Garbage Collection Survey

- Based on Wilson’s short survey

Yannis Smaragdakis

10f18



Garbage Collectors

- Two different tasks:
- reachability computation (from root set)
- reclamation

- Main degrees of variability:
- IS GC incremental or stop-and-collect?
- Incremental better, more complex
- are objects moved during reclamation?

- If not, high complexity to link garbage in free
lists, etc.

- If they are, we lose conservatism (have to know
all pointers), may suffer from the copy
overhead (usually not too important)

- Important question: How to tell pointers from
data?
- type information
- header fields, tag bits, etc.

2 0f 18

Yannis Smaragdakis



Basic Garbage Collection Technigues
1.Reference Counting collection
2.Mark-Sweep collection
3.Mark-Compact collection
4.Copying collection
5.Implicit, non-copying collection

Yannis Smaragdakis

30f18



1. Reference Counting

- Keep for each object a count of how many
times it is pointed to

- Advantages:
- simplicity, easy to make incremental
- locality probably good [DeTreville]
- little degradation when heap is almost full
- objects stay in place, can be conservative

- Disadvantages:
- work done for each pointer copying
- horrible for short-lived variables
- cycles can fool it

- cycles are common (doubly linked lists, etc.)
- biggest showstopper

Yannis Smaragdakis

4 0f 18



2. Mark-Sweep Collection

- Two phases: marking (for reachability
computation), sweeping (for reclamation)

- Advantages:
- objects stay in place, can be conservative

- Disadvantages:
- allocator kind of problems: fragmentation,
locality
- cost of collection proportional to amount of
garbage + live data (not just live data)

- All these problems can be alleviated with
clever techniques, as in allocators. On the
other hand, they can be solved altogether with
other GC techniques

Yannis Smaragdakis

50f 18



3. Mark-Compact Collection

- Like mark-sweep, only compaction phase
Instead of sweeping (usually “sliding
compaction”)

- Advantages:
- no fragmentation
- good locality after compaction

- Disadvantages:
- N0 conservatism
- horrible locality during GC (multiple passes
through memory)

6 of 18

Yannis Smaragdakis



4. Copying Collection

- Addresses a problem of mark-compact:
memory needs to be traversed once
- reachability computation and copying are
Interleaved
- scavenging Is another term used

- Most common implementations: semi-spaces
with “scan’” and “free” pointers that implement
the tricolor abstraction:

- copied and scanned objects are black
- copied but not scanned objects are grey
- not copied, not scanned objects are white

- A FIFO scan queue (implementing a breadth-
first traversal) is often used for copied blocks

- Forwarding pointers are needed for objects
that get copied (the originals may be reachable
through some other objects—these references
should be updated)

Yannis Smaragdakis

7 of 18



How often to copy (or compact)?

- “As rarely as possible, but definitely not more
rarely”

- Infrequent collections are great: objects die

- But heap cannot be too large: has to fit in
memory for collector to avoid paging

- Disadvantage of copying (relative to compact):

semi-spaces make matters worse

Yannis Smaragdakis

8 of 18



5. Implicit Collection

- Observation: merging list is very fast

- Keep all objects in lists. Distinguish three lists:

- allocated
- free
- live (only used during GC)

- Implicit non-copying collection works
Isomorphically to a common copying
collector:

- scan to “move” objects to live list (not
really moved)

- then merge the allocated and free lists
(allocated contains only garbage)

- Advantages:
- N0 copying (conservative, etc.)

Yannis Smaragdakis

9 0of 18



- Disadvantages:
- no copying (fragmentation, etc.)
- high overhead (even allocated blocks need
to have list pointers)
- hard to make low-fragmentation while
keeping list merging cost low

10 of 18

Yannis Smaragdakis



Incremental Tracing Collectors
(the organization in the paper is not too good)

- Interleave garbage collection (marking and
reclamation) with allocation and program
actions (mutation)

- Tricolor marking is a useful abstraction
- reached objects with reached descendants
are black
- reached objects whose descendants are not
all reached are grey
- not-reached objects are white

- Important invariant: no black object holds a
pointer directly to a white object

Yannis Smaragdakis

11 of 18



Problems and Solutions

- First problem: the mutator may cause
violations of the invariant; the GC must notice
so as to fix it

- Violation of the invariant would mean that
some objects may not be traversed

- For collectors that move objects, a second
(easier) problem emerges: the GC is itself a
mutator and it can make program data invalid
(objects are moved)

- Two kinds of solutions:
- read barriers
- write barriers

Yannis Smaragdakis

12 of 18



Write Barriers

- Trap writes (of pointers to objects)

- Two occasions of interest:
- writing of a pointer to a white object In
black object
- overwriting of the original pointer to the
white object

- Two Kinds of write barriers depending on
which case they catch:

- shapshot-at-beginning: take a (virtual)
snapshot of all pointers to white objects. In
reality, trap writes that could be
overwriting a pointer to a white object

- Incremental update: catch writing in black
objects; If pointer to white object is
written, revert black object to grey (or
make white object grey)

Yannis Smaragdakis

13 of 18



Snapshot-at-beginning

- Prevents overwriting pointers to white objects
(and making them seem unreachable)

- When a location is written to, push the
overwritten value on a stack, traverse it later

- Fairly conservative: whatever was live at the
beginning of collection, will stay live
- no possibility of making something
unreachable during the collection

- But only writes to grey and white objects need
to be trapped (why?)

14 of 18

Yannis Smaragdakis



Incremental Update

- Notices when a pointer escapes into a location
that has been traversed (black)
- all writes to black objects are trapped

- The black object is then made grey (lazy) or
the white object pointed to is made grey

(eager)

- This ensures that objects can become garbage
after the collection has started

- Interesting question: should newly allocated
objects be black or white?
- If black, too conservative (they may die
very soon—>before the GC is over)
- If white, complicated. The root set should
be re-traversed at the end of a regular GC

- Can the stack be traversed non-atomically?
- a write barrier that includes it is inefficient

Yannis Smaragdakis

15 of 18



Read Barriers

- The entire “white” space Is read protected.
Reading white objects makes them turn grey

- Quite expensive without specialized hardware

- Again question is, where to allocate new
objects?

- Also, how to make sure that the GC does not
run out of space?
- can tie rate of collection to rate of allocation

- Read barriers can be used with copying
collection or implicit non-copying collection.
The latter is the treadmill technique

- we now have 4 lists (one extra for
allocations that occur during GC)

16 of 18

Yannis Smaragdakis



Generational Garbage Collection

- Most objects die very quickly, but the ones that
survive a little tend to survive a lot longer

- Hence, the generational idea: multiple
generations are GCed independently
- Improves locality
- reduces work that needs to be done

- Usually 2 generations: the younger one is
typically much smaller than the older one

- Main issue: how to treat inter-generational
references?

17 of 18

Yannis Smaragdakis



Inter-Generational References

- Liveness is a global property: to tell what is
garbage we need to take all generations into
account

- Young-to-old references: small problem. Worst
case, we traverse young generation (small)
every time we GC the old one (rarely)

- Old-to-young references: big problem.
Solutions:
- level of indirection (slows down all pointer
accesses from old to young)
- write barrier on old generation, accounting

of all the pointers from it to young
- can trap all writes. Even better: trap on first
write, set dirtyness info, unprotect page (so that
subsequent writes are fast), scan dirty pages at
end

- Typically many more pointers from new to old

Yannis Smaragdakis

18 of 18



