move objects, a second
(easier) problem emerges: the GC is itself a
mutator and it can make program data invalid
(objects are moved)

- Two kinds of solutions:
- read barriers
- write barriers
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Write Barriers

- Trap writes (of pointers to objects)

- Two occasions of interest:
- writing of a pointer to a white object In
black object
- overwriting of the original pointer to the
white object

- Two Kinds of write barriers depending on
which case they catch:

- shapshot-at-beginning: take a (virtual)
snapshot of all pointers to white objects. In
reality, trap writes that could be
overwriting a pointer to a white object

- Incremental update: catch writing in black
objects; If pointer to white object is
written, revert black object to grey (or
make white object grey)
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Snapshot-at-beginning

- Prevents overwriting pointers to white objects
(and making them seem unreachable)

- When a location is written to, push the
overwritten value on a stack, traverse it later

- Fairly conservative: whatever was live at the
beginning of collection, will stay live
- no possibility of making something
unreachable during the collection

- But only writes to grey and white objects need
to be trapped (why?)
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Incremental Update

- Notices when a pointer escapes into a location
that has been traversed (black)
- all writes to black objects are trapped

- The black object is then made grey (lazy) or
the white object pointed to is made grey

(eager)

- This ensures that objects can become garbage
after the collection has started

- Interesting question: should newly allocated
objects be black or white?
- If black, too conservative (they may die
very soon—>before the GC is over)
- If white, complicated. The root set should
be re-traversed at the end of a regular GC

- Can the stack be traversed non-atomically?
- a write barrier that includes it is inefficient
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Read Barriers

- The entire “white” space Is read protected.
Reading white objects makes them turn grey

- Quite expensive without specialized hardware

- Again question is, where to allocate new
objects?

- Also, how to make sure that the GC does not
run out of space?
- can tie rate of collection to rate of allocation

- Read barriers can be used with copying
collection or implicit non-copying collection.
The latter is the treadmill technique

- we now have 4 lists (one extra for
allocations that occur during GC)
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Generational Garbage Collection

- Most objects die very quickly, but the ones that
survive a little tend to survive a lot longer

- Hence, the generational idea: multiple
generations are GCed independently
- Improves locality
- reduces work that needs to be done

- Usually 2 generations: the younger one is
typically much smaller than the older one

- Main issue: how to treat inter-generational
references?
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Inter-Generational References

- Liveness is a global property: to tell what is
garbage we need to take all generations into
account

- Young-to-old references: small problem. Worst
case, we traverse young generation (small)
every time we GC the old one (rarely)

- Old-to-young references: big problem.
Solutions:
- level of indirection (slows down all pointer
accesses from old to young)
- write barrier on old generation, accounting

of all the pointers from it to young
- can trap all writes. Even better: trap on first
write, set dirtyness info, unprotect page (so that
subsequent writes are fast), scan dirty pages at
end

- Typically many more pointers from new to old
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